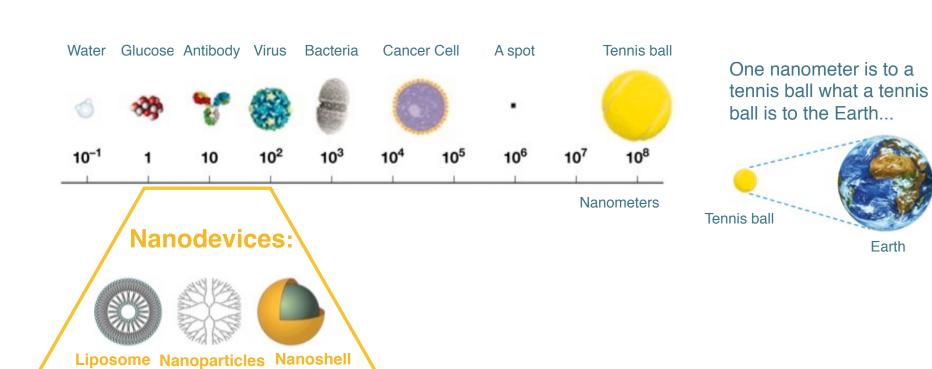
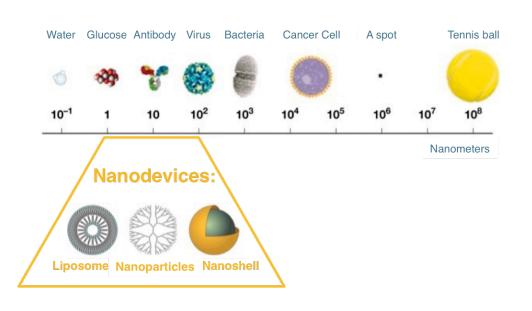


Master's degree "Food Science, Technology and Human Nutrition - Michele Ferrero"

"Nanotechnologies & Food Products: Applications, Risk Assessment and Acceptance of Consumers"

Università degli Studi di Torino – DSTF – 20/11/2015


Giacomo Rinaudo giacomorinaudo@yahoo.it


Aim of the work

Give an overview of nanotechnologies within the food sector concerning:

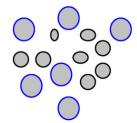
- Definition & Legislation
- Applications
- Risk Assessment
- Awareness and Attitudes

In order to support the company in an appropriate orientation.

Possible change of....

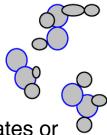
- Chemical reactivity
- Morphology
- Biopersistence
- Solubility
- Bioactivity

European Commission Recommendation 696/2011:

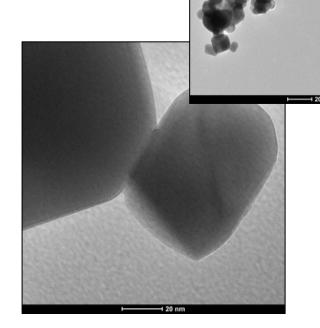

"Nanomaterial means a **natural**, **incidental** or **manufactured** material containing particles,

in an **unbound** state or as an **aggregate** or as an **agglomerate** where,

for 50% or more of the particles in the **number** size distribution, one or more external dimensions is in the size range 1nm-100nm."

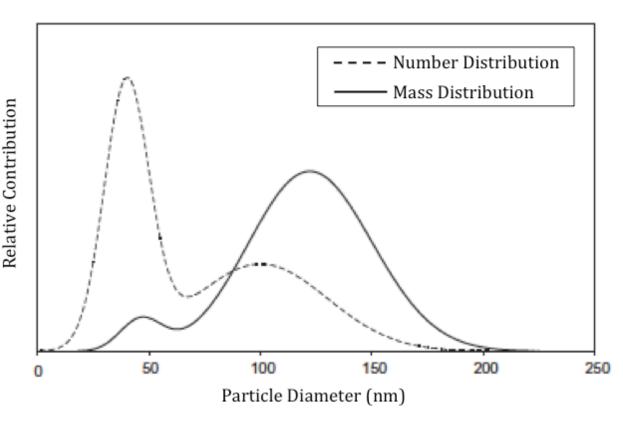

...in an **unbound** state or as an **aggregate** or as

an **agglomerate** ...



Primary nanoparticles 5-20 nm

Aggregate (chemically bound) 30-200 nm

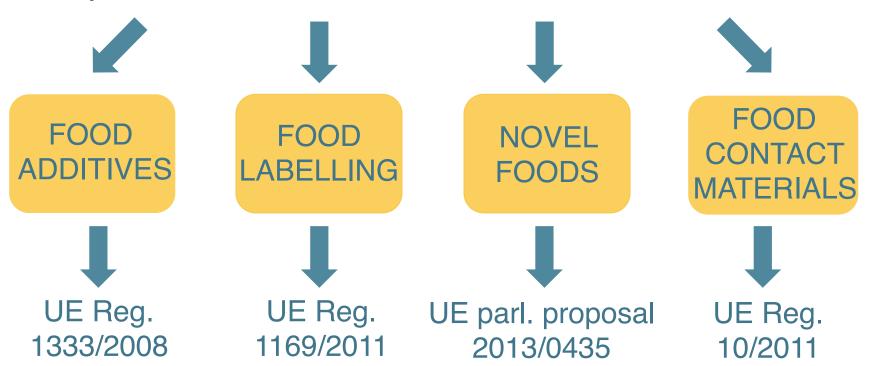


Weak Agglomerates or Flocculates 1-100 μm

5/74

...for 50% or more of the particles in the **number** size distribution...

Example of relative contribution of ideal spherical structure to particle **size distribution** expressed as **number** (broken line) and mass (full line).


(Bleeker, et al., 2013)

Another parameter commonly used for nanomaterial characterization is the **Volume Specific Surface Area (VSSA)** that is defined as:

"the surface area divided by the mass of the relevant phase, when the area of the interface between two phases is proportional to the mass of one of the phases" (IUPAC, 1972)

European Commission Recomm. 696/2011 → VSSA > 60m²/cm³

European Commission Recommendation 696/2011:

Legislation	EU legislation	Definition ^(a)	Label ^(b)	Guidance
Products:				
Biocides	(EU) No 528/2013	Yes	Yes	No
Plant protection products	(EC) No 1107/2009	No	No	Yes
Cosmetics			Yes	
	(EC) No 1223/2009	Yes	res	Yes
Medical devices	COM (2012) 542 final 2012/0266 (COD)	Yes	Yes	No
Food/Feed:				
Food information to consumers	(EU) No 1169/2011	Yes	Yes	No
Novel foods/feeds	COM(2013) 894 final 2013/0435 (COD)	Yes	Yes	Yes
Plastic food contact materials	(EU) No 10/2011	No	No	Yes
Active and Intelligent Materials and Articles	(EU) 450/2009	No	No	No
Food additives	(EC) 1333/2008	No	Yes	Yes
Feed	(EC) No 767/2009	No	No	No
Chemicals:				•
Registration, evaluation,	(EC) 1907/2006			
authorisation and		No	No	Yes
restriction of chemicals				
(REACH)				
Classification, labelling	(EC) 1272/2008	No	No	No
and packaging				
Occupational health and	89/391/EEC: 98/24/EC:	<u> </u>		
safety	2004/37/EC:	No	No	No
	EC 1907/2006:			

a): In case the specific legislation includes a definition of nanomaterial, this is indicated by "Yes".

b): In case the specific legislation requires that the use of nanomaterials is indicated on the product label, this is indicated by "Yes".

FOOD LABELLING UE Reg. 1169/2011

"Engineered nanomaterial means any intentionally produced material that has one or more dimensions of the order of 100 nm or less or that is composed of discrete functional parts, either internally or at the surface, many of which have one or more dimensions of the order of 100 nm or less"

FOOD LABELLING UE Reg. 1169/2011

Amending Regulation 1363/2013 of December 2013

"Engineered nanomaterial means any intentionally manufactured material, containing particles, in an unbound state or as an aggregate or as an agglomerate and where, **for 50% or more of the particles in the number size distribution**, one or more external dimensions is in the size range 1 nm to 100 nm"

One week later the Commission itself released the 346/89 corrigendum which nulled and voided the publication.

FOOD ADDITIVES UE Reg. 1333/2008

Although it does not contain a definition, the Reg. states that:

"When a food additive is already included in a Community list and there is a significant change in its production methods... for example through nanotechnology, the food additive prepared by those new methods or materials shall be considered as a different additive and shall undergo a new safety evaluation carried out by European Food Safety Authority (EFSA)"

FOOD ADDITIVES UE Reg. 1333/2008

Re-evaluation program (Reg. 257/2010)

TiO₂, Ag, Au, Fe oxides within 31/12/2015

SiO₂ within 31/12/2016

Mg and Ca silicates within 31/12/2018

FOOD ADDITIVES UE Reg. 1333/2008

Re-evaluation program (Reg. 257/2010)

For the moment, the only two substances with nanosized fraction presence concern that has been re-evaluated, are the calcium carbonate (E 170: "the current levels of adventitious nanoscale calcium carbonate in commercial products would not be an additional toxicological concern") and vegetable carbon (E 153: "the presence of nanoparticles in vegetable carbon products currently on the market can be excluded").

14/74

FOOD CONTACT MATERIALS UE Reg. 10/2011

"Substances in nanoform shall only be used if **explicitly authorised**"

Furthermore, it states that nanoparticles should be assessed on a **case-by-case basis** as regards their risk until more information is known about such new technology.

FOOD CONTACT MATERIALS UE Reg. 10/2011

EFSA Journal 2012;10(3):2641

SCIENTIFIC OPINION

Scientific Opinion on the safety evaluation of the substance, titanium nitride, nanoparticles, for use in food contact materials¹

EFSA Panel on food contact materials, enzymes, flavourings and processing aids (CEF)^{2, 3}

European Food Safety Authority (EFSA), Parma, Italy

ABSTRACT

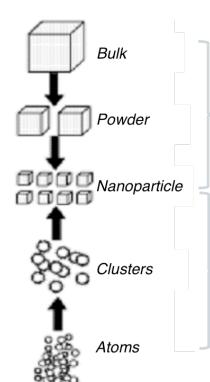
This scientific opinion of EFSA deals with the safety evaluation of titanium nitride, nanoparticles with the European Commission REF. No 93485 and FCM substance No 807, for use as additive in PET plastics. A request has been submitted for an extension of use in thermoformed PET sheets/films in

FOOD CONTACT MATERIALS UE Reg. 10/2011

ABSTRACT

This scientific opinion of EFSA deals with the safety evaluation of titanium nitride, nanoparticles with the European Commission REF. No 93485 and FCM substance No 807, for use as additive in PET plastics. A request has been submitted for an extension of use in thermoformed PET sheets/films in addition to the use in PET bottles, evaluated by the EFSA in 2008. Under the intended conditions of use, no migration of the substance into food is expected and therefore no exposure of the consumer via food is expected. Based on this, the CEF Panel concluded that there is no safety concern for the consumer if the substance is used up to 20 mg/kg in only PET plastics intended for contact with all types of foodstuffs under conditions of any duration of time and at temperatures up to and including hot-fill

ABSTRACT


This scientific opinion of EFSA deals with the safety evaluation of titanium nitride, nanoparticles with the European Commission REF. No 93485 and FCM substance No 807, for use as additive in PET plastics. A request has been submitted for an extension of use in thermoformed PET sheets/films in

Intentional Production

V.S. Accidental Production

Intentional Production

Top Down

- Mechanical milling
- High-pressure homogenisation
- Ultrasound emulsification

- Bottom up
- Self assembling
- Salting out
- Sol-gel synthesis

Accidental Production

Accidental results of the common production processes

- Mechanical milling
- Hydrolysis in acidic solution

TiO₂, SiO₂, Mg and Ca silicates

- Emulsification

FOOD INGREDIENTS:

Nanoemulsions

Top Down

Nanoencapsulates

Bottom up

SiO₂

TiO₂

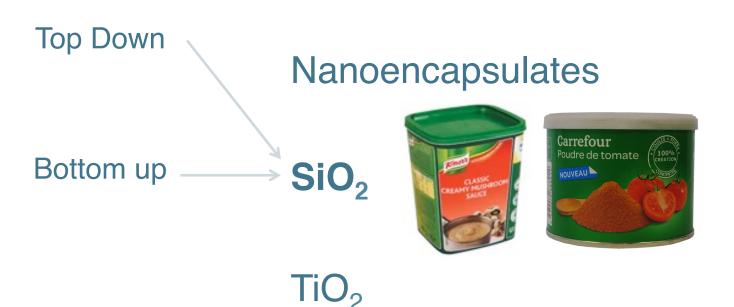
FOOD INGREDIENTS:

Nanoemulsions

Top Down

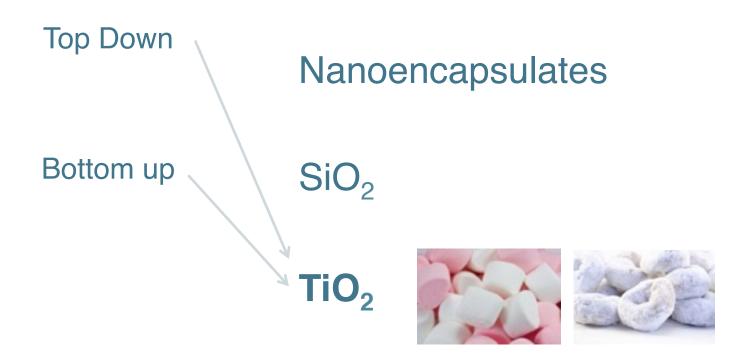
Nanoencapsulates

Bottom up


SiO₂

TiO₂

FOOD INGREDIENTS:


Nanoemulsions

FOOD INGREDIENTS:

Nanoemulsions

FOOD CONTACT MATERIALS:

EFSA Journal 2012;10(3):2641

TiN

SCIENTIFIC OPINION

Scientific Opinion on the safety evaluation of the substance,

titanium nitride, nanoparticles, for use in food contact materials

EFSA Panel on food contact materials, enzymes, flavourings and processing aids (CEF)^{2,3}

Nanoclays

Bottom up

Top Down

TiO₂

FOOD CONTACT MATERIALS:

TiN

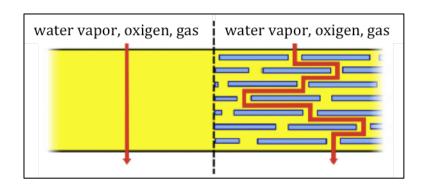
Top Down

Nanoclays

Bottom up

TiO₂

FOOD CONTACT MATERIALS:


TiN

Top Down

Nanoclays

Bottom up

TiO₂

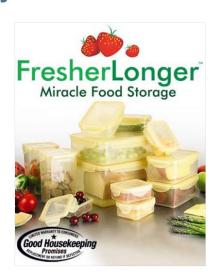
FOOD CONTACT MATERIALS:

TiN

Top Down

Nanoclays

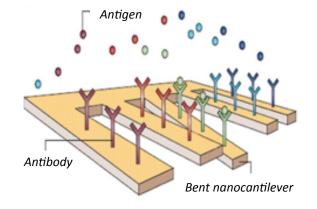
Bottom up


TiO₂

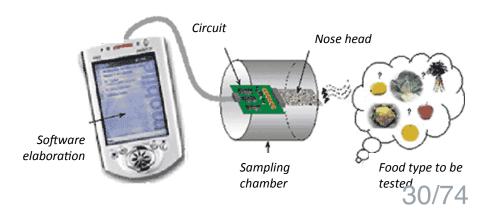
FOOD CONTACT MATERIALS:

TiN

Top Down
Nanoclays
Bottom up
TiO₂
Fr

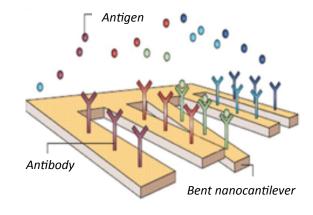


FOOD PROCESSING:

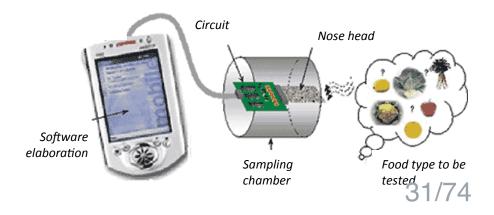

Top Down

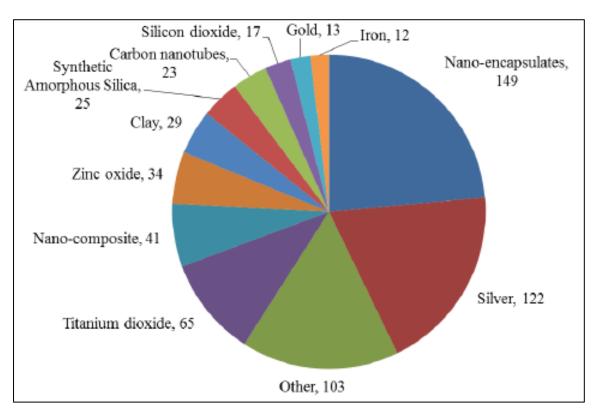
Bottom up

Nanocantilevers


Electronic nose/tongue

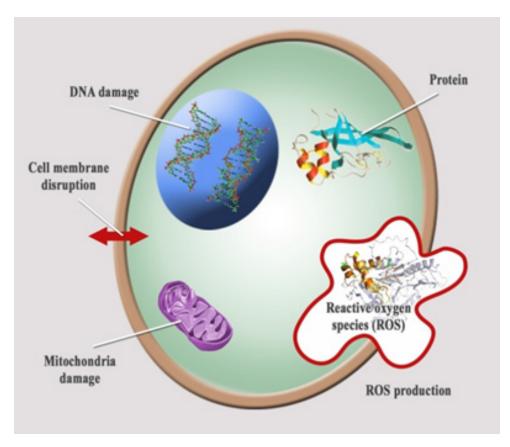
FOOD PROCESSING:


Top Down


Nanocantilevers

Bottom up

Electronic nose/tongue



Nanomaterials mentioned in the Nano Invetory (EFSA, 2014).

Risk Assessment

Mechanism of toxicity of nanomaterials

Risk Assessment

The risk assessment paradigm

Hazard identification

Hazard characterization

Exposure assessment

The risk assessment paradigm

THROUGH...

Definition of the:

- CHEMICAL COMPOSITION
- PHYSICOCHEMICAL PROPERTIES
- INTERACTIONS WITH TISSUES
- POTENTIAL EXPOSURE SCENARIOS

Parameter and methodologies for an appropriate characterization and identification of nanomaterials

Parameter	Requirements	Currently available methods
Surface charge	Essential	Electrophoresis, e.g. CE, LDE (Laser Doppler Electrophoresis)
Redox potential	Essential for	Potentiometric methods
	inorganic ENMs	
Solubility and partition properties	Essential	Standard tests for water solubility (e.g. OECD TG 105), and log kow (OECD TG 107, 117) can be used. Dissolution rate constants.
рН	Essential for liquid dispersions	
Viscosity	Essential for liquid dispersions	Methods such as OECD TG 114.
Density and pour density	Essential for granular materials	DIN ISO 697, EN/ISO 60
Dustiness	Essential for dry powders	Methods such as EN 15051:2006, DIN 33897-2.
Chemical reactivity/catalytic activityb	Essential	Kinetic measurements of the chemical, biochemical and/or catalysed reactions
Photocatalytic activity	Essential for photocatalytic materials	Kinetic measurements of the chemical, biochemical and/or catalysed reactions

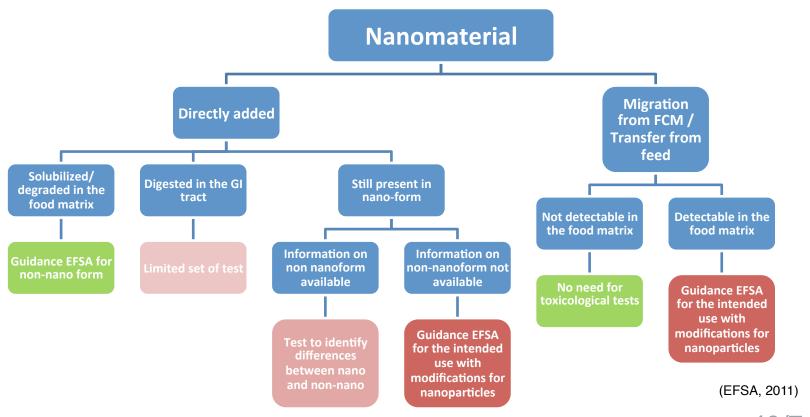
Parameter and methodologies for an appropriate characterization and identification of nanomaterials

Parameter	Requirements	Currently available methods
Chemical composition/ identity	Essential	Elemental analysis: OES, AAS, XPS, EDX, NMR, Mass Spectrometry (MS) in particular ICP-MS, TXFX, etc. Molecular composition: Mass spectrometry (ToF, QqQ) using suited ionisation techniques (e.g. MALDI, ESI), coupled with separation methods (e.g. HPLC, GC, CE etc), NMR, FT-IR Shell/core composition (for encapsulates, micelles): by a suitable method given above, after disintegration of the particles and separation of the components by a suitable method (e.g. HPLC, SEC, CE, HDC etc)
Particle size (Primary/ Secondary)	Essential (two methods, one being electron microscopy)	Microscopy methodsb - e.g. TEM, SEM, STEM, AFM, STXM. Separation methods: Flow separation, chromatography methods – e.g. FFF, HDC, SEC, RP/NP-HPLC; DMA/IMS (ultra)Centrifugation methods. Spectroscopy methods – e.g. XRD (for crystal size, crystallite size) Light (laser) scattering methodsc – e.g. DLS, MALS, SLS; PCCS, NTA
Physical form and morphology	Essential	Microscopy methods (TEM, SEM, STXM, AFM), X-ray diffraction
Particle and mass concentration	Essential for dispersions and dry powders	Mainly light scattering methodsc (for dispersions). Particle concentration (in puredry powders) may also be calculated from particle size, mass concentration and density of the material. Suited methods from those listed under chemical composition e.g. mass spectrometry (ICP-MS) AEM, CFM; Gravimetric methods; centrifugal sedimentation (for suspensions)
Specific surface	Essential for dry powders	BET method
Surface chemistry	Essential (for ENM with surface modifications)	Any of the suitable chemical characterisations methods listed above

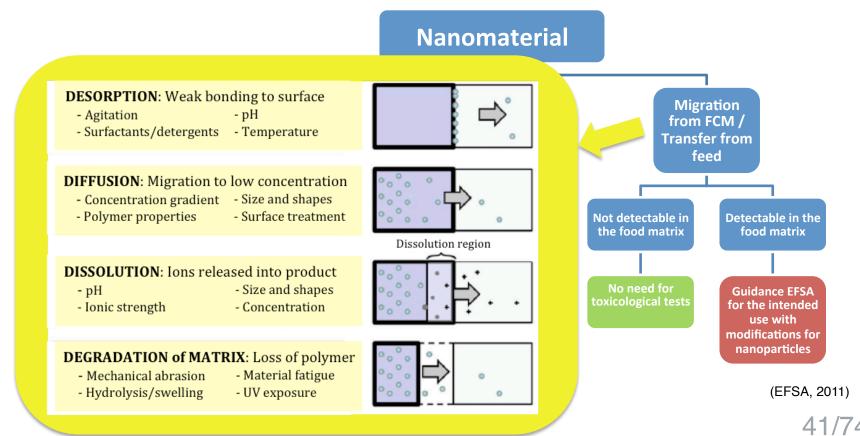
Abbreviations: AAS: Atomic Absorption Spectroscopy; AEM: Analytical Electron Microscopy; AFM: Atomic Force Microscopy; BET: Brunauer Emmett Teller; CE: Capillary Electrophoresis; CFM: Chemical Force Microscopy; DLS: Dynamic Light Scattering; DMA: Differential Mobility Analysis; EDX: Energy Dispersive Xray Spectroscopy; FFF: Field Flow Fractionation; HDC: Hydrodynamic Chromatoghrapy; IMS: Ion Mobility Spectroscopy; LDE: Laser Doppler Electrophoresis; MALS: Microwave Absorption Line-Spectra; NTA: Nanosecond Transient Absortion; OES: Optical Emission Spectroscopy; PCCS: Photo Cross Correlation Spectroscopy; SAXS: Small-Angle X-ray Scattering; SEC: Size Exclusion Chromathography; SedFFF: Sedimentation Field Flow Fractionation; SLS: Static Light Scattering Microscopy; SMPS: Single Mobility Particle Sizing; STM: Scanning Tunnelling Microscopy; XPS: X-ray Photoelectron Spectroscopy; XRD: X-ray Diffraction

Qualitative evaluation of the relative advantages and disadvantages for different techniques to measure the size of nanoparticles.

	SEM	TEM	FFF	DLS	SP-ICP-MS
Minimum size	++	+++	+++	+++	+
Dynamic range	+++	++	++	+++	++
Accuracy of measure	++	++	+	+	+
Suitable for mixtures	+	+	++	_	++
<i>In-situ</i> measure	_	_	+	++	++
Ease of use	_	_	+	++	+
Cost	_	_	++	+++	+


(Calzolai, Gilliland, & Rossi, 2012).

DLS, dynamic light-scattering; FFF, field flow fractionation;


SEM, scanning electron microscopy; SP-ICP-MS, single particle inductively coupled plasma; TEM, transmission electron microscopy.

excellent (+++), good (++), fair (+) and insufficient (-)

EFSA Guidance on the risk assessment of the application of nanotechnologies in the food and feed chain (2011)

EFSA Guidance on the risk assessment of the application of nanotechnologies in the food and feed chain (2011)

Indicators of a potential for high exposure, of prospective toxicity or of reduced likelihood of adverse effects for NM used in food applications

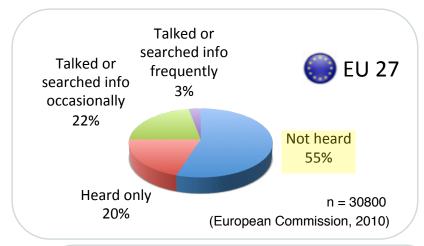
Indicators of a potential for high exposure	High production volume for the field of application High mobility of the nanoform in organisms (probability of internal exposure) (e.g., transport via macrophages; transport through cell membranes, blood—brain barrier and/or placenta; drug delivery systems) and mobilization potential (e.g., infiltration, sorption, complex formation) Targeted or controlled release Persistence/stability (e.g., in water, fat, and body fluids, lack of solubility/degradation) Bioaccumulation
Indicators of potential toxicity	High level of reactivity (e.g., catalytic, chemical, biological) Complex morphology (e.g., rigid, long tubes or fibres, high aspect ratio nanomaterials, fullerenes, crystal structure, porosity). ENM with cores and shells of different biopersistence (e.g., multifunctional ENM) Interactions with biomolecules such as enzymes, DNA, receptors, 'Trojan horse' effect Complex transformations (e.g., aging, changes of surface properties, porosity) or metabolites (e.g., changes to or loss of coating, 'dynamic corona') ENM intended to be used as antimicrobials (e.g., unintended consequences on the gut flora)
Indicators of reduced likelihood of adverse effects and/or loss of nano- properties	Increased rate of dissolution (e.g., in water, food/feed matrix or body fluids) Increased rate of degradability (e.g., biological or photocatalytic) to non-nanoform degradation products Presence of strongly bound aggregates (e.g., determined by conditions of production), fixed, permanent bonding in matrices (e.g. stability of matrix, type of bond, end-of-life behavior)

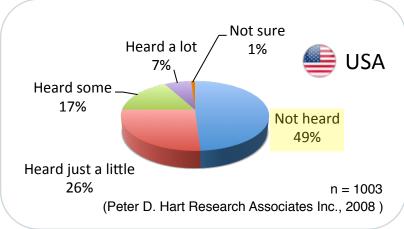
(EFSA, 2011)

Oral exposure of rodents to metal and oxide nanoparticles and related effects

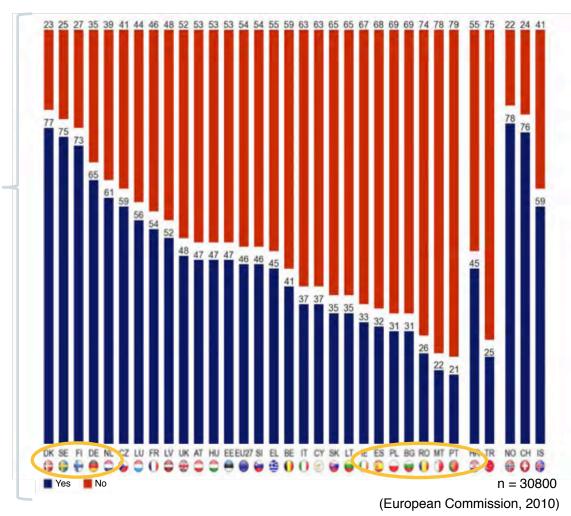
Particle (primary size)	Duration	Dose (species) ^a	Results	Reference
Ag (60 nm)	28 days	30, 300, 1000 mg/kg bw/day (r)	Changes in ALP and cholesterol indicating mild liver damage	Kim et al., 2008
Ag (56 nm)	90 days	30, 125, 500 mg/kg bw/day (r)	Changes in ALP and cholesterol indicating mild liver damage, bile-duct hyperplasia	Kim et al., 2010
Ag (22-42-71-323 nm)	14 days (28 days for 42 nm-NPs)	1 mg/kg bw/day (m)	Inflammatory responses, liver and kidney toxicity	Park et al., 2010
SiO ₂ (7, 15-20 nm)	28 days (84 days highest dose)	100, 500, 1000, 2500 mg/kg bw/day (r)	Liver fibrosis, differences between the two pyrogenic SAS types studied	van der Zande et al., 2014
SiO ₂ (~20 nm)	5 days	20 mg/kg bw/day (r)	Distribution in liver and spleen, differences between the precipitated and pyrogenic SAS studied	Cubadda et al., in preparation
TiO ₂ (5-6 nm)	90 days	2, 5, 10 mg/kg bw/day (m)	Chronic spleen injury and reduction of immune capacity	Sang et al., 2012
TiO ₂ (5-6 nm)	90 days	10 mg/kg bw/day (m)	Ovarian damage, imbalance of mineral elements and sex hormones, decreased festility/pregnancy rate and oxidative stress	Gao et al., 2012
TiO ₂ (5-6 nm)	90 days	2, 5, 10 mg/kg bw/day (m)	Testicular lesions, spermatogenesis suppression, sperm malformations, and alterations in serum sex hormone levels	Gao et al., 2013
TiO ₂ (5-6 nm)	90 days	2, 5, 10 mg/kg bw/day (m)	Deposition in ovary, fertility reduction and ovary injury associated with alteration of inflammation-related or folloular atresia-related	Zhao et a l., 2013

STAKEHOLDERS

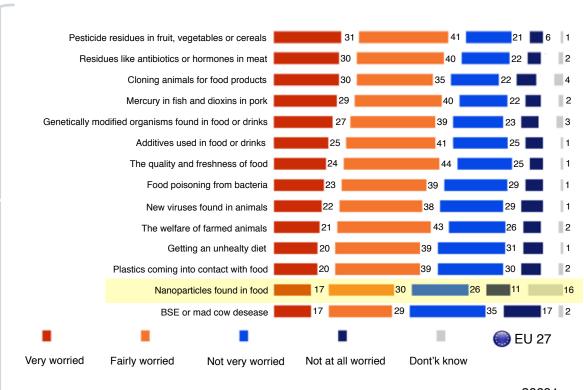

CONSUMERS


RAW MATERIALS PRODUCERS LEADING FOOD COMPANIES

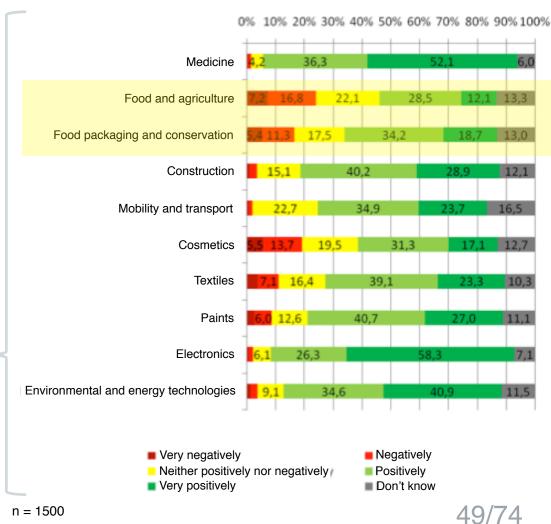
- Limited knowledge
- Differences amongst EU
- Low concern
- Nano outside vs. inside
- Trust in food industries


Limited knowledge

- Differences amongst EU
- Low concern
- Nano outside vs. inside
- Trust in food industries



- Limited knowledge
- Differences amongst EU
- Low concern
- Nano outside vs. inside
- Trust in food industries



- Limited knowledge
- Differences amongst EU
- Low concern
- Nano outside vs. inside
- Trust in food industries

 $\label{eq:n} n = 26691$ (European Commission, 2010)

- Limited knowledge
- Differences amongst EU
- Low concern
- Nano outside vs. inside
- Trust in food industries

(NanoDiode Project, 2014)

- Limited knowledge
- Differences amongst EU
- Low concern
- Nano outside vs. inside
- Trust in food industries

		Food manufacturers		
		Total 'Confident'	Total 'Not confident'	Don't know
	EU27	35%	62%	3%
0	BE	39%	60%	1%
	BG	27%	67%	6%
	CZ	51%	47%	2%
9	DK	31%	68%	1%
Ď.	DE	22%	76%	2%
_	EE	49%	49%	2%
Ě	EL	18%	82%	0%
•	ES	50%	47%	3%
Ò	FR	25%	72%	3%
Ŏ	IE	40%	56%	4%
Ŏ.	IT	38%	56%	6%
9	CY	34%	64%	2%
—	LT	26%	73%	1%
$\overline{\mathbb{R}}$	LV	34%	64%	2%
$\overline{\mathbb{Q}}$	LU	30%	69%	1%
$\overline{\mathbb{R}}$	HU	34%	64%	2%
Ă.	MT	31%	65%	4%
$\overline{\mathbb{Q}}$	NL	30%	69%	1%
9	AT	51%	46%	3%
À	PL	26%	69%	5%
9	PT	54%	41%	5%
À	RO	37%	60%	3%
—	SI	37%	62%	1%
•	SK	54%	43%	3%
*	FI	64%	34%	1%
*	SE	32%	67%	1%
Q P	UK	42%	55%	3%

n = 26691 (European Commission, 2010)

50/74

Raw materials producers

	YES	Currently NOT, but envisaged or under development	NO and not planned	Don't Know	Refuses to answer
Does your company produces or imports raw materials containing constituents with dimensions within 1nm and 100nm?					
Does your Company uses technological procedures designed to produce or exploit intentionally materials with typical properties of the nanoscale (1nm-100nm)?					
Would you be able to ensure the absence of manufactured, engineered or accidental nanomaterials in your products?					
IF YES, are you able to provide certificate or instrumental analysis wich confirm the absence?					
IF YOU ARE USING NANOMATERIALS, are you able to provide documentation relating the physico chemical characterization or the safety assessment of the material?					
IF YES, please report which document/s:					
Have you ever been questioned previously about the use or production of nanomaterials by customers, institutions, consumer organizations, press, private?					
IF YES , could you please report the category (i.e. Press, Customers) of the applicant/s:					

Raw materials producers

	YES	Currently NOT, but envisaged or under development	NO and not planned	Don't Know	Refuses to answer
Does your company produces or imports raw materials containing constituents with dimensions within 1nm and 100nm?	2	/	4	1	2
Does your Company uses technological procedures designed to produce or exploit intentionally materials with typical properties of the nanoscale (1nm-100nm)?	/	/	6	/	2
Would you be able to ensure the absence of manufactured, engineered or accidental nanomaterials in your products?	3	1	/	1	3
IF YES, are you able to provide certificate or instrumental analysis wich confirm the absence?		1	2	1	3
IF YOU ARE USING NANOMATERIALS , are you able to provide documentation relating the physico chemical characterization or the safety assessment of the material?	2	/	/	/	3
IF YES, please report which document/s:	Answer 1: Silicon Ansv	n dioxide (E 551) pe wer 2: Association	ermitted as food a of synthetic amor	ndditive according rphous silica produ	to 1333/2008/EC ucers
Have you ever been questioned previously about the use or production of nanomaterials by customers, institutions, consumer organizations, press, private?	5	/	/	/	3
IF YES , could you please report the category (i.e. Press, Customers) of the applicant/s:			Customers		

Mondelez, International

"Currently we're not using nanotechnology. But we need to understand the potential of this technology...especially regarding packaging materials"

"Currently we're not using nanotechnology. But we need to understand the potential of this technology...especially regarding packaging materials"

"We believe that there is considerable potential for nanotechnology applications... decision to apply in our products will be taken on the basis of safety evaluations and regulations"

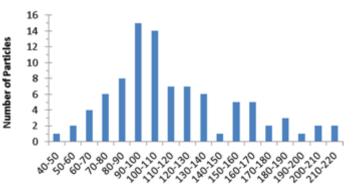
2012: "We monitor all nanotechnologies developments...We make limited use of NMs in packaging"
2014: NO STATEMENT

2012: "We monitor all nanotechnologies developments...We make limited use of NMs in packaging"
2014: NO STATEMENT

2011: "We are working to understand NMs and their application ...but actually we do not support their use"
2015: NO STATEMENT

Titanium Dioxide (E171)

Titanium Dioxide (E171)

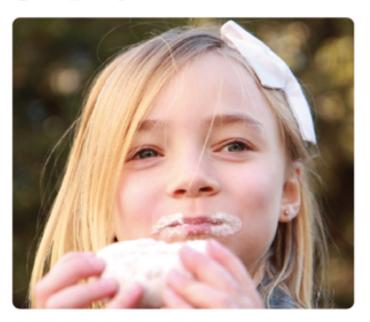

Article

pubs.acs.org/est

Titanium Dioxide Nanoparticles in Food and Personal Care Products

Alex Weir, † Paul Westerhoff,*,† Lars Fabricius,†,§ Kiril Hristovski, || and Natalie von Goetz‡

Distribution of Primary Particle Size of Food Grade Titanium Dioxide


Diameter Range (nm)

(Weir et al., 2012)

_ARE_NANOMATERIALS_ _IN_OUR_FOODS?

Whether and to what degree nanomaterials are currently in our foods remains a murky issue. A study by American, Swiss, and Norwegian researchers entitled Titanium Dioxide Nanoparticles in Food and Personal Care Products estimates and quantifies the human exposure resulting from nanoparticle sized titanium dioxide (TiO2) found in processed foods.6 The study measured nanoparticles in food-grade TiO2 and derived estimates of nano TiO2 in foods including M&M's, Betty Crocker Whipped Cream Frosting, Jell-O Banana Cream Pudding, Mentos, Trident and

Dentyne gums, Vanilla Milkshake Pop Tarts, and Nestlé Original Coffee Creamer. The authors state that "electron microscopy and stability testing of food-grade TiO₂ [...] suggests that approximately 36% of the particles are less than 100nm in at least one dimension."

Donut Products Tested for TiO2

Two of the donut products in which titanium concentrations were found—Hostess Donettes and Dunkin' Donuts Powdered Cake Donutwere subsequently tested for the presence of nanoparticle sized titanium dioxide. Titanium dioxide materials of less than 10 nm were found in both of the donuts tested, as set forth in more detail below. While there are varying definitions of what constitutes a nanoparticle, our testing assessed a conservative particle size of less than 10 nm. The test results underscore that the low-end of the nanoparticle-sized spectrum (<10 nm) titanium dioxide is present in our food supply.

Product	TiO ₂ Listed as Ingredient	Total Ti PPM
Conchitas - Fine Pastry	١	lot Detected
Dolly Madison - Donut Gems	•	58
Dunkin' Donuts - Powdered Cake Donut	•	19
Entenmann's - Pop'ems Donuts		73
Hostess Brand - Donettes	•	75
Kroger - Sugared Cake Donut Holes	•	43

theguardian Winner of the Pulitzer prize 2014

Dunkin' Donuts to remove titanium dioxide from donuts

The baked goods giant says it will remove whitening agent from its powdered donuts over fears it might contain toxic nanomaterials

Food Safety News Breaking news for everyone's consumption

Dunkin' Donuts Plans to Phase Out Whitening Agent

response to a shareholder request, the parent company of Dunkin' Donuts is reportedly testing alternatives to anium dioxide as a whitening agent in the powdered sugar used to top some of its doughnuts.

mitting the request was the group As You Sow, a non-profit foundation based in Oakland, CA, which focuses nvironmental and social corporate responsibility issues. According to a March 5 statement on its website, the) has withdrawn the request in response to the commitment from Canton, MA-based Dunkin' Brands Group

a groundbreaking decision. Dunkin' onstrated strong industry le ing this pot

Business Markets Tech Personal Finance Small Business Luxury

CNN Money

Dunkin' Donuts to remove titanium dioxide from donuts

Titanium Dioxide (E171)

Product	OLD Ingredient list	NEW Ingredient list
NU FOR IS CRALE ME TO SISCHIPO CUBE STRAN ANCHIRO PROTE PROTE FROM	(2013) Edulcoranti: xilitolo (30%), sorbitolo, mannitolo, sciroppo di maltitolo, aspartame; gomma base, fosfato dicalcico diidrato (6,9%) aromi, stabilizzante: glicerolo), coloranti (E171), carminio, addensanti: gomma arabica, E466, maltodestrine, amido di mais, emulsionanti lecitine (SOIA) olio vegetale, fluoruro di potassio, agente di rivestimento (cera di carnauba), antiossidante: E320.	(2015) Edulcoranti: xilitolo (30%), sorbitolo, mannitolo, sciroppo di maltitolo, aspartame; gomma base, fosfato dicalcico diidrato (6,9%), aromi, maltodestrine, stabilizzante: glicerolo; addensanti: gomma arabica, E466; emulsionanti: lecitine (SOIA), E473; fluoruro di potassio, agente di rivestimento: cera di carnauba, antiossidante: E321.
3 PACK THERTOS TRESPORTED TO STANDARD TO S	(2013) Sweeteners (xylitol, maltitol, mannitol, sorbitol, maltitol syrup, aspartame, acesulfame K, sucralose), base gum, thickener (arabic gum, E466), flavourings, maltodextrin, stabilizer (glycerol), colourings (E171, E133) , corn starch, vegetable oil, emulsifier (soy lecithin), coating agent (carnauba wax), antioxidant (E320).	(2015) Sweeteners (xylitol, maltitol, mannitol, sorbitol, maltitol syrup, aspartame, acesulfame K, sucralose), base gum, maltodextrin, thickener (arabic gum, E466), flavourings, stabilizer (glycerol), emulsifier (soy lecithin, E473), palm kernel oil, colourings (E133) , antioxidant (E321).
PURE	(2013) Sweeteners (xylitol, sorbitol, mannitol, maltitol syrup, maltitol, aspartame, acesulfame K, sucralose), gum base, stabilizer (glycerol), flavourings, thickening agents (gum arabic, xanthan gum), colours (titanium dioxide, brilliant blue FCF), emulsifier (soy lecithin), green tea extract (0.1%), glazing agent (carnauba wax), antioxidant (E320).	(2015) Sweeteners (xylitol, mannitol, sorbitol, maltitol syrup, maltitol, aspartame, acesulfame K, sucralose), gum base, stabilizer (glycerol), flavourings, maltodextrine, thickening agents (gum arabic, E466, E451), emulsifier (soy lecithin, E473), green tea extract (0.1%), colours (E133) , glazing agent (carnauba wax), antioxidant (E320).

Titanium Dioxide (E171)

Product	OLD Ingredient list	NEW Ingredient list
Vigorsol Bull in Constitution	(2007) Sweetener: sorbitol, isomalt, mannitol, xylitol, maltitol syrup, aspartame, acesulfame K, gum base, thickener: arabic gum, liquorice extract, flavouring, stabiliser: glycerol: colouring: E171, E104, E133, emulsifier: soy lecithin, coating agent: carnauba wax, antioxidant: E320.	(2015) Sweetener: sorbitol, isomalt, mannitol, maltitol syrup, xylitol, aspartame, acesulfame K, gum base, thickener: arabic gum, E466; flavouring, stabiliser: glycerol, liquorice extract, vegetable oil (palm kernel), maltodextrine, emulsifier: soy lecithin, E473, colouring: curcumine, E133; coating agent: carnauba wax, antioxidant: E321.
SEARCH RINCHERO VIVIDENT	(2007) Sweeteners: maltitol, sorbitol, mannitol, maltitol syrup, aspartame, acesulfame-k; gum base, stabiliser: glycerol; flavouring, fruit juice: lemon (3%); acidifier: malic acid, citric acid, tartaric acid; food gelatine, colouring: E110, E171, E120, E104, E131; thickener: arabic gum, E466; vegetable extracts, emulsifier: soya lecithin; E473; coating agent: carnauba wax; antioxidant: E320	(2015) Sweeteners: isomalt, maltitol, maltitol syrup, sorbitol, aspartame, acesulfame-k, sucralose; gum base, fruit juice: strawberry, lemon (3%), stabiliser: glycerol; acidifier: malic acid, citric acid, maltodextrine, thickener: arabic gum, E415; flavouring, vegetal oil (palm, palm kernel), emulsifier: soya lecithin, E473; vegetable extracts (paprika), colouring (carmine, curcumin, E133); coating agent: carnauba wax; antioxidant: E321.
5 PACES	(2002) Sweetener (xylitol, sorbitol, mannitol, maltitol syrup, aspartame, acesulfame-K), gum base, thickener (arabic gum), stabiliser (glycerol), flavouring, colouring (E171), sodium bicarbonate, coating agent (carnauba wax), antioxidant (E320).	Sweetener (xylitol 25%, sorbitol, mannitol, maltitol syrup, aspartame, acesulfame-K), gum base, flavouring, thickener (arabic gum), stabiliser (glycerol), colouring (E171), sodium bicarbonate (0.4%), emulsifier (soy lecithin), coating agent (carnauba wax), antioxidant (E320).

Silicon Dioxide (E551)

MARS food

United States Patent [19]

Beyer et al.

[54] EDIBLE PRODUCTS HAVING INORGANIC COATINGS

[75] Inventors: Daniel L. Beyer; Theodore E. Jach. both of Netcong, N.J.; Dennis L. Zak, Doylestown, Pa.; Ralph A. Jerome, Blairstown, N.J.; Frank P. DeBrincat, Tobyhanna, Pa.

[73] Assignee: Mars, Incorporated, McLean, Va.

Appl. No.: 376,029

[22] Filed: Jan. 20, 1995

[51] Int. Cl.⁶ A61K 47/00 US005741505A

5,741,505 **Patent Number:**

Date of Patent: Apr. 21, 1998 [45]

5,328,705 7/1994 Wilhoit et al. 426/113

FOREIGN PATENT DOCUMENTS

43-71016507 6/1968 Japan .

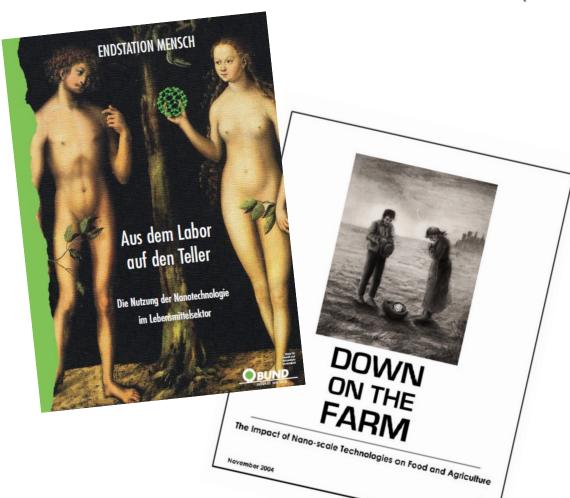
OTHER PUBLICATIONS

J.J. Kester and O.R. Fennema, "Edible Films and Coatings: A Review", Food Technology, pp. 49-59 (Dec., 1986). Ratner et al., "Plasma Deposition and Treatment for Biomaterial Applications", Plasma Deposition, Treatment and Etching of Polymers, Academic Press, San Diego, pp. 465-515 (1990).

Greener and Fennema, "Evaluation of Edible, Bilayer Films for Use as Moisture Barriers for Food", Journal of Food Science, vol. 54, No. 6, pp. 1400-1406 (1989).

66/74

Silicon Dioxide (E551)



[57] ABSTRACT

An edible product having a thin inorganic coating on at least a portion of its surface. The coating preferably forms a moisture/oxygen barrier to result in a coated edible product having an improved shelf-life. The edible products include foods and pharmaceuticals. The inorganic materials used for the coating include SiO₂, SiO, MgO, CaO, TiO₂, ZnO and MnO. Processes and apparatuses for depositing a thin film of inorganic material onto an edible substrate are also disclosed. The preferred processes include sputtering and vapor deposition. The preferred apparatus provides for the continuous production of coated edible products.

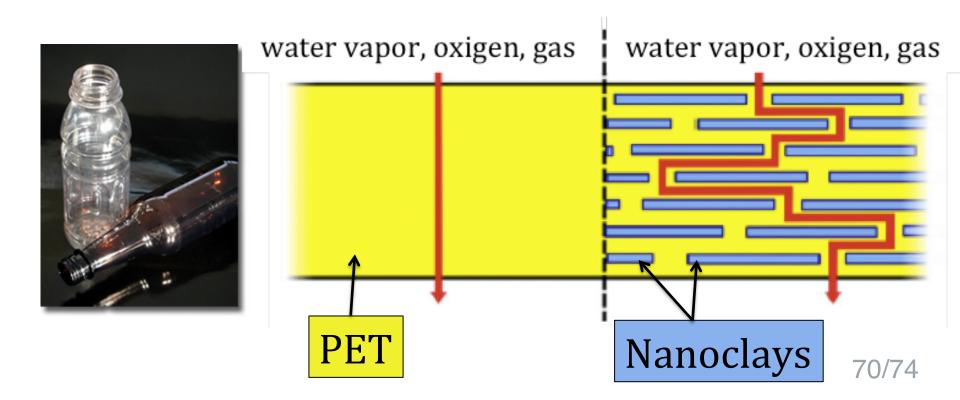
Silicon Dioxide (E551)

"This technique is no longer used and the patent is to be phased out in different Countries and will not be renewed"

Mars Inc. 2007

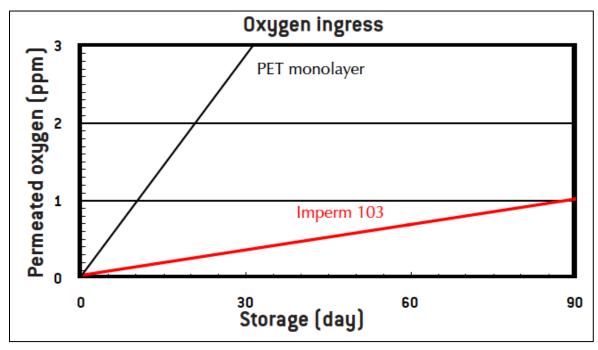
Food Packaging

PLASTIC MATERIALS



Food Packaging

IMPERM

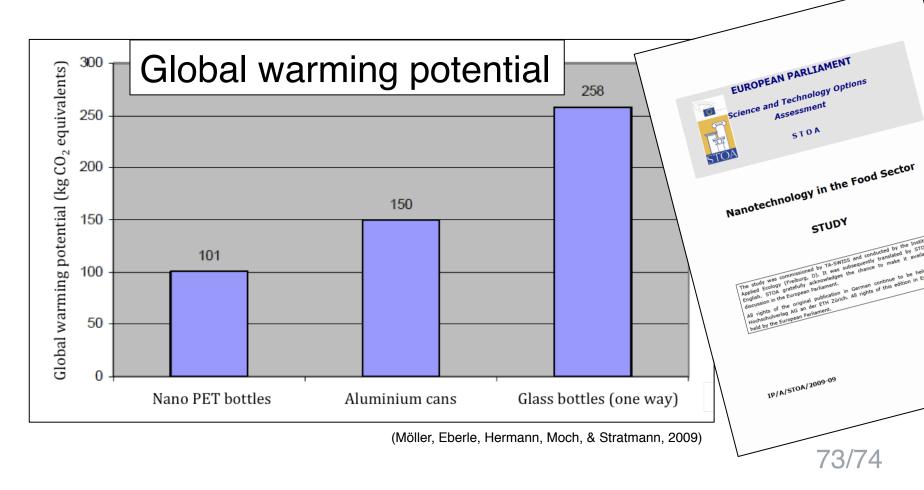


Food Packaging

IMPERM

"Our new plastic bottle ensures product integrity and drinkability.

This plastic bottle achieves the same **4-month shelf-life** and keeps the beer as fresh as glass or aluminum.


We're proud that Miller is the first U.S. brewer to solve the plastics puzzle."

Miller's executive vice president Virgis Colbert

(PRNewsWire, 2006)

72/74

"Ecological relevance analysis of packaging"

Conclusions

- Evolving scenario
- Regulation is likely to be upgraded
- Limited awareness (for the moment)
- Acceptance nano outside >>> inside
- Trust in industries can play a key role

Conclusions

THUS...

- Keep an eye on regulation updates (i.e. 257/10)
- Be prepared to **stakeholders' questions** and request of **Certifications** and Policies
- Monitor raw materials **suppliers** and internal activities which may represent a risk
- Follow the development of viable applications (i.e. packaging)

Thank you for your attention!

