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1 Cartesian products and relations

Let A and B be two sets. We denote by A ×B the sets of ordered pairs such that the first

elements belongs to A and the seconds belongs to B . We write A2 for A×A. We call A×B

the Cartesian product of A and B ; we call A2 a Cartesian power of A.
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Let Ai , for i = 1, . . . ,n, be sets. We denote by A1×·· ·× An the set of n-tuples such that the

i -th elements belongs to Ai . If Ai = A for all i , we write An . It is mostly harmless (and

sometimes also convenient) to identify the pair
(
(a1, . . . , an), an+1

)
with the n + 1-tuple

(a1, . . . , an+1). Consequently we may identify
(

A1 ×·· ·× An
)× An+1 with A1 ×·· ·× An+1.

A subset of A×B is called a binary relation between A and B . When B = A we say: binary

relation on A. An n-ary relation is a subset of A1 × ·· · × An . By the observation above,

every n+1-ary relation is associated to a binary relation between A1 ×·· ·× An and An+1.

We can represent a relation using the picture of the Cartesian product as given above.
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R =
{

(a1, b2), (a2, b0),

(a2, b4), (a4, b2)
}

We are acquainted with this representation when R is a relations onR. For eample,
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R

R

R =
{

(x, y) : x2 + y2 = 1
}

Another way to represent a binary relation may be used when A and B are finite. We can

draw an arrow for each pair (a,b) ∈ R
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R =
{

(a1, b2), (a2, b0),

(a2, b4), (a4, b2)
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When A = B , i.e. when R is a relation on a finite set A, then R can be represented by a

diagram as the one below.

a0 a1

a2 a3 a4

A
R =

{
(a1, a4), (a2, a0), (a2, a1),

(a2, a4), (a3, a4), (a2, a2)
}

If R ⊆ A×B is a binary relation, we define

R−1 = {(y, x) : (x, y) ∈ R)} = B × A

This is called the inverse of R . A representation of R−1 is obtained by reversing the arrows
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in the diagrams above.

Let R ⊆ A ×B and S ⊆ B ×C be two bynary relations. The composition of R and S is the

relation

S ◦R =
{

(x, y) : ∃z
[
(x, z) ∈ R ∧ (z, y) ∈ S)

]}
.

With reference to the picture below, S ◦R contains a pair (a,c) if there is a path from a to

c. Note that the order in which we read S ◦R is from right to left.
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S ◦R = {
(a1, c1), (a1, c3), (a2, c1), (a4, c1), (a4, c3)

}

2 Functions

A (unary) function is binary relation R such that ∀x ∃=1 y (x, y) ∈ R. Hence, the relations

R and S above are not functions. The letters f , g , h, are typically used for functions.

If f is a function, the unique y such that (x, y) ∈ f is denoted by f (x). But it is very

common to denote by f (x) the whole function f . This because the symbol x is often

intended as a place-holder for some input not as the input itself.

We write f : A → B to say that f ⊆ A ×B and f is a function. The triple ( f , A,B) is called

a map. We call A the domain and B the codomain of the map.

The set dom f =
{

x : ∃y (x, y) ∈ f
}

is called the domain of definition of the function f .

The set range f =
{

y : ∃x (x, y) ∈ f
}

is called the range (or the image) of f . Hence the

domain of definition of f is always a subset of the domain of the map and the range is

always a subset of the codomain.

If the domain coincides with the domain of definition we say that the map is total, oth-

erwise that it is partial. If the range coincides with the codomain we say that the map is

surjective.
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dom f = {

a0, a1, a2, a4
}

range f = {
b0, b1, b2

}

If f : A → B and C ⊆ A, we write f�C for the function f ∩ (
C ×B

)
. In words we say that f�C

is the restriction of f to C . Note that any g ⊆ f is a restriction of f , in fact g = f�domg .

If A = A1 × ·· · × An then we say that f is an n-ary function. We write f (x1, . . . , xn ) for

the unique y such that
(
(x1, . . . , xn), y

) ∈ f . When convenient we can identify an n-ary

function with a subset of A1 ×·· ·× An ×B , that is an n +1 anty function.

Again note that f (x1, . . . , xn ) can also be used to mean the whole function. This notation

helps to remind arity of function.

The relation f −1 may not be a function. When f −1 is a function we say that f is injective

(or one-to-one). It is easy to see that f is injective if and only if

∀x, y ∈ dom f
[
x =/ y → f (x)=/ f (y)

]
.

Note that when f is injective f −1 ◦ f = iddom f and f ◦ f −1 = idrange f .

Warning. The terminology introduced above is not adopted uniformly. Every area of

mathematics has a slightly different parlance. For instance in real analysis the domain is

always R (or Rn) and the codomain is always R. So it is common to denote a function

simply by f (x) (or f (x1, . . . , xn)). When it is necessary to refer to the relation associated

to the map, one says the graph of f (x).

Let f : A → B be a map and let C ⊆ A. The image of C under f is the set

f [C ] = { f (x) : x ∈C }.

If D ⊆C , the inverse image of C under f is the set

f −1[D] = {
x : f (x) ∈ D

}
.

Note that f −1[D] is well-defined also when f is not injective. Note that f [A] = range f

and f −1[B ] = dom f .
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3 Composition of maps

Let f : A → B and g : B → C be to maps and assume that the codomain of the frst map

is the domain of the second. Their composition is the map g ◦ f : A → B . When domain

and codomain are clear from the context we may write g
(

f (x)
)

for the composition.
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g ◦ f = {
(a1, c1), (a2, c1), (a4, c1)

}
Note that dom(g ◦ f ) = f −1[domg ] = {a1, a2, a4}

4 A few important partial maps f :R→R

f (x) = 1

x
dom f = Rà{

0
}

range f = Rà{
0
}

f (x) = p
x dom f = [

0,∞)
range f = [

0,∞)
f (x) = ln x dom f = (

0,∞)
range f = R

f (x) = arcsin(x), arccos(x) dom f = [−1, 1
]

range f = [−π, π
]

f (x) = tan(x) dom f = Rà
{π

2
+kπ : k ∈Z

}
range f = R

f (x) = cot(x) dom f = Rà
{

kπ : k ∈Z
}

range f = R
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