Laurea in Chimica e Tecnologie Farmaceutiche corso di **Matematica e statistica** a.a. 2016/17

Docenti: Tommaso Pacini

Domenico Zambella

Sito Moodle: http://elearning.moodle2.unito.it/dstf/course/view.php?id=295

1 Cartesian products and relations

Let A and B be two sets. We denote by $A \times B$ the sets of ordered pairs such that the first elements belongs to A and the seconds belongs to B. We write A^2 for $A \times A$. We call $A \times B$ the **Cartesian product** of A and B; we call A^2 a **Cartesian power** of A.

Let A_i , for $i=1,\ldots,n$, be sets. We denote by $A_1\times\cdots\times A_n$ the set of n-tuples such that the i-th elements belongs to A_i . If $A_i=A$ for all i, we write A^n . It is mostly harmless (and sometimes also convenient) to identify the pair $((a_1,\ldots,a_n),a_{n+1})$ with the n+1-tuple (a_1,\ldots,a_{n+1}) . Consequently we may identify $(A_1\times\cdots\times A_n)\times A_{n+1}$ with $A_1\times\cdots\times A_{n+1}$.

A subset of $A \times B$ is called a **binary relation between** A and B. When B = A we say: binary relation **on** A. An n-ary relation is a subset of $A_1 \times \cdots \times A_n$. By the observation above, every n+1-ary relation is associated to a binary relation between $A_1 \times \cdots \times A_n$ and A_{n+1} .

We can represent a relation using the picture of the Cartesian product as given above.

We are acquainted with this representation when R is a relations on \mathbb{R} . For eample,

Another way to represent a binary relation may be used when A and B are finite. We can draw an arrow for each pair $(a,b) \in R$

When A = B, i.e. when R is a relation on a finite set A, then R can be represented by a diagram as the one below.

If $R \subseteq A \times B$ is a binary relation, we define

$$R^{-1} = \{(y, x) : (x, y) \in R\} = B \times A$$

This is called the **inverse of** R. A representation of R^{-1} is obtained by reversing the arrows

in the diagrams above.

Let $R \subseteq A \times B$ and $S \subseteq B \times C$ be two bynary relations. The **composition** of R and S is the relation

$$\mathbf{S} \circ \mathbf{R} = \left\{ (x, y) : \exists z \left[(x, z) \in R \land (z, y) \in S \right] \right\}.$$

With reference to the picture below, $S \circ R$ contains a pair (a, c) if there is a path from a to c. Note that the order in which we read $S \circ R$ is from right to left.

$$S \circ R = \{(a_1, c_1), (a_1, c_3), (a_2, c_1), (a_4, c_1), (a_4, c_3)\}$$

2 Functions

A (unary) function is binary relation R such that $\forall x \exists^{=1} y (x, y) \in R$. Hence, the relations R and S above are not functions. The letters f, g, h, are typically used for functions.

If f is a function, the unique y such that $(x, y) \in f$ is denoted by f(x). But it is very common to denote by f(x) the whole function f. This because the symbol x is often intended as a place-holder for some input not as the input itself.

We write $f : A \to B$ to say that $f \subseteq A \times B$ and f is a function. The triple (f, A, B) is called a **map**. We call A the **domain** and B the **codomain** of the map.

The set $\operatorname{dom} f = \{x : \exists y \ (x, y) \in f\}$ is called the **domain of definition** of the function f. The set $\operatorname{range} f = \{y : \exists x \ (x, y) \in f\}$ is called the range (or the image) of f. Hence the domain of definition of f is always a subset of the domain of the map and the range is always a subset of the codomain.

If the domain coincides with the domain of definition we say that the map is **total**, otherwise that it is **partial**. If the range coincides with the codomain we say that the map is **surjective**.

If $f: A \to B$ and $C \subseteq A$, we write $f_{|C|}$ for the function $f \cap (C \times B)$. In words we say that $f_{|C|}$ is the **restriction of** f **to** C**.** Note that any $g \subseteq f$ is a restriction of f, in fact $g = f_{|c|}$

If $A = A_1 \times \cdots \times A_n$ then we say that f is an n-ary function. We write $f(x_1, ..., x_n)$ for the unique y such that $((x_1, ..., x_n), y) \in f$. When convenient we can identify an n-ary function with a subset of $A_1 \times \cdots \times A_n \times B$, that is an n + 1 anty function.

Again note that $f(x_1,...,x_n)$ can also be used to mean the whole function. This notation helps to remind arity of function.

The relation f^{-1} may not be a function. When f^{-1} is a function we say that f is **injective** (or **one-to-one**). It is easy to see that f is injective if and only if

$$\forall x, y \in \text{dom } f [x \neq y \rightarrow f(x) \neq f(y)].$$

Note that when f is injective $f^{-1} \circ f = \mathrm{id}_{\mathrm{dom}\, f}$ and $f \circ f^{-1} = \mathrm{id}_{\mathrm{range}\, f}$.

Warning. The terminology introduced above is not adopted uniformly. Every area of mathematics has a slightly different parlance. For instance in real analysis the domain is always \mathbb{R} (or \mathbb{R}^n) and the codomain is always \mathbb{R} . So it is common to denote a function simply by f(x) (or $f(x_1,...,x_n)$). When it is necessary to refer to the *relation* associated to the map, one says the **graph of** f(x).

Let $f: A \to B$ be a map and let $C \subseteq A$. The **image of C under f** is the set

$$\boldsymbol{f[C]} = \{f(x) : x \in C\}.$$

If $D \subseteq C$, the **inverse image of C under** f **is the set**

$$f^{-1}[D] = \{x : f(x) \in D\}.$$

Note that $f^{-1}[D]$ is well-defined also when f is not injective. Note that $f[A] = \operatorname{range} f$ and $f^{-1}[B] = \operatorname{dom} f$.

Composition of maps 3

Let $f: A \to B$ and $g: B \to C$ be to maps and assume that the codomain of the frst map is the domain of the second. Their **composition** is the map $g \circ f : A \to B$. When domain and codomain are clear from the context we may write g(f(x)) for the composition.

$$g \circ f = \{(a_1, c_1), (a_2, c_1), (a_4, c_1)\}$$

Note that $dom(g \circ f) = f^{-1}[dom g] = \{a_1, a_2, a_4\}$

 $f(x) = \cot(x)$

A few important partial maps $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \frac{1}{x} \qquad \text{dom} f = \mathbb{R} \setminus \{0\} \qquad \text{range} f = \mathbb{R} \setminus \{0\}$$

$$f(x) = \sqrt{x} \qquad \text{dom} f = [0, \infty) \qquad \text{range} f = [0, \infty)$$

$$f(x) = \ln x \qquad \text{dom} f = (0, \infty) \qquad \text{range} f = \mathbb{R}$$

$$f(x) = \arcsin(x), \arccos(x) \qquad \text{dom} f = [-1, 1] \qquad \text{range} f = [-\pi, \pi]$$

$$f(x) = \tan(x) \qquad \text{dom} f = \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi : k \in \mathbb{Z}\} \qquad \text{range} f = \mathbb{R}$$

$$f(x) = \cot(x) \qquad \text{dom} f = \mathbb{R} \setminus \{k\pi : k \in \mathbb{Z}\} \qquad \text{range} f = \mathbb{R}$$