Cardiovascular risk

Documento di consenso
e raccomandazioni per la prevenzione
cardiovascolare in Italia
2018

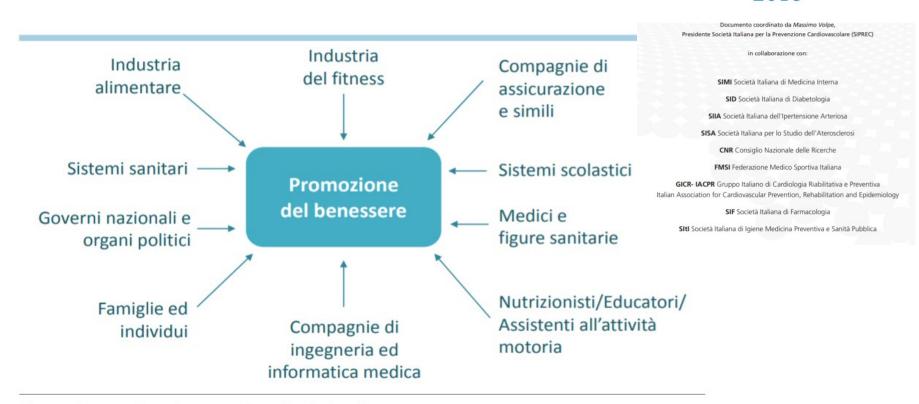
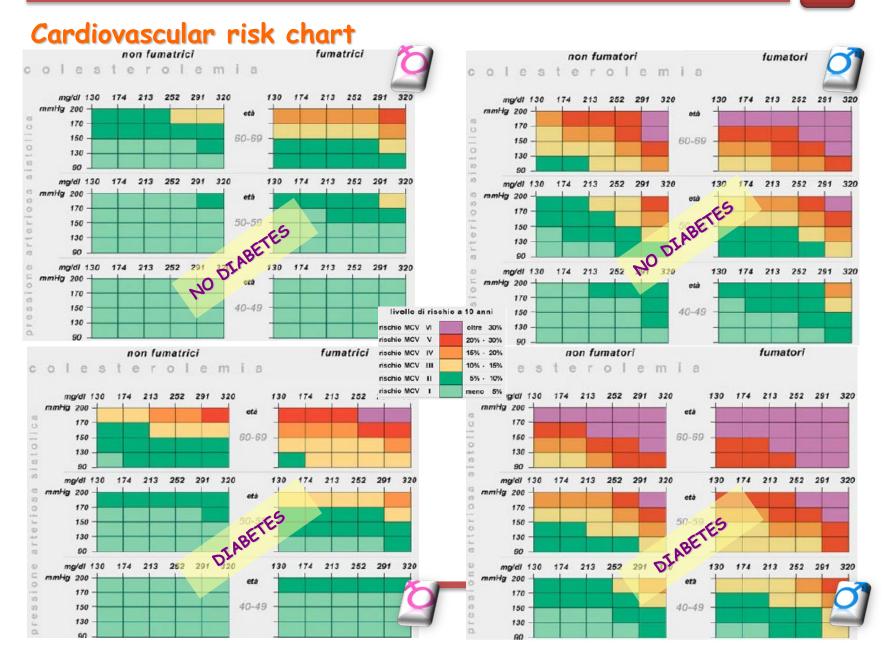



Figura 1. Network per la promozione di "vita in salute".

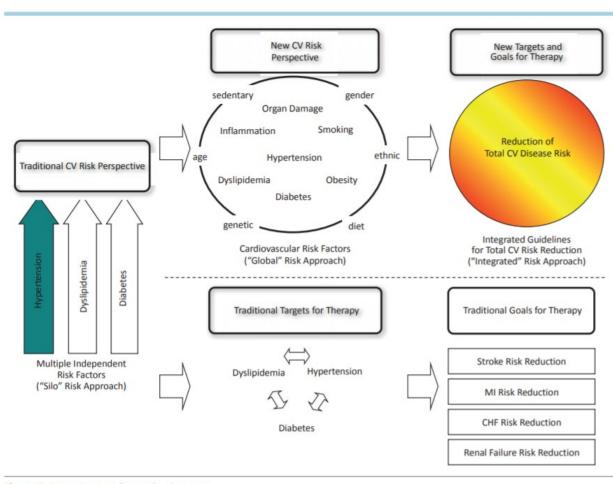
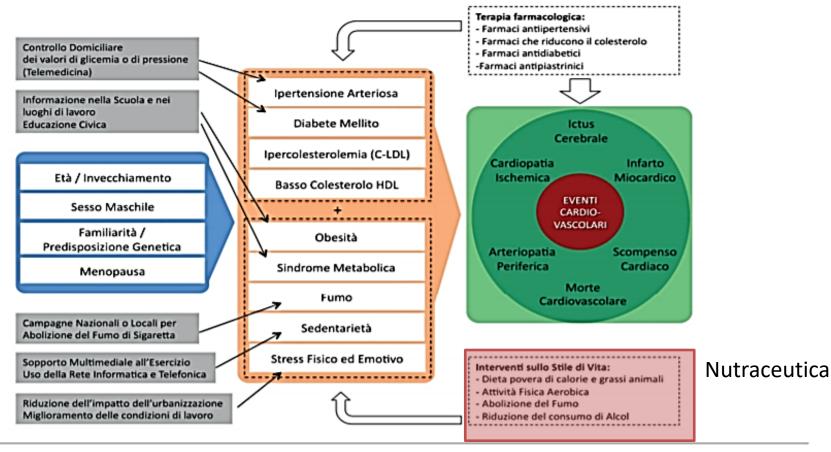



Table 6 Lipid changes in some common conditions

Condition	Total cholesterol	HDL cholesterol	Triacylglycerol
Diabetes mellitus	Normal or ↑	1	↑
Hypothyroidism	↑	↑	Can be ↑
Chronic renal failure	Normal or ↑	1	↑
Nephrotic syndrome	↑	Often ↓	Often ↑
Cholestasis ^a	↑	\downarrow	Can be ↑

^aAn abnormal lipoprotein called LpX is present.

Figura 5. Prevenzione cardiovascolare integrata. Modificata da Volpe et al. ¹⁴.

Figura 6. Possibili interventi farmacologici e non farmacologici per il trattamento e il controllo delle malattie cardiovascolari. C-LDL, colesterolo LDL.

Food based of phytosterols as main active component Enriched food...

Functional...Novel food...
Food supplement...?

U6

FOCUS ON NUTRACEUTICAL AND FUNCTINAL FOODS ON THE HYPERLIPIDEMIA

A RISK FACTOR
OF CARDIOVASCULAR DESEASES

HYPERLIPIDEMIA THE ROLE OF THE LIPOPROTEINS

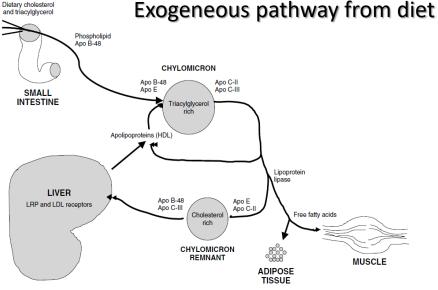


Figure 3 Exogenous (dietary) lipid pathway. This shows the transport of dietary lipid from intestine to peripheral tissues and liver. Movement of apolipoprotein between high-density lipoprotein (HDL) and chylomicrons is shown. LRP, low-density lipoprot receptor-related protein.

Table 3 Fredrickson/WHO classification of hyperlipoproteinemia

Туре	Lipids increased	Lipoprotein increased
I	Triacylglycerol	Chylomicrons
II-a	Cholesterol	LDL
II-b	Cholesterol and triacylglycerol	LDL and VLDL
Ш	Cholesterol and triacylglycerol	Chylomicron remnants and IDL
IV	Triacylglycerol	VLDL
V	Cholesterol and triacylglycerol	Chylomicrons and VLDL

Endogeneous pathway from liver

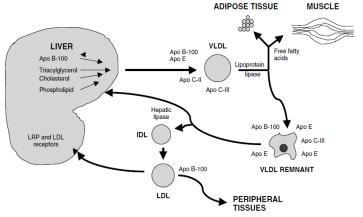


Figure 4 Endogenous lipid pathway. This shows the formation of very low-density lipoprotein (VLDL) lipid particles (VLDL₁ and VLDL₂) in the liver with the interconversion, through the action of lipoprotein lipase, to VLDL remnant and through immediate-density lipoprotein (IDL) to LDL. Lipids are taken up from LDL both peripherally and in the liver. LRP, low-density lipoprotein receptor-related protein.

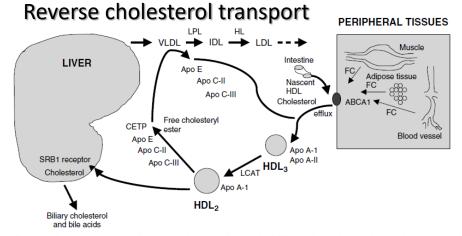
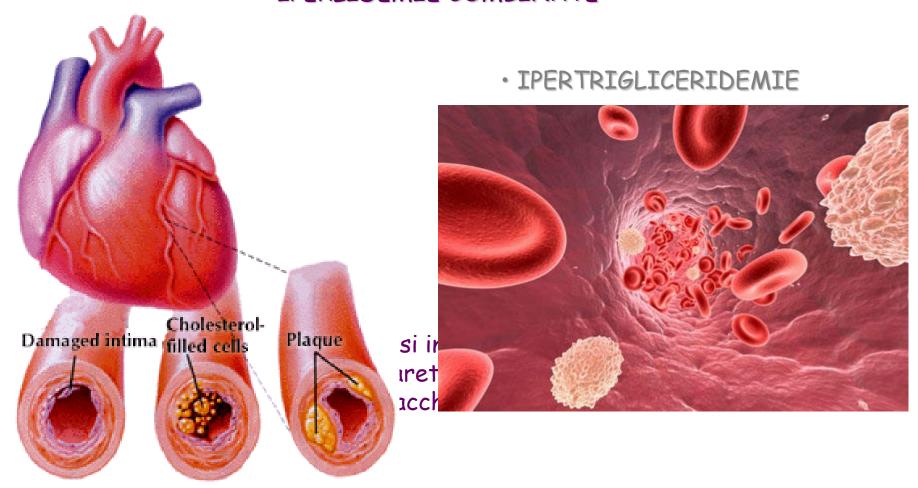



Figure 5 Reverse cholesterol transport. Nascent high-density lipoprotein (HDL₃) picks up free cholesterol from the peripheries to become HDL₂, by a lecithin-cholesterol acyl transferase (LCAT)-mediated conversion. Cholesterol is then transported to the liver with uptake by the SRBI receptor. A second method of transport to the liver involves CETP-mediated esterification of HDL and conversion into immediate-density lipoprotein (IDL) and low-density lipoprotein (LDL), which is then taken up by the LDL receptor. This transfer of lipid between HDL₂ and VLDL/IDL maintains a cycle within HDL, and IDL/LDL deliver cholesterol from the peripheries to the liver. HDL may also deliver cholesterol directly to the liver. FC, free cholesterol.

CLASSIFICAZIONE (SU QUADRO CLINICO) DELLE DISLIPIDEMIE

- IPERCOLESTEROLEMIE
- IPERTRIGLICERIDEMIE
- · IPERLIDEMIE COMBINATE

National Cholesterol Education Program Cholesterol Guidelines

	Desirable	Borderline High	High
Total Cholesterol	Less than 200	200 - 239	240 and higher
LDL Cholesterol (the "bad" cholesterol)	Less than 130 130 - 159		160 and higher
HDL Cholesterol (the "good" cholesterol)	50 and higher	40 - 49	Less than 40
Triglycerides	Less than 200	200 - 399	400 and higher

COSTI SANITARI ANNUI 1,2 MILIARDI

How to keep cholesterol and triglycerides at a favorable level

Hypercholesterolemia is caused by unbalanced nutrition, smoking, physical inactivity, excess weight and diabetes; more rarely by a genetic alteration.

Healthy nutrition can reduce cholesterol level in the blood by 5% to 10%; a 10% reduction of cholesterolemia reduces the possibility of dying from a cardiovascular disease by 20%.

Therefore it is important to:

limit the consumption of fats in general replace saturated fats (butter, cheese, fatty meat, sausages) with poly-unsaturated (seed oil) and mono-unsaturated fats (olive oil) increase the consumption of fruit, vegetables and legumes reduce the consumption of desserts limit the consumption of alcohol.

It is also important to regularly do some <u>physical</u> <u>activity</u>, stop <u>smoking</u>, keep the <u>blood pressure</u> under control, and lose weight if you are <u>overweight</u>.

Elimination of aggravating factors

Hyperlipoproteinemia may be aggravated by other pathological conditions (eg diabetes mellitus, alcoholism, hypothyroidism). It is necessary to reduce all risk factors that could accelerate the atherosclerotic process (hypertension, hyperglycemia, etc.).

-Diet

Low in saturated fats (animal origin); rich in fish, fruit, vegetables.

Phytosterols
PUFA polyunsaturated fatty acids
Soy Protein
Fermented red rice (monacoline)
Beta glucans
berberine
polycosanols

Hypercolesterolemia diet management

U6

low in calories
Weight reduction
Increased physical activity

Tabella 4 Indicazioni dietetiche per soggetti con elevati valori di colesterolo plasmatico

		in the engineers
Alimenti	Consigliati	Sconsigliati
Farinacei	Pasta normale o integrale, pane bianco o integrale, riso	Crackers, fette biscottate, pane all'olio, pasta all'uovo, biscotti, dolciumi
Carni	Manzo magro, coniglio, maiale magro, vitello magro, petto di tac- chino, pollo senza pelle, bresaola, prosciutto crudo privato del grasso	Carni grasse e semigrasse come: oca, anatra, agnello, maiale, frattaglie, midollo, fega- to, cervello
Pesci	Merluzzo, sogliola, palombo, trota, spigola, orata, salmone, cernia, tonno al naturale	Anguilla, capitone, pesci sott'o- lio, frutti di mare e crostacei
Latte e latticini	Latte scremato, yogurt magro, ricotta fresca	Latte intero, panna, formaggi grassi e semigrassi quali grovie- ra, caciotta, fontina, pecorino, parmigiano, stracchino, provola, ricotta di pecora
Uova		Tutti i cibi a base di uova
Verdura	Tutta	
Frutta	Frutta fresca	Frutta secca non a guscio quali i fichi e l'uva secchi; frutta conservata
Condimenti	Olio d'oliva, di mais, di soia, di gira- sole, di arachidi	Burro, lardo, strutto, margarina, salse troppo condite
Bevande	Caffè e tè non zuccherati	Bibite in genere e alcolici
Dolciumi		Caramelle, cioccolato, zucchero, miele, pasticceria in genere
Tipi di cotture	Griglia, al vapore, al forno, bollito, al cartoccio, a microonde, allo spiedo	Frittura, arrosti conditi

Hypertrigliceridemies diet management

U6

Food sources of triglycerides are represented by carbohydrates, rather than by food fats, as the sugars do not have an effective storage system (just a little glycogen can be contained in the liver and muscles), while for lipids the storage is more adequate. For this reason the absorbed carbohydrates are transformed into triglycerides in the liver and then sent to the fat cells. In situations such as diabetes or insulin resistance this mechanism jams, therefore there is accumulation of triglycerides in fat cells (= hepatosteatosis) and excess of lipids in the blood (= hypertriglyceridemia).

FOODS TO AVOID:

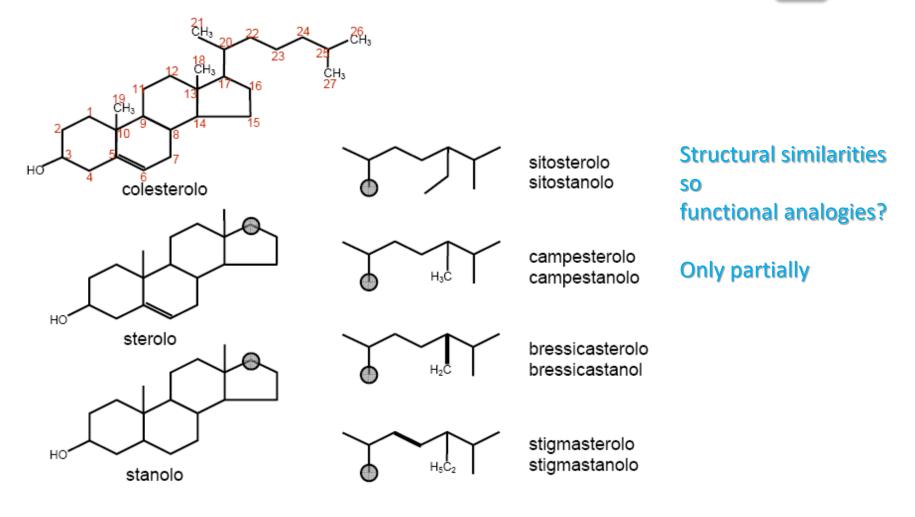
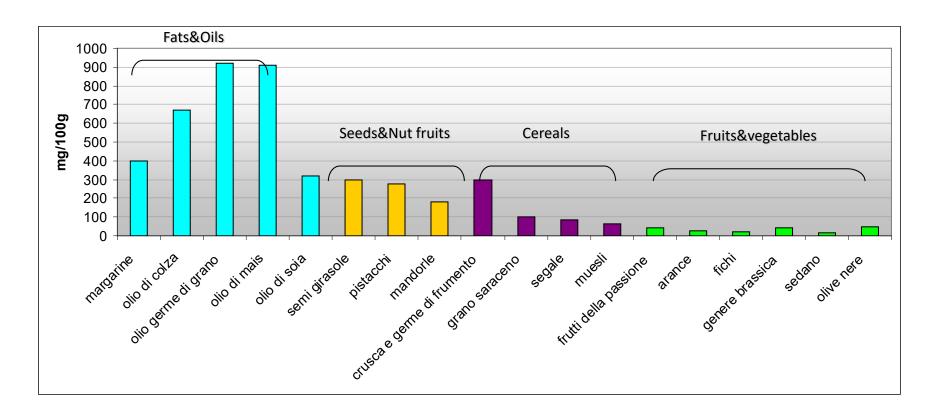
- · Sugars in general: white and cane sugar, honey, fructose and sweeteners based on fruit sugar, sweets, ice creams, sugary and non-sugary sugary drinks, jams and jams.
- Fruit in large quantities: fruit sugars increase triglycerides, so it should be limited to 2 fresh fruits per day. Pay attention to the fruit very rich in sugars (figs, persimmons, grapes, mandarins), which should be consumed occasionally. Avoid sugary dried fruit (= dried fruit).
- Wine, bitters, digestives, aperitifs, beer: alcohol determines the production of triglycerides by the liver, so the intake of drinks containing it must be eliminated. The inclusion of small doses of alcoholic beverages on an occasional basis must be agreed with the doctor and only in particular situations.
- Sugary, non-carbonated and non-sugary drinks: if you really can't avoid eating them, prefer light drinks or those sweetened with sweeteners other than fructose.

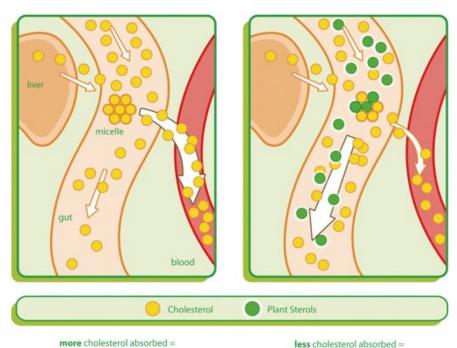
FOODS TO BE USED WITH MODERATION:

- · Bread, pasta, rice: they should be consumed avoiding large portions, as the complex carbohydrates that compose them, once digested, release simple sugars. The same goes for potatoes.
- **Seasoning fats**: limit the consumption of raw used oil to 3-4 tablespoons per day, preferring the extra-virgin olive oil or monosemic seed oils (peanuts, sunflower, corn, soya, rice).
- · Mayonnaise, various sauces: they are often high-calorie foods, to be used in a limited way.

FREE FOODS:

- · Various vegetables: cooked or raw, they can be consumed freely, even in large quantities.
- · Protein sources (meat, fish, eggs, legumes, milk and cheese): free intake of these foods, taking care to increase the consumption of fish (which contains fats from the omega-3 series, able to lower triglycerides).
- · Unsweetened drinks: water, herbal tea, barley, tea, karkadè.

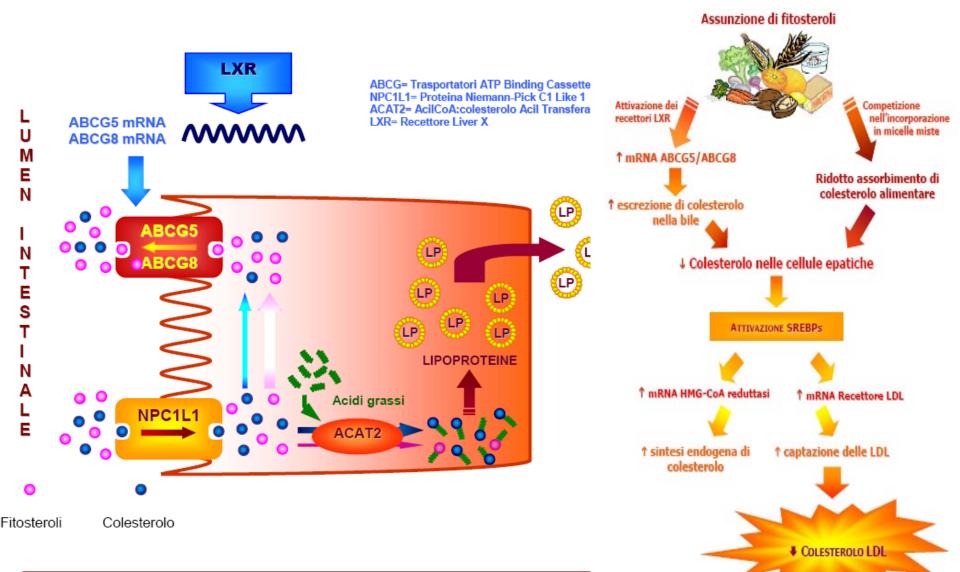




Figura 1. Struttura chimica dei più comuni steroli e stanoli vegetali.

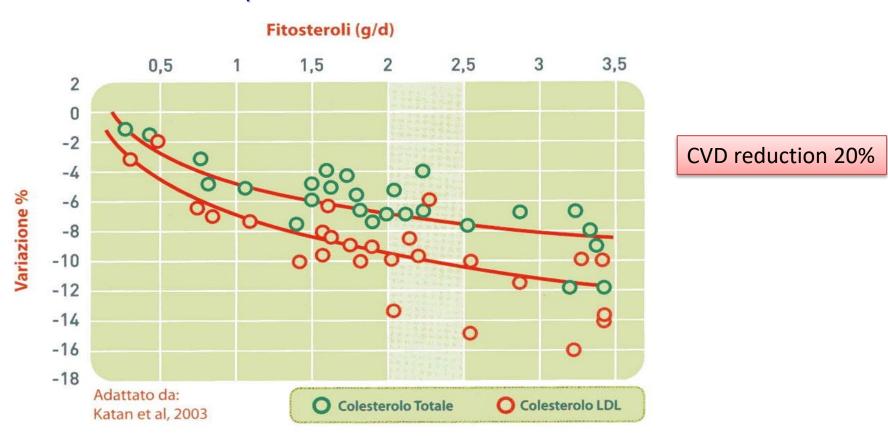
Natural foods with the highest vegetable sterols are vegetable oils, followed by nuts and cereals and their derivatives

Phytosterols

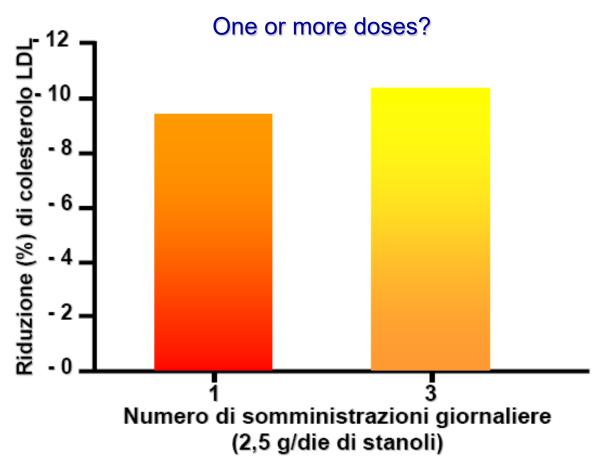
higher blood cholesterol levels.


less cholesterol absorbed = lower blood cholesterol levels.

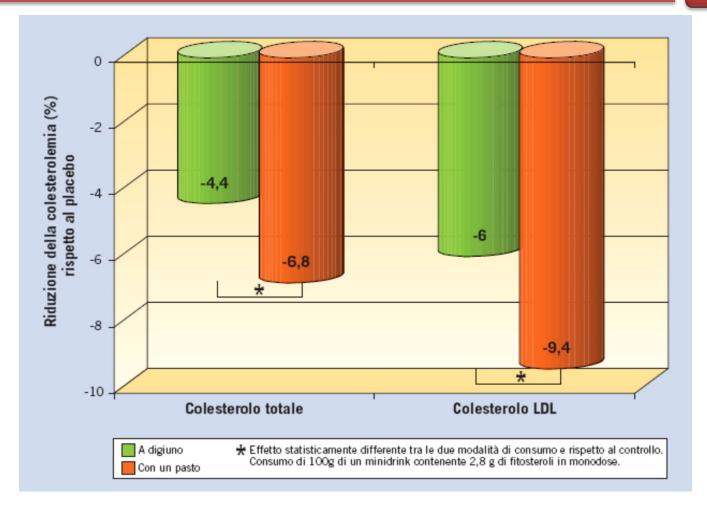
Phytosterols: Cholesterol lowering mechanism



Phytosterols: Efficacy&dose



dose-effect relationship


The intake of 2 to 2.5 g / day of plant sterols associated with a healthy, balanced diet rich in fruit and vegetables reduces the LDL cholesterol level without significant effects on HDL and triglycerides.

The intake of phytosterols in one meal or in multiple daily doses results in a reduction in comparable LDL cholesterol

Effect of the use of a single dose of phytosterols on cholesterol. Consumption during a meal increases the effect on cholesterolemia compared with fasting.

Phytosterols: which is the best?

Latte -15.9% Yogurt -8.6%

YOGURT

Integratori alimentari - 4%÷ - 10%

Phytosterols: which is the best?

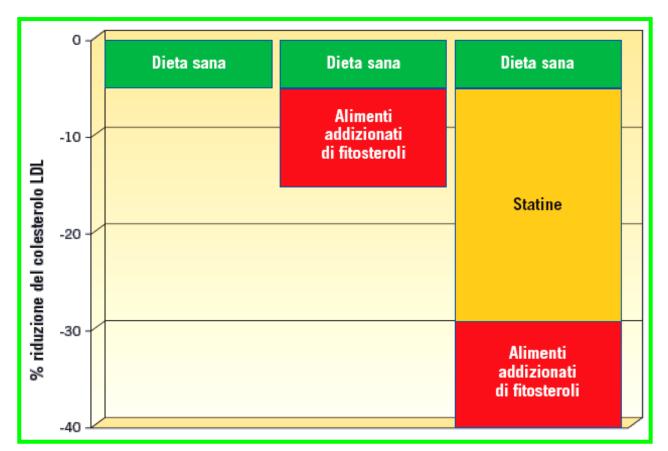
Cholesterol lowering action in phytosterol trials using capsules or tablets

Authors	Study size	Study design	Matrix	Type of phytosterol	Dose free phytosterol	Duration	ΔLDL (mmol/L) ^{a)}
Acuff et al. [54]	n = 16	Double-blind, placebo-controlled,	Capsule	Plant sterol ester	0.8 g/day in 2 capsules	4 wk	-0.34
Carr et al. [55]	n = 32	Randomized, double-blind, two-group	Capsule	Plant sterol ester of stearate	1.8 g/day in 3 capsules	4 wk	-0.35
Denke et al. 1994	n = 33	Sequential study, low cholesterol diet	Capsule	Free Sitostanol in oil	3.0g/day in 12 capsules	1 month	-0.15 ^{b)}
Earnest et al. [56]	n = 54 (25 active, 29 placebe)	Randomized, double-blinded, parallel,	Capsule	Plant sterol ester	1.56 g/day of ester in 4 capsules	12 wk	-0.38
Goldberg et al. [57]	n = 26 (13 per arm)	Double-blind, placebo-controlled,	Tablet	Plant stanol lecithin complex	1.8 g/day in 8 tablets	6 wk	-0.68
McPherson et al. [53]	$n=27 \mathrm{\ per}$	parallel clinical trial Placebo-controlled, double-blind	Capsule time release >60 min	Aqueous stanol lecithin complex	1.01 g/day in 8 capsules	6 wk	-0.28
McPherson et al. [53]	n = 25	Placebo-controlled, double-blind	Tablet fast dissolve <10 min	Spray dried stanol lecithin complex	1.26 g/day in 6 tablets	6 wk	-0.68
Woodgate et al. [58]	n = 29 (14 active, 15 control)	Randomized, double-blind, placebo-controlled	Softgel capsule	Stanol ester	1.6 g/day in 3 capsules	4 wk	-0.39

a) In cross-over trials $\Delta LDL = mean\ LDL\ end\ of\ treatment\ -\ mean\ LDL\ end\ of\ control.$ In parallel trials $\Delta LDL = \Delta LDL\ treatment\ -\ \Delta LDL\ control.$

b) In Denke et al. mean LDL of preceding and subsequent step one diet phases used as LDL control.

Currently ther are 10 permits concerning the following types of phytosterols, esters of phytosterols, phytostanols or phytostanols esters:


- Milk drinks
- Soy drinks
- Rice drinks?
- spreadable creams
- milk fermented milk
- yogurt
- spreadable margarine
- rye bread
- sauces and seasonings

Frequently used by population aged> 45 years. Simulation studies show exposure to doses> 3g / day when using more than one

Examples of phytosterols / stanols concentrations in some EU functional foods and recommended daily consumption.

Product category	Common packing size	Recommended consumption	Phytosterol concentration	Daily intake
Yellow fat spreads	250 g	3x8-10 g/day	7.5-8 g/100 g	2-2.3 g
Milk type products	1000 ml	2-3x250 ml/day	0.3 g/100 ml	1.5-2.4 g
Yoghurt type products	65-125 ml	1-2x65-125 ml/day	0.6-3.1 g/100 ml	1.5-2 g
Cheese type products	125 g	3x30 g/day	2.2 g/100 g	2.1 g
Cream cheese	200 g	40-60 g/day	5.0 g/100 g	2-3 g
Milk-based soft drink	1000 ml	350 ml/day	0.5 g/ 100 ml	1.8 g
Rye bread	750 g	3x80 g/day	0.8 g/100 g	2 g

- Moderate-low RCV subjects (<10%)</p>
- In non-pharmacological strategies
- Subjects already in statin therapy

Phytosterols: additional labelling requirements

INDICATIONS FOR CORRECT USE OF ADDITIVES WITH FITOSTEROLS

To provide consumers with the information they need for their correct use, all phytosterols added products must bear a label that, in addition to containing omitting data, must clearly specify that:

- The product <u>is intended exclusively for people who intend to reduce their cholesterol</u> levels in the bloodstream
- patients who undergo a cholesterol-lowering treatment should consume the product only under medical supervision
- the product <u>may be inadequately nutritionally suitable for pregnant women, breastfeeding and</u> <u>children under the age of 5</u>
- The product should be taken in the framework of a varied and balanced diet, which involves regular consumption of fruit and vegetables so as to counteract the reduction of carotenoids
- Intake over 3g / die of added sterols / stanols should be avoided.

(To facilitate this, the product should have a clear indication of what the standard portion to be consumed in g ml, and the indication of the phytosterol content contained in that portion)

- ✓ Interactions with other nutrients (carotenoids)
- Estrogenic effect
- ✓ Increase in plasma levels of phytosterols and induction of atherosclerosis
- ✓ Potential allergenicity?

"3 g/day of phytosterols/stanols help to reduce cholesterol" the minimum duration required to achieve the maximum effect of plant sterols and stanols on LDL-cholesterol lowering is two to three weeks. Plant sterols added to foods such as margarine-type spreads, mayonnaise, salad dressings, and dairy products have been shown consistently to lower blood LDL-cholesterol concentrations in a large number of studies, the effective dose of plant sterols (as powder diluted in water) needed to achieve a given magnitude of effect in a given timeframe cannot be established with the data provided (6 weeks 2g/day).

Bevanda lattea fermentata alla frutta addizionata di steroli vegetali e dolcificata con edulcoranti

- •atte scremato e latte scremato in polvere
- Steroli vegetali (1,6%)
- •Ananas (1%)
- •Fibra alimentare (oligofruttosio)
- •Addensanti (amido modificato di mais, pectina, gomma di guar)
- Aromi
- •Correttori di acidità (acido citrico, citrato di calcio, citrato di sodio)
- •Edulcoranti (acesulfame K, sucralosio)
- •Streptococcus thermophilus
- Lactobacillus bulgaricus

Riduce il colesterolo Fino a -10% in tre settimane grazie agli steroli vegetali

non è destinato alle persone che non hanno bisogno di controllare il colesterolo nel sangue. Potrebbe non essere adatto alle donne in gravidanza, durante l'allattamento e per i bambini di età inferiore ai 5 anni. Nel caso si stia seguendo una cura per la riduzione del colesterolo consumare il prodotto solo sotto controllo medico. Si raccomanda il consumo di una bottiglietta di al giorno (1,6 g di steroli vegetali). deve essere consumato nel quadro di una dieta varia e bilanciata che comporti il consumo regolare di frutta e verdura così da contribuire a mantenere i livelli di carotenoidi. Evitare il consumo di più di 3 g di steroli vegetali al giorno, poiché una quantità maggiore non apporta benefici addizionali. Le malattie cardiovascolari sono dovute a molteplici fattori. Intervenire su uno solo di questi può anche non avere effetti benefici. **L'effetto benefico si ottiene con l'assunzione quotidiana di almeno 1,5-3g di steroli/stanoli vegetali. Agitare prima dell'uso

100% Vegetale Soia con Steroli Vegetali Melograno 6 x 90 g 100% VEGETALE

Bevanda vegetale a base di soia con fermenti vivi con melograno e con aggiunta di steroli vegetali

Composizione: **Estratto di soia 73%** (acqua, semi di soia decorticati (7%)),Preparazione di frutta (melograno 9%, zucchero, acqua, **fitosteroli 1,1%,** amido modificato di tapioca; coloranti: succo concentrato di barbabietola rossa, succo concentrato di carota nera; antiossidanti: acido ascorbico, vitamina E; aromi naturali),Fibra alimentare,Fermenti

Aiuta a mantenere livelli normali di colesterolo - Fonte di proteine vegetali - A basso contenuto di grassi saturi. Addizionato di steroli vegetali che aiutano a mantenere livelli normali di colesterolo Questo prodotto è destinato esclusivamente alle persone che vogliono mantenere livelli normali di colesterolo nel sangue. Nel caso si stia seguendo un trattamento ipocolesterolemizzante, consumare il prodotto solo sotto controllo medico. Potrebbe essere inadeguato alle donne in gravidanza, durante l'allattamento e per i bambini di età inferiore ai 5 anni. Il prodotto deve essere consumato nel quadro di una dieta varia e bilanciata che comporti il consumo regolare di frutta e verdura così da contribuire a mantenere livelli di carotenoidi. Evitare il consumo di più di 3g di steroli vegetali al giorno, poiché una quantità maggiore non apporta benefici addizionali. Una bottiglietta da 90 g contiene 1,0 g di fitosteroli

Benecol® Original Spread:

Benecol® Light Spread:

Nutrition Facts

Serving size 1 Tbsp (14g) Servings. About 16

Am	ou	nt/	Se	rving
Ca	lo	ri	es	70

% DV*
10%
5%

Fat Cal.70

Trans Fat 0g

Polyunsaturated Fat 2g

Monounsaturated Fat 4.5g

Cholesterol Omg	0%
Sodium 105mg	5%
Total Carbohydrate Og	0%
Protein Og	0%

Vitamin A 20% • Vitamin E 20%

Not a significant source of dietary fiber sugars, vitamin C, calcium and iron.

*Percent Daily Values (DV) are based on a 2,000 calorie diet.

INGREDIENTS: CANOLA OIL,
WATER, PALM AND PALM KERNEL
OIL, PLANT STANOL ESTER, LESS THAN
2 PERCENT OF SALT, BUTTERMILK,
VEGETABLE MONOGLYCERIDES (EMULSIFIER),
POTASSIUM SORBATE, CITRIC ACID, AND
CALCIUM DISODIUM EDTA(TO PROTECT
FRESHNESS), ARTIFICIAL FLAVOR, DL-ALPHA
TOCOPHEROL ACETATE (VITAMIN E), VITAMIN A
PALMITATE, BETA-CAROTENE (COLOR).

Contains: Milk Gluten Free

Nutrition Facts

Serving size 1 Tbsp (14g) Servings. About 16

Amount/Serving

Calories 50 Fat Cal.50

Dv Total Fat 5g 6% Sat Fat 1g 5%

Trans Fat 0g

Polyunsaturated Fat 1.5g

Monounsaturated Fat 3g

Cholesterol Omg 0% Sodium 95mg 4%

Total Carbohydrate 0g 0%
Protein 0g 0%

Vitamin A 20% • Vitamin E 20%

Not a significant source of dietary fiber sugars, vitamin C, calcium and iron.

*Percent Daily Values (DV) are based on a 2,000 calorie diet.

INGREDIENTS: WATER, CANOLA
OIL, PLANT STANOL ESTER, PALM
FRUIT AND PALM KERNEL OIL, LESS
THAN 2 PERCENT OF SALT, POLYGLYCEROL
POLYRICINOLEATE (PGPR) AND VEGETABLE
MONOGLYCERIDE (EMULSIFIER), WHEY(MILK),
POTASSIUM SORBATE, CITRIC ACID AND
CALCIUM DISODIUM EDTA (TO PROTECT
FRESHNESS), ARTIFICIAL FLAVOR, DL-ALPHA—
TOCOPHEROL ACETATE (VITAMIN E), VITAMIN A
PALMITATE, BETA—CAROTENE (COLOR)

Contains: Milk Gluten Free

INGREDIENTI:

Steroli vegetali tit. 68% (con maltodestrine, esteri di saccarosio degli acidi grassi, inulina); agente antiagglomerante: biossido di silicio.

16 Bustine monodose da sciogliere in acqua o altri alimenti: bevande, latte, yogurt, minestre.

Naturalmente privo di lattosio. Senza glutine, conservanti, coloranti, aromi.

EU Register on nutrition and health claims

The search to	ol only allows searches for health claims*, an	nd not nutrition claims.						
* Health clai	ms for which protection of proprietary d	lata is granted (and for which the right of use of the claim is restricted to t	the benefit of the applicant) are only listed here.					
You can also o	lownload the complete dataset of nutrition ar	nd health claims in the following formats: 🌠 (1.14 Mb) 📆 (2.22 Mb)						
🐐 EU R	egister c ; Search							
Showing 1 to	3 of 3 entries (filtered from 2,337 total entrie	es) 10 v records per page						< 1 >
Claim type	Nutrient, substance, food or food category	Claim 📆	Conditions of use of the claim / Restrictions of use / Reasons for non-authorisation 7	Health relationship 👔 💠	EFSA opinion reference / Journal reference 7	Commission Regulation	Status 👔 💠	Entry ID 👔
Art.14(1)(a)	Plant stanol esters	Plant stanol esters have been shown to lower/reduce blood cholesterol. High cholesterol is a risk factor in the development of coronary heart disease.	Information to the consumer that the beneficial effect is obtained with a daily intake of 1,5-3 g plant stanols. Reference to the magnitude of the effect may only be made for foods within the following categories: yellow fat spreads, dairy products, mayonnaise and salad dressings. When referring to the magnitude of the effect, the range "7 % to 10 %" for foods that provide a daily intake of 1,5-2,4 g plant stanols or the range "10 %-12,5 %" for foods that provide a daily intake of 2,5-3 g plant stanols and the duration to obtain the effect "in 2 to 3 weeks" must be communicated to the consumer.		Q-2008-118, Q-2009-00530 & Q-2009-00718, Q-2011-00851, Q-2011-01241	Commission Regulation (EC) 983/2009 of 21/10/2009, Amended by Commission Regulation (EC) 376/2010 of 03/05/2010, Amended by Commission Regulation (EU) No 686/2014 of 20/06/2014	Authorised	N/A
Art.13(1)	Plant sterols and plant stanols	Plant sterols/stanols contribute to the maintenance of normal blood cholesterol levels	In order to bear the claim information shall be given to the consumer that the beneficial effect is obtained with a daily intake of at least 0.8 g of plant sterols/stanols.	maintenance of normal blood cholesterol concentrations	2010;8(10):1813, 2011;9(6):2203	Commission Regulation (EU) 432/2012 of 16/05/2012	Authorised	549, 550, 567, 568, 713, 1234, 1235, 1466, 1634, 1984, 2909, 3140

Information to the consumer that the beneficial effect is obtained with

following categories: yellow fat spreads, dairy products, mayonnaise

a daily intake of 1,5-3 g plant sterols/stanols. Reference to the

magnitude of the effect may only be made for foods within the

Art.14(1)(a) Plant sterols/Plant stanol esters

Plant sterols and plant stanol esters have been shown to lower/reduce

blood cholesterol. High cholesterol is a risk factor in the development

of coronary heart disease.

U6

Q-2008-779,

Q-2009-00530 &

Q-2009-00718,

Commission

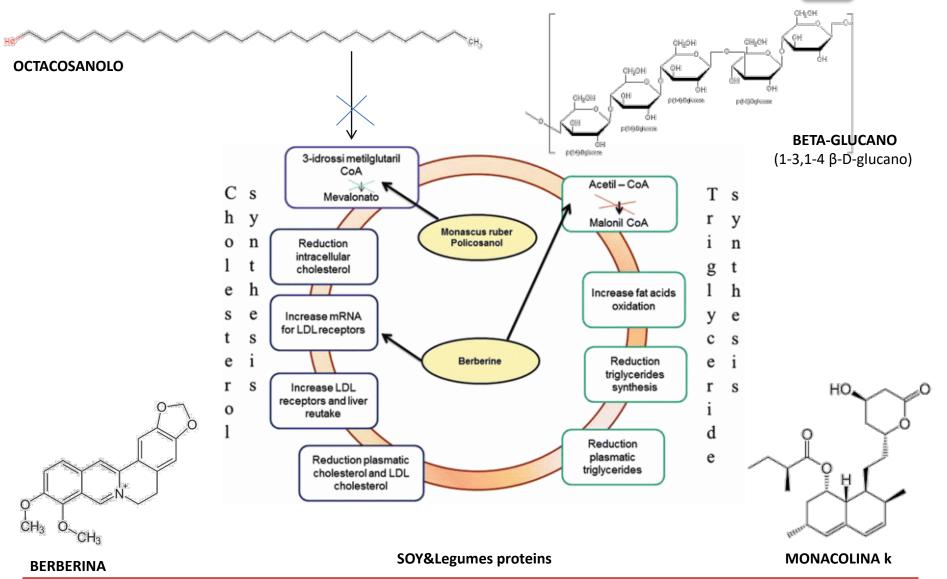
Regulation

Authorised

N/A

Food based of phytosterols as main active component Enriched food...

Functional...Novel food...
Food supplement....?



FOCUS ON NUTRACEUTICAL AND FUNCTINAL FOODS ON THE HYPERLIPIDEMIA

A RISK FACTOR
OF CARDIOVASCULAR DESEASES

Phytosterols&....synergistic effects of combinations

Fiber

Nutrition, Metabolism & Cardiovascular Diseases (2017) 27, 2-17

Available online at www.sciencedirect.com

Nutrition, Metabolism & Cardiovascular Diseases

journal homepage: www.elsevier.com/locate/nmcd

REVIEW

Joint position statement on "Nutraceuticals for the treatment of hypercholesterolemia" of the Italian Society of Diabetology (SID) and of the Italian Society for the Study of Arteriosclerosis (SISA)

M. Pirro ^{a,b}, C. Vetrani ^{c,d}, C. Bianchi ^{d,e}, M.R. Mannarino ^{a,b}, F. Bernini ^{b,f}, A.A. Rivellese ^{c,d,*}

From a functional point of view, dietary fiber is grouped into 4 classes:

- 1. insoluble, non-fermentable fiber (bran). It is an insoluble fiber that is poorly fermented in the intestine; it can exert mechanical laxative effects;
- 2. soluble, non-viscous, fermentable fiber (inulin, dextrin, oligosaccharides). It is quickly and easily fermented in the intestine. It does not cause increased viscosity and it is rapidly and completely fermented by the intestinal microbiota. It may have a prebiotic effect, but it does not exert laxative effects:
- 3. soluble, viscous, fermentable fiber (b-glucan, guar gum, pectin, glucomannan). It is quickly fermented and forms a viscous gel in water, increasing chime viscosity and reducing nutrient absorption. It is rapidly fermented in the intestine, thus losing its laxative effects;
- 4. soluble, viscous, non-fermentable fiber (psyllium, methylcellulose). It reduces the absorption of nutrients due to its viscosity and exerts laxative effects.

A regular intake of fiber, mostly the type with higher viscosity, reduces LDL cholesterol concentrations. When an adequate intake of fiber with diet alone is not feasible, the use of fiber-containing supplements can be an effective strategy to safely reduce cholesterol levels and possibly cardiovascular risk. Side effects related to excessive intake of fiber are unusual, except for symptoms of intestinal discomfort with higher doses (bloating, flatulence, meteorism). Overall, the use of added fiber may be advised when people are unable to increase their intake of dietary fiber with natural foods: 1) in the general population; 2) in patients with mild hypercholesterolemia and low to moderate cardiovascular risk; 3) in patients with mild hypercholesterolemia and/or metabolic syndrome

Table 1	Meta-analyses ar	nd randomized controlled	trials in humans	on the lipid-lowering	effects of different types of f	iber.
---------	------------------	--------------------------	------------------	-----------------------	---------------------------------	-------

Fiber

Fiber	Type of study	Subjects (number, type)	Average dose (range)	Mean duration (range)	Observed effects	Ref
β-Glucan (oats)	Meta-analysis of 25 RCT	n:1600 Healthy subjects Hypercholesterolemia Diabetes mellitus	5.0 g/day (2-30 g/day)	6 weeks (2–12 weeks)	↓ LDL-C: −6.2 mg/d1 No effect on TG and HDL-C	[28
	Meta-analysis of 28 RCT	n:2529 Healthy subjects Hypercholesterolemia Type 2 Diabetes	(3-12.4 g/day)	2-12 weeks	↓ LDL-C: −9.6 mg/d1 No effect on TG and HDL-C	[29
Psyllium	Meta-analysis of 17 RCT		9.1 g/day (2-30 g/day)	7 weeks (2–56 weeks)	↓ IDL-C: -10 mg/dl No effect on TG and HDL-C	[28]
	Meta-analysis of 21 RCT	n: 1717 Hypercholesterolemia	(3-20 g/day)	(2-26 weeks)	↓ LDL-C; −11 mg/dl No effect on TG	[30]
	RCT	n:187 Hypercholesterolemia on pharmacological treatment	14 g/day	8 weeks	↓ IDL-C: -11 mg/dl (-6%) ↓ TG: -20 mg/dl (-17%) No effect on HDL-C	[31]
Pectin	Meta-analysis of 7 RCT		4.7 g/day (2-30 g/day)	5 weeks (4–6 weeks)	↓ LDL-C: −9.9 mg/d1 No effect on TG and HDL-C	[28]
Guar gum	Meta-analysis of 18 RCT	n: 356 Healthy subjects Hypercholesterolemia Diabetes mellitus	17.5 g/day (2-30 g/day)	66 days (4-24 weeks)	↓ LDL-C: −22 mg/dI No effect on TG and HDL-C	[28]
Chitosan	Meta-analysis of 9 RCT	n:1219 Healthy subjects	3.7 g/day (0.24-15 g/day)	8,3 weeks (4–24 weeks)	↓ IDL-C: -6.2 mg/dl ↑ HDL-C: 1.2 mg/dl ↓ TG: -11 mg/dl	[32]
Glucomannan	Meta-analysis of 14 RCT	n: 531 Healthy subjects Hypercholesterolemia Diabetes mellitus	(1,2-15,1 g/day)	(3-16 weeks)	↓ LDL-C: −16 mg/dI ↓ TG: −11 mg/dI No effect on HDL-C	[33]
НРМС	RCT	n:52 Hypercholesterolemia	A: 5 g/day B: 15 g/day	8 weeks	A: ↓ LDL-C: −14 mg/dl No effect on TG and HDL-C B: ↓ LDL-C: −14 mg/dl No effect on TG and HDL-C	[34]
	RCT	n:13 Hypercholesterolemia on pharmacological treatment	5 g/day	4 weeks	↓ LDL-C: (−10%) No effect on TG and HDL-C	[35]

^{†:} increase, ‡: reduction, HDL-C: HDL-cholesterol, LDL-C: LDL-cholesterol, HPMC: hydroxypropyl-methylcellulose, TG: triglycerides, RCT: randomized controlled trials.

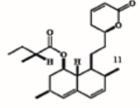
Table 5 Meta-analyses of randomized controlled trials in humans on the lipid-lowering effe	effects of sov.
--	-----------------

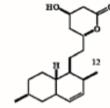
Type of study	Subjects (number, type)	Average dose (range)	Mean duration (range)	Observed effect	ı
Meta-analysis	n: 743	Soy proteins	_	↓ LDL-C: -12.9%	п
of 38 RCT	Healthy subjects	47 g/day (18-124 g/day)		↓ TG: -10.5%	
	Hypercholesterolemia			↑ HDL-C: 2.4%	
Meta-analysis	n: 959	Soy proteins (19-60 g/day)	At least 14 days	↓ LDL-C: -6.56 mg/dl	
of 10 RCT	Healthy subjects	Isoflavones (1-95 mg/day)		↑ HDL-C: 1.16 mg/dl	
	Hypercholesterolemia				
Meta-analysis of 8 RCT	n: 639	Soy proteins (25-100 g/day) Isoflavones (3-132 mg/day)	-	↓ LDL-C: -5.79 mg/dl	[7
	Healthy subjects				
	Hypercholesterolemia				
Meta-analysis of 23 RCT	n:1833	hy subjects rcholesterolemia	(4–26 weeks)	↓ LDL-C: -5.25%	[71
	Healthy subjects			↓ TG: -7.27%	
	Hypercholesterolemia			↑ HDL-C: 3.03%	
Meta-analysis of 41 RCT	n: 1756	Isoflavones (2–192.4 mg/day)	(3–52 weeks)	↓ LDL-C -4.25 mg/dl	[72
	Healthy subjects			↓ TG: -6.26 mg/dl	
	Hypercholesterolemia			↑ HDL-C: 0.77 mg/dl	
Meta-analysis of 11 RCT	n: 430	Soy proteins (25–133 g/day) Isoflavones (0–317.9 mg/day)	(3–14 weeks)	↓ LDL-C: -4.98%	[73]
	Healthy subjects			↓ TG: -0.69% ↑ HDL-C: 3.00%	
Mata analusia	Hypercholesterolemia n: 2913	S	(4-52 weeks)	↓ LDL-C: -8.88 mg/dl (~6%)	[74
Meta-analysis of 30 RCT	Healthy	Soy proteins 26.9 g/day ((15–40 g/day)	(4–52 weeks)	↓ TG: -7.70 mg/dl	[/4
	Hypercholesterolemia			↑ HDL-C: 2.74 mg/dl	
Meta-analysis	Healthy subjects	Soy proteins <65 g/day	(4-18 weeks)	⊥ LDL-C: from −4.2 to −5.5%	r
of 43 RCT	Hypercholesterolemia	30y proteins <03 g/day	(4-10 WCCK3)	1 TG: -10.7%	[75
	Tryperenoiesteroienna			↑ HDL-C: 3.2%	
Meta-analysis	n: 183	Soy proteins (30-111 g/day)	(6-208 weeks)	↓ LDL-C: −11.6 mg/dl	ľ
of 8 RCT	Type 2 diabetes mellitus	Isoflavones (0–132 mg/day)	(0 200 Weeks)	↓ TG: -19.5 mg/dl	[70
	- J. F			† HDL-C: 1.9 mg/dl	
Meta-analysis of 14 RCT	Familial hypercholesterolemia	-	-	↓ LDL-C: 4.6 mg/dl	[51
				↓ TG: -22 mg/dl	
				† HDL-C: 2.7 mg/dl	

FDA to release a claim in 1999 stating that dietary intake of 25 g/day of soy protein can reduce cardiovascular risk

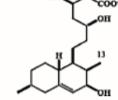
Soy (*Glycine max*) is an East Asian native leguminous plant, rich in proteins (36e46%, depending on the variety), lipids (18%), soluble carbohydrates (15%) and fiber (15%). The high content of essential amino acids is a particular feature of soy compared to other legumes. Soy contains also several micronutrients such as lecithin (0.5%), sterols (0.3%), isoflavones (0.1%), tocopherols (0.02%) and low levels of tocotrienols, lignans and sphingolipids.

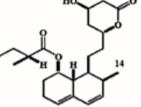
The cholesterol-lowering effect of soy may be related also to its content in lecithin, phytosterols and bglucan, which are able to reduce intestinal cholesterol absorption. Moreover, soy proteins including bconglycinin (7S globulin) and glycinin (11S globulin), and peptides obtained by their intestinal hydrolysis may exert cholesterol-lowering effects by promoting LDL-receptor (LDLR) expression. 3 dipeptides, Lys-Ala, Val-Lys, and Ser-Tyr, were reported to reduce TG synthesis, while Ser- Tyr additionally reduced apoB secretion in HepG2 cells


RED YEAST RICE EXTRACTS



The composition is not yet well characterized due to secondary monacolins competing with the Monacolina K




Dehydromonacolin K (DMK)

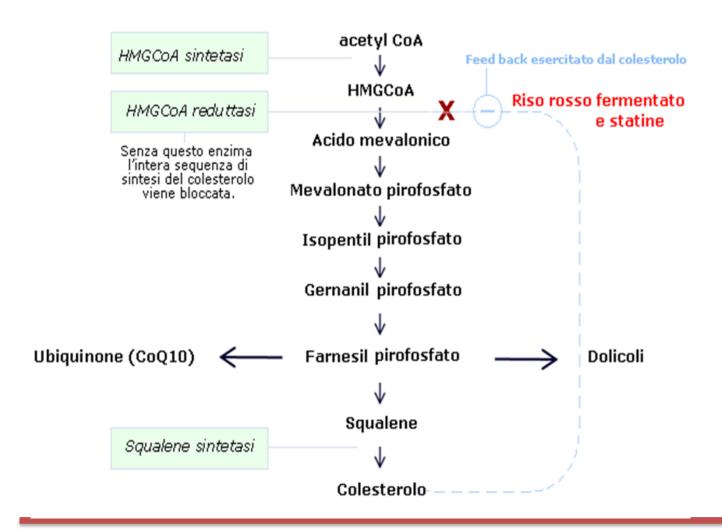
Dihydromonacolin L (DML)

3-OH-3,5-dihydromonacolin L (HDML)

Compactin (PI)

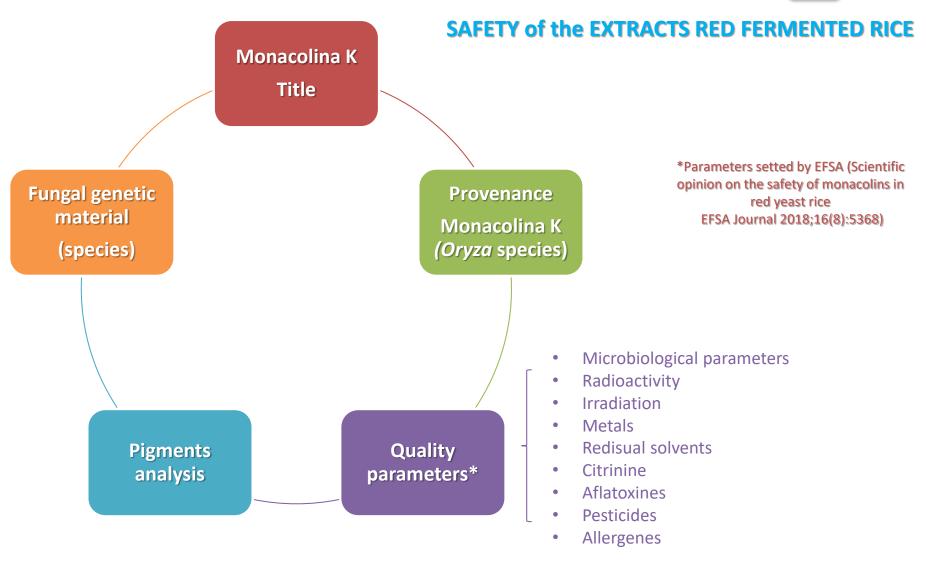
Max level in food supplements 3 mg from July 2022

H₂C CH₃

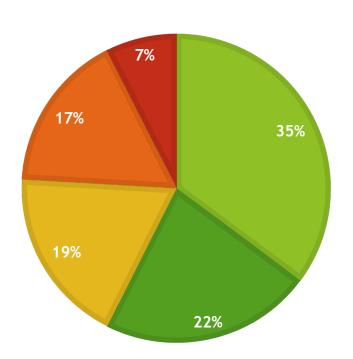

LOVASTATINA

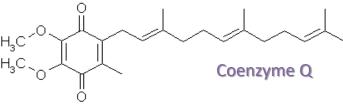
Functional Health claim

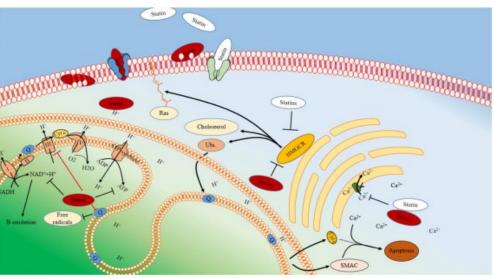
Monacolin K from red yeast rice contrib
the maintenance of normal blood che
levels



BIOSINTESI DEL COLESTEROLO




RED YEAST RICE EXTRACTS



ADVERSE EFFECTS of the EXTRACTS RED FERMENTED RICE

- mialgia e/o aumento CKreazioni a livello epatico
- reazioni gastrointestinali
- reazioni cutanee

Effect of statins in mitochondria. Statins through the inhibition of complex III and ubiquinone synthesis interrupt the transport of electrons and the consequent oxidation of NADH in NAD +

■ altro

Advantages, disadvantages and possible indications cholesterol-lowering nutraceuticals.

	Advantage	Disadvantages	Possible indication
Fiber	- LDL-C reduction by 4—14% - Effect on other CV risk factors - Relatively low-cost	Intestinal discomfort for excessive doses	- General population that fails to increase fiber intake with diet alone - Patients with mild hypercholesterolemia and low to moderate cardiovascular risk* - Patients with mild hypercholesterolemia and metabolic syndrome
Phytosterols	- LDL-C reduction by 8–10% - No interaction with lipid-lowering drugs	 Self purchasing by patients and risk of no medical supervision Possible excessive intake with the risk of reduced absorption of fat soluble vitamins High cost 	- Patients with mild hypercholesterolemia and low to moderate cardiovascular risk* - Patients with intolerance to multiple statins - In addition to drug therapy for patients who do not reach optimal levels of LDL-C
Soy products	- LDL-C reduction by 4-13%	 Self purchasing by the patient Risk of allergies High cost 	- General population - Patients with mild hypercholesterolemia and low to moderate cardiovascular risk*
Red yeast rice	- LDL-C reduction by 16-25% - Good safety profile - Reduction of cardiovascular risk	Variability of composition and purity of OTC products Self purchasing by patients and risk of no medical supervision Higher cost compared to generic statins Possible side effects at high doses	 Patients with mild to moderate hypercholesterolemia and low to moderate cardiovascular risk^b
Berberine ^d	LDL-C reduction by 20% Better safety profile in patients with intolerance to multiple statins Favorable effect on TG, HDL-C and blood glucose	Variability of intestinal absorption Self purchasing by patients and risk of no medical supervision Higher cost compared to generic statins	Patients with mild to moderate hypercholesterolemia and low to moderate CV risk ^c Patients with mild hypercholesterolemia and metabolic syndrome ^c Patients with intolerance to multiple statins In addition to drug therapy for patients who do not reach optimal levels of LDL-C

A cholesterol level of 200 to 239 mg/dl

HDL-C: HDL cholesterol, LDL-C: LDL cholesterol, CV: cardiovascular; TG: triglycerides; OTC: over the counter.

- * Patients requiring a reduction of LDL cholesterol by up to 10-15%.
- b Patients requiring a reduction of LDL cholesterol by up to 20-25%.
- ^c Patients requiring a reduction of LDL cholesterol by up to 20%.
- d Studies performed almost exclusively in Asian populations and therefore not easily transferable to other populations.
- Even in combination with a statin, in patients with modest increase in serum triglycerides and/or blood glucose.

Phytosterols&....synergistic effects of combinations

ASSEMBLED PRODUCTS RATIONAL

There are various reasons why it might be preferable to commercialize products of this kind:

- a) legal restrictions (e.g. you cannot use more than 10 mg of monacolins/dose by law),
- b) side effects (e.g., doses of berberine exceeding than 500 mg/day are more likely to cause gastrointestinal problems), and
- c) economic reasons (a more complex formulation allows competitive differentiation and a possible saving on raw material).

Sometimes this phenomenon leads to the creation of products where there is no real rational association and the active substances are under-dosed in relation to the lipid-lowering effect sought. Therefore, before prescribing these nutraceuticals, it would be desirable to investigate

- 1. the reliability of the origins of the raw materials,
- 2. dosage compatibility of the individual components with the desired effectiveness,
- 3. the rationality of the synergy in relation to the action mechanism of the various formulations of substances, and
- 4. the existence of studies to confirm the effectiveness of the association.

One of the **most tested associations is between monacolins (3 mg) and polycosanol (10 mg**), which has the rationale of combining an inhibitor of the synthesis of the hydroxymethyl-glutaryl-coenzyme A reductase (polycosanol) with an inhibitor of the activity (monacolin). This association would apparently produce a reduction of LDL cholesterol of about 15%.

Another preconceived association with a **rational formulation combines berberine with cholesterol synthesis inhibitors which facilitates the disposal of circulating cholesterol**. This kind of addition increases the cholesterol-lowering efficacy (up to 25% reduction of LDL cholesterol), also acting on triglycerides (–20%).

Phytosterols&....synergistic effects of combinations

ASSEMBLED PRODUCTS RATIONAL

Table 9 LDL-C reduction, levels of evidence and strength of recommendation for different cholesterol-lowering nutraceuticals.

	Degree of LDL cholesterol reduction	Level of evidence	Strength of recommendation
Fiber	+	I	Α
Phytosterols	+	I	A
Soy derivatives	+/-	II	С
Policosanol	_	VI	D
Red yeast rice	++	I	Α
Berberin	++	a	a

Levels of evidence and strength of recommendation according to the Italian standard of care for diabetes [153]: Levels of evidence: I: evidence obtained from multiple randomized controlled trials and/ or from systematic reviews of randomized controlled trials; II: evidence obtained from one randomized trial; VI: consensus of experts. Strength of recommendation: A: strongly recommended; C: basic uncertainty; D: no recommendation.

^a The level of evidence would be I, because supported by metaanalysis of interventional studies, and strength of recommendation A; however, because these studies were conducted almost exclusively in Asian populations, the data are not easily transferable to other ethnic groups.

The cholesterol-lowering effect of some nutraceuticals (fiber, phytosterols, RYR) is consistent and supported by a good level of scientific evidence. Therefore, their use may be advised in some particular categories of patients. With regard to BBR, there is sufficient evidence showing significant cholesterol-lowering effects, although these effects emerged from interventional studies carried out almost exclusively in Asian populations, thus making these results difficult to be generalized to other ethnic groups. Data on the cholesterol-lowering effects of soy are conflicting and, therefore, the strength of the recommendation is quite low, whereas the scientific evidence is inconclusive for PCS.

- 1) On the basis of the data present in the literature some nutraceuticals (added fiber, phytosterols, red yeast rice) may help control hypercholesterolemia;
- 2) Of course, the above nutraceuticals may be of help only in subjects who do not yet need pharmaceutical treatments, or in addition to drug therapy.

U6

Table 2 Claims released by EFSA and FDA on nutraceuticals with

Table 2	Claims	released	by	EFSA	and	FDA	on	nutraceuticals	with
cholester	ol-lowe	ring activ	rity						

cholesterol-lower	ing activity.			cholesterol-lower	ing activity.		
Nutraceutical	Effective dose evaluated in the claim	EFSA	FDA	Nutraceutical	Effective dose evaluated in the claim	EFSA	FDA
Cib om				Pectin	6 g/day	Maintenance of	_
Fiber: β-Glucan ^a	≥3 g/day	Reduction of	Reduction			normal levels of LDL-C	
		LDL-C	del LDL-C Reduction	Psyllium	≥7 g/day	-	Reduction of LDL-C
			of CHD risk	Phytosterols	3 g/day	Reduction of LDL-C	Reduction of LDL-C
Chitosan	3 g/day	Maintenance of normal levels	-	Soy derivatives	25 g/day	-	Reduction of CV risk
		of LDL-C		Policosanol	_	_	_
Glucomannan	4 g/day	Maintenance of normal levels of LDL-C	-	Red yeast rice	10 mg/day of monacolin K	Maintenance of normal levels of LDL-C	Monacolin K has the same restrictions to
Guar gum	10 g/day	Maintenance of normal levels	-				which is subjected lovastatin
		of LDL-C		Berberine	_	_	_
HPMC	5 g/day	Maintenance of normal levels of LDL-C	-	CHD: coronary h vascular, HPMC: a From oats and	hydroxypropylm	L-C: LDL choleste ethylcellulose.	rol, CV: cardio-

extracts (Managelin K)	10 mg/die	representation of the maintenance of normal blood cholesteron levels
Linoleic and alpha-linolenic acids	10 g/die 2g/die	Maintenance of normal blood cholesterol levels
PUFA (EPA&DHA)	2g/die	Maintenance of normal blood triglycerides levels

Physiological effects from traditional use

Il documento riporta:

>> l'Allegato 1 al DM 10 agosto 2018 sulla disciplina dell'impiego negli integratori alimentari di Sostanze e preparati vegetali come aggiornato con Decreto 9 gennaio 2019;

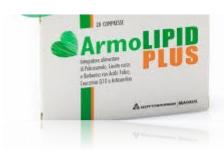

>> nell'ultima colonna le "Linee guida ministeriali di riferimento per gli effetti fisiologici" che non fanno parte integrante del predetto DM. Tali effetti, impiegabili in attesa della definizione dei claims sui botanicals, sono volti ad ottimizzare le funzioni dell'organismo nell'ambito dell'omeostasi secondo il modello definito dal Consiglio d'Europa (Homeostasis, a model to distinguish between food, including food supplements, and medicinal products, 07/02/2008).

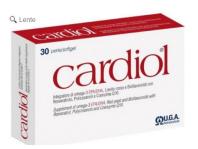
Tabella 2: Ingrediente presente nella lista delle "Sostanze e preparati vegetali ammessi" del Ministero della Salute

AREA CARDIO-METABOLICA			
INGREDIENTE	EFFETTO FISIOLOGICO DI CUI ALL'ALLEGATO 1 DM 9 LUGLIO 2012 aggiornato il 27 marzo 2014 "Sostanze e preparati vegetali ammessi"		
Cynara cardunculus subsp. flavescens Wiklund	Foglie: Metabolismo dei lipidi		

Nota: la tabella sopra non è esaustiva delle sostanze a cui è associato un effetto fisiologico ammesso dalla lista ministeriale per la specifica area di riferimento.

1 compressa contiene:

Berberis aristata e.s. 588mg equivalennte a Berberina 500mg. Riso rosso fermentato 200mg equivalente a Monacolina 3mg. Microalghe(Haematococcus pluvialis 20g equivalente a Astaxantina 0,5mg.


Policosanolo 10mg.

Acido folico 200mg.

Coenzima Q10 2,0mg.

Fitosteroli; agente di carica: cellulosa microcristallina; Riso Rosso fermentato da Monascus purpureus tit. al 3% in monacolina K; agente di carica: carbossimetilcellulosa sodica reticolata; agenti antiagglomeranti: biossido di silicio, sali di magnesio degli acidi grassi; agenti di rivestimento: idrossipropilmetilcellulosa, talco, polietilenglicole; coloranti: biossido di titanio, ossidi di ferro e idrossidi di ferro

Olio di pesce purificato per distillazione molecolare multipla e standardizzato al 75% in acidi grassi Omega-3 (min. 63% di EPA e DHA), Riso (Oryza sativa L.) fermentato con lievito Monascus purpureus e.s. titolato al 3% in monacolina K, Citrus reticulata L. frutto e.s. titolato al 40% in flavonoidi polimetossitati Tangeretina e Nobiletina (Bioflavonoidi) Polygonum cuspidatum radice e.s. standardizzato al 50% in resveratrolo, Oryza sativa L. frutto (crusca) e.s. titolato al 95% in policosanoli, Coenzima Q10, Acido folico, Vitamine B3, B6 e B12, Vitamina E come miscela di tocotrienoli e tocoferoli da palma (Elaeis guineensis Jacq.), Lignani di sesamo (Sesamum indicum L.) semi e.s. titolato al 60% in sesamina, Pepe nero (Piper nigrum L.) frutti e.s. titolato all'85%in piperina, Emulsionanti: lecitina di girasole, glicerinmonostearato, Involucro: gelatina, Agente di resistenza: glicerolo vegetale.

Coloranti: caramello, estratto di paprika, titanio diossido.

Prodotto senza glutine.

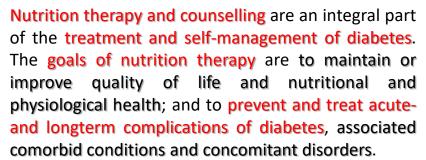
Diabetes

Classification	Definition	
Type 1 DM	Type 1 diabetes mellitus encompasses the majority of cases that are primarily due to pancreatic islet beta-cell destruction, attributable either to an autoimmune process or to an unknown cause (idiopathic). These patients are prone to ketoacidosis and require insulin injections for survival. It does not include cases with beta-cell destruction or failure to which specific causes can be assigned (e.g., cystic fibrosis, mitochondrial defects, etc.)	it affects young population that needs insulin because the pancreas does not produce insulin
Type 2 DM	Type 2 is the most common form of diabetes mellitus. It is characterised by disorders of insulin action and insulin secretion, either of which may be the predominant feature. Both are usually present at the time that this form of diabetes manifests clinically. By definition, the specific reasons for the development of these abnormalities are not yet known.	it affects a predominantly elderly population, often characterized by excess weight, treated with oral anti-diabetics and diet SINTOMATOLOGIA
Gestational DM	Gestational diabetes is carbohydrate intolerance resulting in hyperglycaemia of variable severity, with onset or first recognition during pregnancy. It does not exclude the possibility that the glucose intolerance may antedate pregnancy but had been previously unrecognised. The definition applies irrespective of whether	û della sete û della fame û minzione acuta stanchezza chetoacidosi
	or not insulin is used for treatment or whether the condition persists after pregnancy. Gestational DM usually resolves after pregnancy, but mothers and babies both have a higher risk of developing type 2 DM later in life.	nefropatie cecita' cronica impotenza malattie CV

^{*}Adapted from World Health Organization.⁵ DM = diabetes mellitus.

Diabetes

Can I Diabetes 42 (2018) S64-S79



2018 Clinical Practice Guidelines

Nutrition Therapy

Diabetes Canada Clinical Practice Guidelines Expert Committee

It is well documented that nutrition therapy can improve glycemic control by reducing glycated hemoglobin (A1C) by 1.0% to 2.0% and, when used with other components of diabetes care, can further improve clinical and metabolic outcomes, resulting in reduced hospitalization rates.

Figure 1. Nutritional management of hyperglycemia in type 2 diabetes. *A1C*, glycated hemoglobin.

Can I Diabetes 42 (2018) S64-S7

Contents lists available at ScienceDirect

Canadian Journal of Diabetes

journal homepage:

www.canadianjournalofdiabetes.com

2018 Clinical Practice Guidelines

Nutrition Therapy

Diabetes Canada Clinical Practice Guidelines Expert Committee

John L. Sievenpiper MD, PhD, FRCPC, Catherine B. Chan PhD, Paula D. Dworatzek PhD, RD, Catherine Freeze MEd, RD, CDE, Sandra L. Williams MEd, RD, CDE

Nutrition therapy and counselling are an integral part of the treatment and self-management of diabetes. The goals of nutrition therapy are to maintain or improve quality of life and nutritional and physiological health; and to prevent and treat acuteand longterm complications of diabetes, associated comorbid conditions and concomitant disorders.

It is well documented that nutrition therapy can improve glycemic control by reducing glycated hemoglobin (A1C) by 1.0% to 2.0% and, when used with other components of diabetes care, can further improve clinical and metabolic outcomes, resulting in reduced hospitalization rates.

The glycated hemoglobin - or glycosylated, if you prefer - allows you to broadly evaluate the average blood sugar level in the last two or three months.

It is therefore a very useful test to evaluate the adequacy of the glycemic control of the diabetic patient, recently reevaluated also in the diagnosis of the disease.

Glycation is the non-enzymatic biological process whereby sugars can bind covalently to proteins. The most abundant blood sugar, glucose, can therefore irreversibly bind to a specific part of hemoglobin, forming HbA1c or glycated hemoglobin. The higher the blood glucose concertation, the greater the percentage of glycated hemoglobin (HbA1c or A1C).

Why do you measure?

Given the irreversibility of the glycation, the glycosylated hemoglobin contained in the red blood cells (avid of glucose) circulates in the blood for the whole duration of their life (on average 90/120 days). Within certain limits, this is an absolutely normal process, which does not entail any danger to the patient's health, given that glycated hemoglobin continues to perform its function normally. The problems, rather, are related to the high blood glucose levels that go with it.

Diabetes

Can J Diabetes 42 (2018) S64-S79

Contents lists available at ScienceDirect

Canadian Journal of Diabetes

journal homepage:

www.canadianjournalofdiabetes.com

2018 Clinical Practice Guidelines

Nutrition Therapy

Diabetes Canada Clinical Practice Guidelines Expert Committee

John L. Sievenpiper MD, PhD, FRCPC, Catherine B. Chan PhD, Paula D. Dworatzek PhD, RD, Catherine Freeze MEd, RD, CDE, Sandra L. Williams MEd, RD, CDE

HbA _{1c} (%)	HbA _{1c} (mmol/mol)	Utilizzo
4.0	20	Limite inferiore in soggetti non diabetici
5.4	36	Limite superiore in gravidanza (1º e 2º trimestre)
5.7	39	Diagnosi di prediabete
6.5	48	Diagnosi di diabete
7.0	53	Obiettivo terapeutico primario

EMOGLOBINA GLICATA (%)	GLICEMIA MEDIA (MG/DL)
5	97 (76–120)
6	126 (100–152)
7	154 (123–185)
8	183 (147–217)
9	212 (170–249)
10	240 (193–282)
11	269 (217–314)
12	298 (240–347)
13	326 (260-380)
14	355 (290-410)
15	384 (310-440)
16	413 (330-480)

Can J Diabetes 42 (2018) S64-S

Contents lists available at ScienceDirect

Canadian Journal of Diabetes

journal homepage:

www.canadianjournalofdiabetes.com

Properties of dietary interventions*†‡

Properties of dietary interventions (listed in the order they are presented in the text)

Dietary interventions	A1C	CV benefit	Other advantages	Disadvantages
Macronutrient-based approaches				
Low-glycemic-index diets	↓(32,44,46,47)	↓CVD (52)	↓LDL-C, ↓CRP, ↓hypoglycemia, ↓diabetes Rx	None
High-fibre diets	↓(viscous fibre) (57)	↓CVD (69)	↓LDL-C, ↓non-HDL-C, ↓apo B (viscous fibre) (54,57,59)	GI side effects (transient)
High-MUFA diets	\leftrightarrow	↓CVD	↓Weight, ↓TG, ↓BP	None
Low-carbohydrate diets	\leftrightarrow	-	↓TG	↓Micronutrients, ↑renal load
High-protein diets	1	-	↓TG, ↓BP, preserve lean mass	↓Micronutrients, ↑renal load
Mediterranean dietary pattern	↓(50,139)	↓CVD (143)	↓retinopathy (144), ↓BP, ↓CRP, ↑HDL-C (139,140)	None
Alternate dietary patterns				
Vegetarian	↓(145,251)	↓CHD (152)	↓Weight (148), ↓LDL-C (149)	↓vitamin B12
DASH	↓(159)	↓CHD (161)	↓Weight (159), ↓LDL-C (159), ↓BP (159), ↓CRP (160)	None
Portfolio	-	↓CVD (162,163)	↓LDL-C (162,163), ↓CRP (162), ↓BP (163)	None
Nordic	-	-	↓LDL-C+, ↓non-HDL-C (169–171)	None
Popular weight loss diets				
Atkins	\leftrightarrow	-	↓Weight, ↓TG, ↑HDL-C, ↓CRP	↑LDL-C, ↓micronutrients, ↓adherence
Protein Power Plan	1	-	↓Weight, ↓TG, ↑HDL-C	↓Micronutrients, ↓adherence, ↑renal load
Ornish	-	-	↓Weight, ↓LDL-C, ↓CRP	↔ FPG, ↓adherence
Weight Watchers	-	-	↓Weight, ↓LDL-C, ↑HDL-C, ↓CRP	↔ FPG, ↓adherence
Zone	-	-	↓Weight, ↓LDL-C, ↓TG, ↑HDL-C	→ FPG, ↓adherence
Dietary patterns of specific foods				
Dietary pulses/legumes	↓(176)	↓CVD (181)	↓Weight (179), ↓LDL-C (177), ↓BP (178)	GI side effects (transient)
Fruit and vegetables	↓(183,184)	↓CVD (79)	↓BP (186,187)	None
Nuts	↓ (188)	↓CVD (143,181)	↓LDL-C (190), ↓TG, ↓FPG (189)	Nut allergies (some individuals)
Whole grains	↓ (oats) (194)	↓CHD (99)	↓LDL-C, FPG (oats, barley) (57,193)	GI side effects (transient)
Dairy	\leftrightarrow	↓CVD (199,200)	↓BP, ↓TG (when replacing SSBs) (197)	Lactose intolerance (some individuals)
Meal replacements	↓	-	↓Weight	Temporary intervention

^{*} \downarrow = <1% decrease in A1C.

A1C, glycated hemoglobin; *apo B*, apolipoprotein B; *BMI*, body mass index; *BP*, blood pressure; *CHD*, coronary heart disease; *CHO*, carbohydrate; *CRP*, C reactive protein; *CV*, cardiovascular; *CVD*, cardiovascular disease; *DASH*, Dietary Approaches to Stop Hypertension; *FPG*, fasting plasma glucose; *GI*, gastrointestinal; *HDL-C*, high-density lipoprotein cholesterol; *LDL-C*, low-density lipoprotein cholesterol; *MUFA*, monounsaturated fatty acid; *SSBs*, sugar-sweetened beverages; *TC*, total cholesterol; *TG*, triglycerides.

[†] Adjusted for medication changes.

[‡] References are for the evidence used to support accompanying recommendations.

Diabetes

U6

Can | Diabetes 42 (2018) S64-S79

Contents lists available at ScienceDirect

Canadian Journal of Diabetes

journal homepage: www.canadianjournalofdiabetes.com

2018 Clinical Practice Guidelines

Nutrition Therapy

Diabetes Canada Clinical Practice Guidelines Expert Commit

John L. Sievenpiper MD, PhD, FRCPC, Catherine B. Chan PhD, Catherine Freeze MEd, RD, CDE, Sandra L. Williams MEd, RD

DIABETES

Stage-Targeted Nutrition and Other Healthy Behaviour Intervention Strategies for Type 2 Diabetes

Prediabetes

- Weight loss or maintenance*
- · Portion control
- Guidance to include low-GI CHO and reduce refined CHO
- · Physical activity

Early type 2 diabetes

- Weight loss or maintenance*
- Portion control
- · Low-GI CHO
- · High fibre
- · CHO distribution
- Dietary pattern of choice†
- · Physical activity

Type 2 diabetes not on insulin

- Weight loss or maintenance*
- · Portion control
- · CHO distribution
- Low-GI CHO
- · High fibre
- Dietary pattern of choice†
- · Physical activity

Type 2 diabetes on basal insulin only

- · Portion control
- Weight loss or maintenance*
- · CHO consistency
- · Low-GI CHO
- · High fibre
- Dietary pattern of choice†
- · Physical activity

Type 2 diabetes on basal-bolus therapy

- · Portion control
- Weight loss or maintenance*
- CHO consistency initially then learn CHO counting
- · Low-GI CHO
- · High fibre
- Dietary pattern of choice†
- · Physical activity

†Dietary patterns include Mediterranean, vegetarian, DASH, Portfolio, and Nordic dietary patterns, as well as diets emphasizing specific foods (i.e., dietary pulses, fruit and vegetables, nuts, whole grains and dairy products) which have evidence of benefit for people with diabetes.

Figure 2. Stage-targeted nutrition and other healthy behaviour strategies for people with type 2 diabetes. *CHO*, carbohydrate; *GI*, glycemic index; *NPH*, neutral protamine Hagedorn.

^{*}As appropriate.

Text Box 2:

NUTRITION RECOMMENDATIONS FOR THE MANAGEMENT OF DIABETES CHO IN DIABETES MANAGEMENT

(with the evidence-based review grade level)* See Text Box 1.

Recommendations:

- A dietary pattern that includes CHO from fruits, vegetables, whole grains, legumes, and low-fat milk is encouraged for good health. (Level B)
- Monitoring CHO, whether by CHO counting, exchanges, or experienced-based estimation remains a key strategy
 in achieving glycemic control. (Level A)
- The use of GI and load may provide a modest additional benefit over that observed when total CHO is considered alone. (Level B)
- Sucrose-containing foods can be substituted for other CHOs in the meal plan or, if added to the meal plan, covered with insulin or other glucose-lowering medications. Care should be taken to avoid excess energy intake. (Level A)
- As for the general population, people with diabetes are encouraged to consume a variety of fiber-containing foods. However, evidence is lacking to recommend a higher fiber intake for people with diabetes than for the population as a whole. (Level B)

Sugar alcohols and nonnutritive sweeteners are safe when consumed within the daily intake levels established by the Food and Drug Administration (FDA). (Level A)

miele, melassa, sciroppi, bevande zuccherate, caramelle,

cioccolato

Indirizzi dietetici per il DM tipo I e tipo II

Alimenti contenenti carboidrati da includere o meno nella dieta dei soggetti diabetici

rici

Indirizzo dietetico	DM tipo I	DM tipo II		Permessi	Da utilizzare in quan- tità moderata	Sconsigliati
Diminuzione delle calorie	No	Generalmente sì				
Maggior frazionamento dei pasti	Sì	Non sempre	Cereali	All-bran, Weetabix,	Cornflakes, Rice Kri-	Cereali ricoperti di
Assunzione costante, giorno per giorno, di calorie, glicidi, protidi e grassi	Molto importante	Non necessaria, se l'apporto medio di calorie rimane	per colazione	grano e avena sof- fiati, müesli non zuc- cherati	spies, Special K, por- ridge (pappa di fiocchi di avena)	zucchero.
		nei limiti bassi	Farina, pane	Farina integrale,	Farina bianca, pane	Farina gialla
Rapporti costanti, giorno per giorno, fra glucidi, protidi e grassi ad ogni pasto	Consigliabile	Non necessario		fatti con farina inte-	bianco o nero, dolci fatti con farina bianca	
Regolarità degli orari dei pasti	Molto importante	Non necessario		grale, pane di sega- le		
Cibo extra per un'insolita attività fisica	Indicato di regola	Non indicato di regola	Riso, pasta	Riso integrale,	Riso brillato.	Semolino, tapioca
Ricorso al cibo per prevenire o curare	Importante	Non necessario	moo, paola	pasta integrale	pasta non integrale	ocinionio, tapioca
l'ipoglicemia	San		Frutta	Frutta fresca, frutta a guscio, frutta cotta dolcificata con dolci- ficanti artificiali, frut- ta in scatola in suc- co naturale	Succo di frutta senza zucchero aggiunto	Succhi di frutta zuc- cherati, frutta scirop- pata
			Verdura	Tutta la verdura e legumi	Patate	
Alcune raccoman	dazioni di	etetiche	Prodotti caseari	Latte scremato, yo- gurt al naturale	Latte intero, yogurt non al naturale	Latte condensato
			Dolci, biscotti e merendine	Biscotti integrali	Biscotti comuni, dolci fatti con farina bianca, torte di frutta, biscotti secchi	Biscotti e torte molto zuccherati
			Zucchero e cibi dolci		Marmellate, confetture e altri prodotti ipocalo-	

Tipologia di prodotto

Alimenti disponibili

(arricchiti in fibra, con amido meno biodisponibile, etc.)

Cracker

Fette biscottate

Grissini Pane

Pasta

Biscotti ipoglicidici

(prodotti con sorbitolo o fruttosio)

Biscotti vari (frollini, petit four, petit beurre,

soave, con marmellata, wafer, ecc.)

Pasticcini

Dolci

(prodotti con sorbitolo o fruttosio)

Colomba

Plum-cake Pandoro

Panettone

Torte (al limone, nocciole, ecc.)

Marmellate e confetture

(prodotte con fruttosio o sorbitolo)

Confetture varie (albicocca, ciliegia, fragola,

pesca, ecc.)

Marmellata di arancia

Caramelle e dolciumi

(prodotti con edulcoranti naturali e di sintesi)

Bubble gum

Caramelle dure e gommose

Cioccolatini vari

Cioccolato fondente, al latte e bianco

Gelatine di frutta

Torroni

Prodotti vari

Base crostata

Budini

Creme (cacao, vaniglia, ecc.)

Müesli

Pan di Spagna

Preparati per budini

Preparati per torte

compliance dogli di

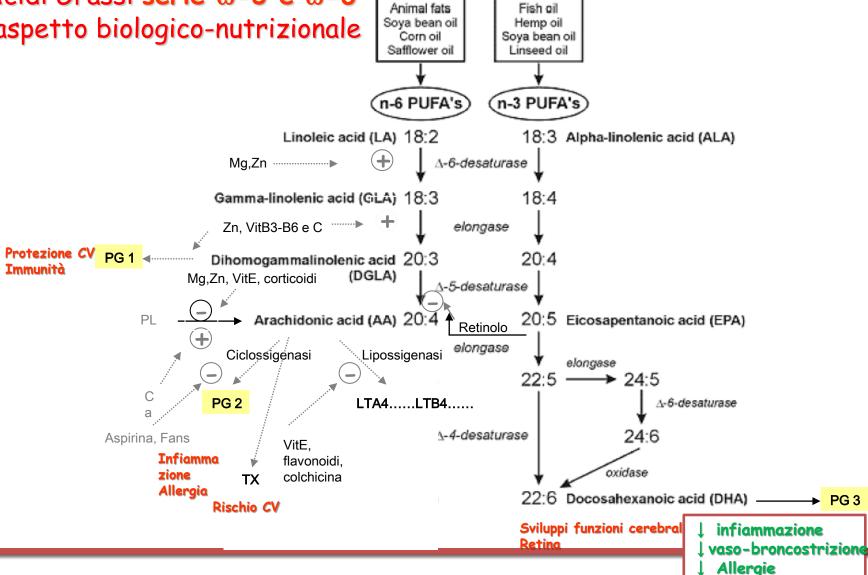
L'uso di ques dietetica, se consumare u

Table II. Nutraceutical supplements

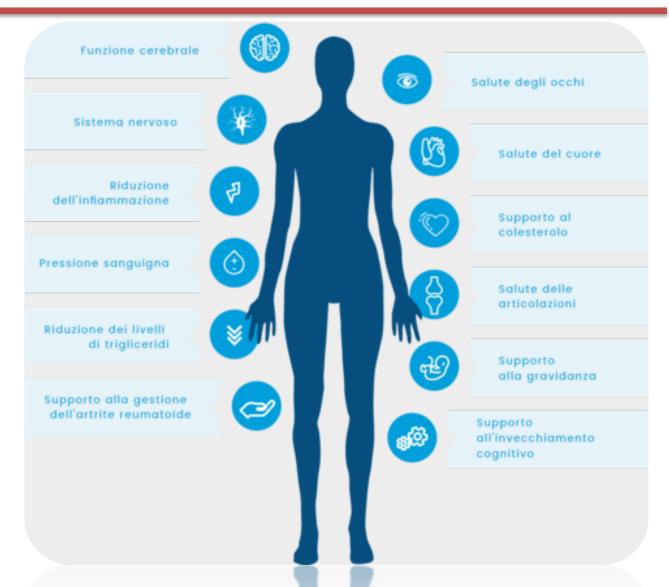
Nutraceutics	Action
L-carnitine	Promotion of insulin sensitivity and hypolipidemic actions
α-Lipoic acid	Treatment of diabetic neuropathy and degenerative neuronal disease
Berberine	Hypoglycemic and hypolipidemic actions
ω-3	Anti-arrhythmic effect and decrease of triglycerides

Table I Plants and their action of mechanism

Common name: Sugar apple [Family: Annonaceae]


Name of the plant	Reported mechanism of action		
Acacia arabica (Lam.) Muhl. Common name: Babul [Family: Fabaceae]	Acts through release of insulin from pancreatic beta cells, which accounts for the hypoglycaemic activity (Singh, 1975; Wadood, 1989)		
Aegle marmelos (L.) Correa Common name:Wood apple	Increases utilization of glucose; either by direct stimulation of glucose uptake or via the mediation of enhanced insulin secretion		
[Family: Rutaceae]	and also decreases the elevated glucose and glycosylated haemoglobin levels (Kamalakkanan, 2003)		
Allium cepa L Common name: onion [Family: Liliaceae]	Lowers blood glucose level and has potent antioxidant activity, which may account for the hypoglycaemic potential (Augusti, 1973)		
Allium sativum L Common name: garlic [Family: Alliaceae]	Has strong antioxidant activity and rapid reactivity with thiol containing proteins responsible for the hypoglycaemic property (Rabinkov, 1998)		
Aloe vera (L.) Burm.f. Common name: Aloe [Family: Aloaceae]	Maintains glucose homeostasis by controlling the carbohydrate metabolizing enzymes and stimulates insulin release from pancreatic beta cells (Ajabnoor, 1990)		
Annona squamosa L			

Lowers blood glucose level (Shirwaikar, 2004)


Rischio tumori

Mlattie autaimmuni

Benefits of fish oil supplementation : a systematic review and meta-analysis. GD, Eslick, et al., et al. 2012, p. 67-76.

Alimento			EPA	DHA	ALA
Pesce	Pesce gatto		Tracce	0,2	0,1
	Merluzzo		Tracce	0,1	Tracce
	Sgombro		0,9	1,4	0,2
	Salmone	Allevato	0,6	1,3	Tracce
		Pescato	0,3	1,1	0,3
		In scátola	0,9	0,8	Tracce
	Salmone Chinook		1,0	0,9	Tracce
	Pesce spada		0,1	0,5	0,2
	Tonno rosso		0,3	0,9	_
	Tonnetto striato	Sott'olio	Tracce	0,1	Tracce
		Al naturale	Tracce	0,2	Tracce
	Tonno ala lunga	Sott'olio	Tracce	0,2	0,2
		Al naturale	0,2	0,6	Tracce
Molluschi e crostacei	Aragosta		_	_	_
	Cozze		0,2	0,3	Tracce
	Gamberetti		0,3	0,2	Tracce
Frutta a guscio e semi	Burro di frutta secca				8,7
	Semi di lino		_	-	18,1
	Noci			-	9,1
Oli vegetali	Colza			_	9,3
	Semi di lino		-	-	53,3

The original source of EPA + DHA is plankton

The richest species in ω -3 are salmon, the category of blue fish.

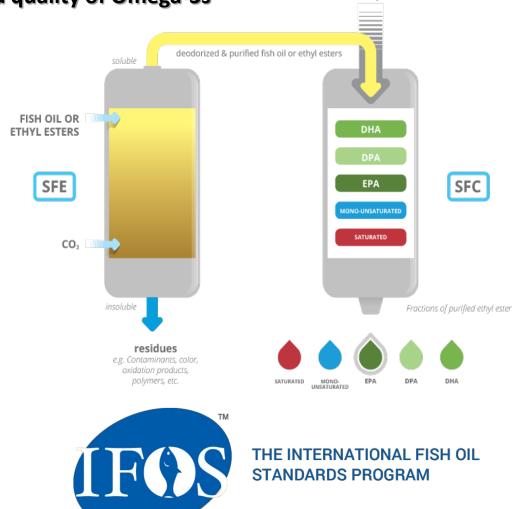
Linseed oil and walnuts are the richest vegetable sources

Enriched foods in ω -3.

Extraction and quality of Omega-3s

The extraction process used to obtain oils rich in Omega-3 determines the quality of the final product

The highest quality supplements, as well as the drugs, are obtained by extraction and fractionation with supercritical fluids
The purity of fish oil is given by the concentration of EPA and DHA, levels of contaminants and oxidation of the product


Quality certification is the IFOS (International Fish Oil Standards) certification

Formulations:

Pearls

Oils

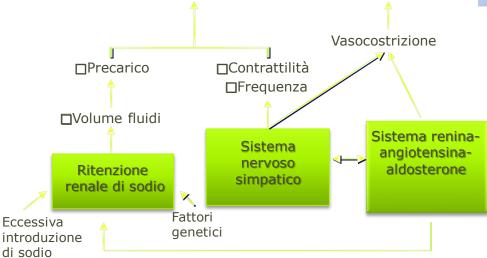
Concetrated solutions

Cromo picolinato, vitamina B1, vitamina B2, vitamina B6

Composizione PSYLLOGEL® Fibra Arance Rosse 20 Bustine Monodose: Fibra di Psyllium (84,40%) (Plantago Ovata) Pura Al 99%, Acidificante Acido Citrico, Estratto di Sambuco, Emulsionante: Lecitina Di Soia, Aroma Arance Rosse, Edulcorante: Aspartame (1%), Colorante: Beta Carotene, Antiagglomerante: Biossido di Silicio.

Olio di pesce contenente: Acido docosaesanoico (DHA), Acido eicosapentaenoico (EPA); Gelatina, Umidificante: E422; CoEnzima Q10; Acqua; Olio vegetale (Canola e Girasole); Aroma; Caratteristiche nutrizionali per due mini perle EPA150 mg DHA300 mg CoQ1030 mg Valore Energetico8,54 kcal - 0,03 kJ Proteine0,24 g Carboidrati0,07 g Grassi0,81 g Formato 60 mini perle.

Berberis (Berberis aristata DC, cellulosa microcristallina, amido) corteccia estratto secco 85% berberina; Riso rosso fermentato (Oryza sativa L.) semi polvere 1,5% monacolina K; gelso bianco (Morus alba L.) foglie estratto secco 2% DNJ; agenti di carica: idrossipropilcellulosa [silice (nano)] e sodio carbossimetilcellulosa; agenti antiagglomeranti: stearato di magnesio vegetale e

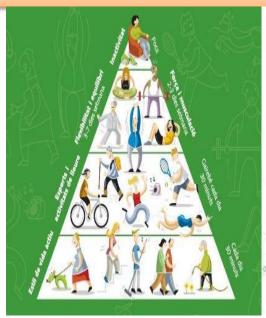


Arterial pressure is the blood pressure exerted by the heart on the artery wall during the phases of cardiac activity, represented by the contraction of the left ventricle (systole) and its relaxation (diastole).

In the systolic phase the maximum value of pressure is detected (systolic or maximum pressure, SBP), while in diastole the minimum value (diastolic or minimum pressure, DBP)

Pressione arteriosa = Gittata cardiaca x Resistenze periferiche (RP)

Ipertensione = Aumento gittata cardiaca e/o Aumento RP


Blood Pressure	SBP	DBP	
Classification	mmHg	mmHg	
Normal	<120	and <80	
Prehypertension	120–139	or 80–89	
Stage 1 Hypertension	140–159	or 90–99	
Stage 2 Hypertension	≥160	or ≥100	
Ipotension	<90	<60	

Problems linked to hypertension

- heart rhythm disorders
- cardiac ischemia (angina or infarction)
- heart failure (the heart dilates and loses efficiency)
- transient brain disorders, permanent damage (stroke) to brain cells that do not receive enough blood and oxygen
- loss of memory, attention and orientation in space and time
- progressive reduction of renal function, to the point of causing chronic renal failure

Drug therapy is effective only if it is changed lifestyle:

Diet
Weight reduction
Physical activity
No smoke
No excess alcohol

- reduce body weight by at least 5 kg in hypertensive patients with overweight> 10% (low-calorie diet and moderate aerobic exercise)
- limit alcohol consumption to 30 ml of ethanol / day (and suspend cigarette smoking)
- reduce sodium consumption to no more than 100 mmol (<2.3 g of sodium or <6 g of sodium chloride),
- DIETARY PRODUCTS

Low salt salts of Na content between 20-30%, the remainder K Na-free asodic salts only K salts

- increase the consumption of fruit and vegetables, which also ensure a adequate dietary intake of potassium, calcium and magnesium
- Milk and vegetable protein sources such as soy and lupine contain hypotensive tripeptides (Val-Pro-Pro and ile-pro-pro) due to antagonist effect blocking the conversion from angiotensin I to II
- reduce the consumption of cholesterol and saturated fat, to be replaced with mono or polyunsaturated fats. It also reduces the caloric intake important for weight control

Composizione: Potassio Cloruro, Sodio Cloruro (35%), Potassio Citrato, Magnesio Solfato, Magnesio Carbonato, Calcio Carbonato.

Componenti:

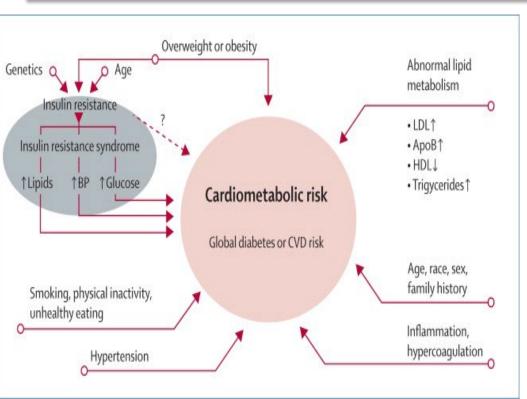
potassio cloruro, sodio cloruro, sodio glutammato, destrosio, verdure disidratate (sedano, cipolla, carota, prezzemolo proteine vegetali idrolizzate, magnesio carbonato, caramello, esaltatore di sapidità: disodio inosinato guanilato.),

Annals of Med icine, 2015; Early O nline: 1–10
© 2015 Informa UK, Ltd.
ISSN 0785-3890 print /ISSN 1365-2060 onli ne
DOI: 10.310 9/07853 890.2 015.1078905

REVIEW ARTICLE

Nutraceuticals for blood pressure control

Cesare R. Sirtori¹, Anna Arnoldi² & Arrigo F. G. Cicero³


¹Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy; ²Department of Pharmaceutical Sciences, University of Milan, Milano, Italy; and ³Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy

Key messages

- A large number of nutraceuticals have shown blood pressure-lowering activity.
- They range from commonly used dietary components, such as chocolate and beetroot juice, to vitamins, minerals, probiotics, coenzyme Q10, melatonin, dried garlic, and several others.
- The long-term intake of these products, associated with an improved life-style, may reduce the number of subjects assigned to pharmacological treatment.

L-arginine
Mg+ and k+
Cocoa flavanols
Beetroot juice
Aged dry garlic extract
Melatonin

Metabolic syndrome refers to a cluster of diseases that confer a cumulative risk for heart attack and stroke, providing health professionals with the ability to focus on prevention.

The original WHO definition of metabolic syndrome, also known as "syndrome X," "insulin resistance syndrome" and "the deadly quartet," required the patient to have one of the following: ²

- Diabetes
- Impaired glucose tolerance
- Impaired fasting glucose >110 mg/dl
- Insulin resistance

Plus two of the following:

- ✓ A waist-to-hip ratio greater than 0.9 in men, 0.85 in women and/or a BMI greater than 30.
- Dyslipidaemia (abnormal levels of fat/cholesterol in the blood) HDL<35M a 39F; TG>115mg/dl
- ✓ Blood pressure of 140/90mmHg or higher
- ✓ Microalbuminuria (increased levels of the protein albumin) albumin/creatinin>20mg/g

Metabolic syndrome&nutraceutical for

U6

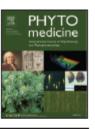
The World Health Organization (WHO) for some years has been focusing on what is now commonly referred to as an "epidemic of obesity and diabetes" ("diabesity"): behind this outbreak, there are several risk factors grouped in what is called "metabolic syndrome" (MetS). The basis of this "epidemic" is either a diet too often characterized by excessive consumption of saturated and transesterified fatty acids, simple sugars and salt, either a sedentary lifestyle.

Treatment strategies for MetS include pharmacologic and non-pharmacologic options, with varying degrees of success rate. The first is indicated for patients with high cardiovascular risk, while the second one is the most cost-effective preventive approach for subjects with borderline parameters and for patients intolerant to pharmacological therapy. MetS non-pharmacological treatments could involve the use of nutraceuticals, most of which has plant origins (phytochemicals), associated with lifestyle improvement. Some nutraceuticals, when adequately dosed, should improve a number of the MetS components

Primary intervention

recommends that primary management for the metabolic syndrome is a healthy lifestyle. This includes: moderate calorie restriction (to achieve a 5–10 per cent loss of body weight in the first year) moderate increase in physical activity change in dietary composition. Nutraceuticals

Secondary intervention


In people for whom lifestyle change is not enough and who are considered to be at high risk for CVD, drug therapy may be required to treat the metabolic syndrome.

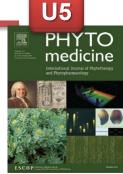
Contents lists available at ScienceDirect

Phytomedicine

journal homepage: www.elsevier.com/locate/phymed

Role of phytochemicals in the management of metabolic syndrome

Arrigo F.G. Cicero*, Alessandro Colletti


Fiber-Metabolic syndrome&nutraceutical for

Psyllium husk has maybe the largest scientific evidence of efficacy. Although true psyllium comes from *Plantago* psyllium, the husks and seeds of *Plantago* ovata (*Plantaginaceae*) are commonly referred to as psyllium.

Psyllium is one of the most widely used fibre supplements because it is reasonably cheap and is better tolerated than other fibre supplements.

Effects:

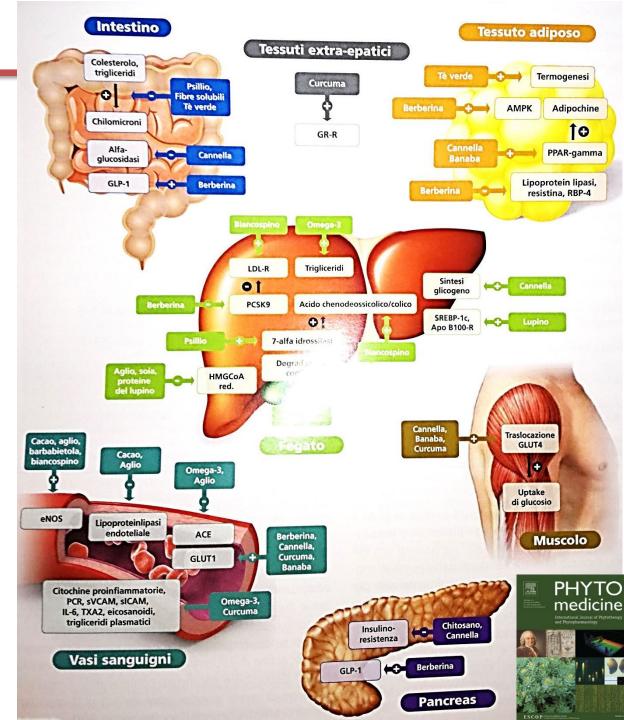
- ✓ Psyllium has mild lipid-lowering, anti-obesity, anti-diabetic and anti-hypertensive effects in humans .
- ✓ Psyllium husk and other soluble fibres have also a positive global impact on post-prandial glycaemia and other insulin-resistance re- lated parameters.
- √ has significant beneficial effects on both systolic and diastolic blood pressures with doses of 3.5 g t.i.d. taken 20 mins before two main meals.
- ✓ improve vascular function measured through augmentation.

Side effects

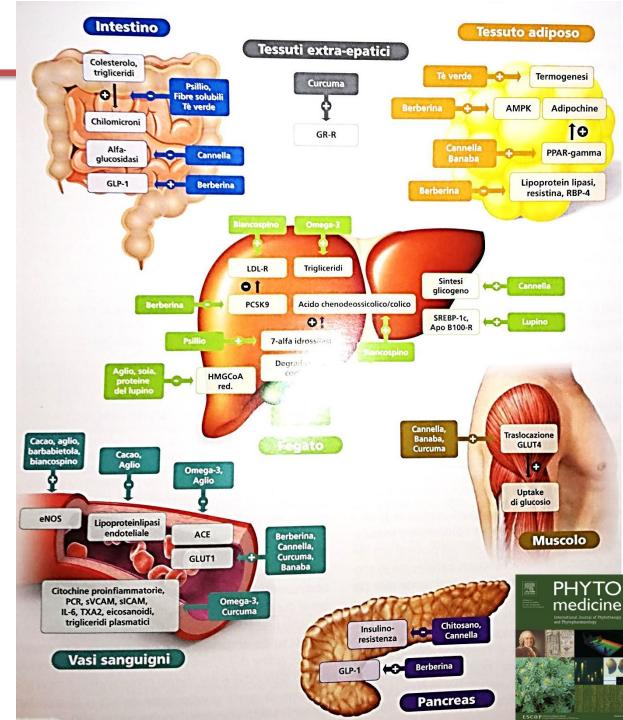
All the available trials and meta-analysis conclude for an overall safety of psyllium supplements. However, it could have transient gastrointestinal side effects which are usually not severe and only mildly decrease compliance to treatment, especially when micronized fibre is used. Entire seeds, used for the treatment of constipation, did not demonstrate a lipid-lowering action and they could exacerbate diverticulitis in patients affected by chronic diverticulosis.

A main safety concern about soluble fibres use as cholesterollowering agents is the risk of drug interaction that regards <u>oral</u> <u>antidiabetic drug, digoxin, warfarin, lithium, iron, oral steroids,</u> <u>tricyclic antidepressants, carbamazepine and other molecules</u>

Other soluble fibes with positive effects on more than one MetS component are guar gum, fenugreek, chitosan and glucomannan

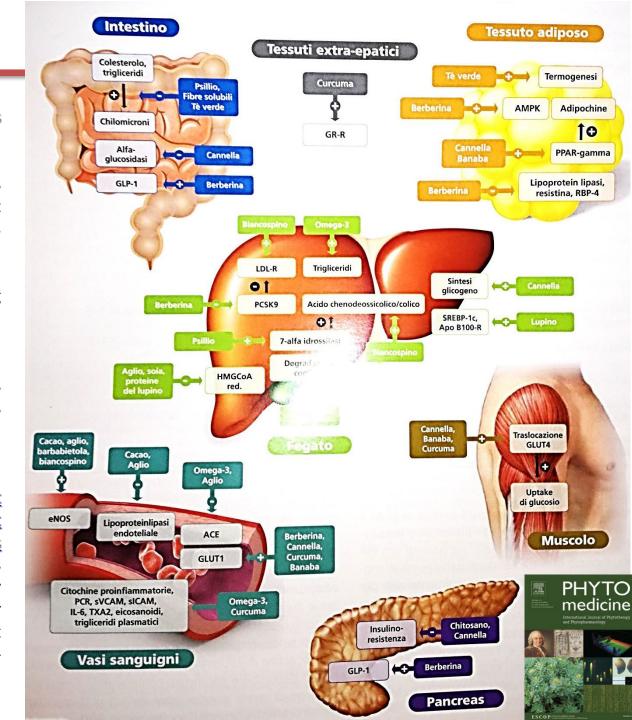

Patients with mixed hyperlipidaemia treated with berberine experienced a mean reduction of 25% in LDL and TG levels, by using doses of 500–1500 mg daily. Berberine has also an insulinsensitizer effect comparable to that of metformin, through a mechanism involving retinol binding protein-4 (RBP-4) and GLUT-1 and an insulinotropic effect. Moreover it increases the levels of glucagon like peptide-1 (GLP-1), acting directly on pancreas.

Standard doses of berberine (50 0–10 0 0 mg/day) are usually well tolerated more than 1000 mg/day have been associated to arterial hypotension, constipation and cardiac damage. Berberine displaces bilirubin from albumin thus it should be in jaundiced infants avoided pregnant women. Berberine also displaces warfarin, thiopental increasing their levels. Meanwhile. plasma can markedly increase the blood levels of cyclosporine A by the inhibition of the cytochrome P450 in the liver and of the P-glycoprotein in the gut thus causing its increased bioavailability and reduced metaholism


Lagerstroemia speciosa L., in Philippines folk medicine known as "banaba", seems to have anti-diabetic and anti-obesity effects. Although its mechanism of action is still not clear, the increase of cellular uptake of glucose, the inhibition of the hydrolysis of sucrose and starches, the decreased gluconeogenesis and the regulation of lipid metabolism, mediated by PPAR, MAPK. The main active components of banaba extract may be corosolic acid, ellagitannins, tannic acid and penta-O-galloyl-glucopyranose

Cinnamomum aromaticum (Cassia) and Cinnamomum zeylanicum have been subjected to extensive research. Cinnamaldehvde administration diabetic rats for 2 months significantly improves muscle and hepatic glycogen content; moreover it increases glucose uptake through GLUT-4 translocation in peripheral tissues. Several phenolic compounds, such as catechin, epicatechin, and procyanidin B2, and phenol polymers identified from the subfraftions of aqueous cinnamon extract has shown significant inhibitory effects on the formation of advanced glycation end-products, suggesting a potential in the prevention of diabetes complications

Positive effects of cinnamon on fasting TG and HDL cholesterol, and postprandial hypertriglyceridemia have also been confirmed in animal models and diabetic patients.



Consumption of green tea as well as cocoa can be beneficial in patients with MetS. In fact these nutraceuticals are rich in phytochemicals, including catechins and phenols, which have significant antioxidant properties with clear benefits for cardiovascular health.

Animal studies have shown that green tea lowers blood pressure by suppressing the activity of NADPH oxidase and reducing the reactive oxygen species.

A meta-analysis of 20 randomized clinical trials, with a total of 1536 participants who received green tea regularly, has shown a slight decrease in systolic blood pressure.

The flavonoids of cocoa are the most studied in the clinical field: in particular it has been shown that the flavonols content in some types of cocoa, improves the endothelial function in healthy subjects and in hyperglycaemic or hypertensive patients with or without glucose intolerance, increasing the flow-mediated vasodilation.

