

UNIVERSITÀ DEGLI STUDI DI TORINO

ADVANCE IN FOOD ANALYSIS

INTRODUCTION TO GC

Marco Beccaria, PhD

University of Liege, Belgium email: mbeccaria@uliege.be

Outcome

- ➢ GC instrumentation
- Separation and columns
- > Injectors

- Detectors
- Linear retention index (LRI) in GC

Gas Chromatography - Instrumentation

Gas Chromatography

A.) Introduction:

Gas Chromatography (GC) - chromatographic technique where the mobile phase is a gas.

GC is currently one of the most popular methods for separating and analyzing compounds. This is due to its high resolution, low limits of detection, speed, accuracy and reproducibility.

GC can be applied to the separation of any compound that is either <u>naturally volatile</u> (i.e., readily goes into the gas phase) or can be converted to a <u>volatile derivative</u>. This makes GC useful in the separation of a number of small organic and inorganic compounds.

B.) Equipment:

A simple GC system consists of:

- 1. Gas source (with pressure and flow regulators)
- 2. Injector or sample application system
- 3. Chromatographic column (with oven for temperature control)
- 4. Detector & computer or recorder

Basic Gas Chromatography

Industry	Type of Analysis		
Pharmaceutical	Residual solvent analysis	Residual solvent analysis	
Food and beverages	Component analysis, food safety analysis, halal analysis	is of alcohol	
Environmental	Air, water, soil		
Petrochemicals	Simulated distillation, component analysis		
Chemicals	Material, polymer, additive, gas purity analysis, gas e automotives	emission in	
Energy and gas	Artificial photosynthesis research		
Flow Injection port	Detector		
Flow Injection port	Detector Cetect	iition	
Flow Injection port	Detector Detector Executive Ex	i <mark>ition</mark> od for Separation	
Flow Injection port Column of Column	Detector Detector Executive Ex	ition od for Separation ument for matography	

Choice of Carrier Gas

Carrier Gas	Advantages	Disadvantages
Helium	 Safe Relatively wide optimum linear velocity range 	• Expensive
Nitrogen	• Cheap • Safe	 Optimum linear velocity range is narrow and slow Long analysis time

Choice of Carrier Gas

Mobile Phase/Carrier gas:

Carrier Gas or Mobile phase does not affect solute retention, but does affect:

- 1.) Desired efficiency for the GC System
 - low molecular weight gases (He, H_2) \rightarrow larger diffusion coefficients
 - low molecular weight gases \rightarrow faster, more efficient separations

2.) Stability of column and solutes

- H_2 or O_2 can react with functional groups on solutes and stationary phase or with surfaces of the injector, connections and detector

- 3.) Response of the detector
 - thermal conductor requires H₂ or He
 - other detectors require specific carrier gas

Columns

There are two main types of supports used in GC:

Packed columns

- ② large sample capacity
- ② preparative work

Capillary (open-tubular) columns

- ② higher efficiency
- ② smaller sample size
- ② analytical applications

Recommended stationary phases for various sample types

Compound to be separated	Types of stationary phases used		
gases	alumina, silica gel, zeolites (molecular sieves) porous polymers	} Gas:solid	GSC
nonpolar liquids PCBs, petrochemical samples herbicides/pesticides, pharmaceuticals sugars free fatty acids, alcohols alcohols, amines	methylsiloxanes phenylmethylsiloxanes, polysiloxane carb phenyl polysilphenylene siloxanes cyanopropylphenyl methylsiloxanes polyethylene glycols phenylmethylsiloxanes (>50% phenyl)	oranes Gas:liq	GLC

« Fused silica »

Inox - glas

Packed column versus Capillary in GC

One of the main effort of analysts has been focused on increase of separation power

<u>1D GC</u>

GC-COLUMNs

PACKED COLUMN VERSUS

Figure 1. Packed GC columns (left) and capillary GC columns (right). Stationary phase appears in blue.

CAPILLARY COLUMN

PACKED COLUMN CAPILLARY COLUMN A column whose A column that contains a fully-packed stationary stationary phase is coated phase made up of fine on the inner surface particles Has a packed stationary Stationary phase is coated on the inner surface phase Require a large amount of Requires only a small the sample amount of the sample Have high pressures inside Have less pressure inside the column the column Short Long Diameter can be several Diameter is around 1 mm millimeters Efficiency is low Efficiency is high ----Give comparatively a Give a higher resolution poor resolution More expensive Less expensive Better for separating non Better for separating polar samples since their polar samples since their tube is stainless steel tube is glass

Visit www.PEDIAA.com

Bonded-Phase Gas chromatography

- covalently attach stationary phase to the solid support material
- bonded phases are prepared by reacting the desired phase with the surface of a silicabased support
- many bonded phases exist, but most separations can be formed with the following commonly recommended bonded-phases:
 - ② Dimethylpolysiloxane
 - ② Methyl(phenyl)polysiloxane
 - ② Polyethylene glycol (Carbowax 20M)
 - ② Trifluoropropylpolysiloxane
 - ② Cyanopropylpolysiloxane

HO—CH₂—CH₂—(O—CH₂—CH₂)_n—OH

Polyethylene glycol

Some Common Liquid Stationary Phases for Gas-Liquid Chromatography

	Common Trade	Maximum	
Stationary Phase	Name	Temperature, °C	Common Applications
Polydimethyl siloxane	OV-1, SE-30	350	General-purpose nonpolar phase, hydrocarbons,
5% Phenyl-polydimethyl siloxane	OV-3, SE-52	350	Fatty acid methyl esters, alkaloids, drugs,
			halogenated compounds
50% Phenyl-polydimethyl siloxane	OV-17	250	Drugs, steroids, pesticides, glycols
50% Trifluoropropyl-polydimethyl	OV-210	200	Chlorinated aromatics, nitroaromatics,
siloxane			alkyl-substituted benzenes
Polyethylene glycol	Carbowax 20M	250	Free acids, alcohols, ethers, essential oils, glycols
50% Cyanopropyl- polydimethyl	OV-275	240	Polyunsaturated fatty acids, rosin acids, free
siloxane			acids, alcohols

Stationary phase selection

Phase Polarity Use Max. Temp. (°C) 100% Dimethyl polysiloxane Nonpolar Basic general-purpose 320 CH₃ phase for routine use. Hydrocarbons, polynuclear aromatics, PCBs. CH₃ Diphenyl, dimethyl polysiloxane 5% Low General-purpose, good high-320 35%, 65% temperature characteristics. 300 Pesticides. Intermediate 370 65%, 35% CH₃ Intermediate 100 - x%14% Cyanopropylphenyl-86% Intermediate Separation of organochlorine 280 dimethylsiloxane pesticides listed in EPA 608 and 8081 methods. Susceptible to damage by moisture and CH₃ oxygen. 14

Capillary Fused Silica Stationary Phases

Stationary phase selection

80% Biscyanopropyl–20% cyanopropylphenyl polysiloxane	Very polar	Free acids, polysaturated fatty acids, alcohols. Avoid polar solvents such as water and methanol.	275
$\downarrow O - Si \rightarrow O - Si \rightarrow 20\%$	* *	* » *	* *
Arylenes	Vary R as above to	High temperature, low bleed	300-350
$\left\{ \begin{array}{c} \mathbf{O} - \begin{array}{c} \mathbf{R}_1 \\ \mathbf{N}_1 \\ \mathbf{R}_2 \end{array} \right\} \xrightarrow{\mathbf{R}_3} \\ \mathbf{N}_1 \\ \mathbf{N}_2 \\ \mathbf{N}_4 \end{array} \xrightarrow{\mathbf{R}_3} \\ \mathbf{N}_4 \\$	vary polarity		
Carboranes	Vary R as above to vary polarity	High temperature, low bleed	430
CH ₃ —Si—CH ₃			
CH ₃ -si-O			
CH_3			
filled circles = carbon			
Poly(ethyleneglycol) (Carbowax)	Very polar	Alcohols, aldehydes, ketones,	250
$\left[O - CH_2 CH_2 \right]_n$	-	and separation of aromatic isomers, e.g., xylenes	15

Practical information

Pressure and Flow Control Modes

Pressure Regulator

Flow Controller

https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Supplemental_Modules_(Analytical_Chemistry)/Chromedia/01Gas_Chromotography_(GC)/Gas_Chromotography%3A_In_Practice/01Introduction/3Flow_control_and_pressure_regulation

Sample Injection Methods in GC

Sample Injection Methods

Inlet/Sample injector chambre

- Ideal injection:
- 1. Injection should be representative of the sample :
- No discrimination of the compounds (discrimination = different efficiency of injection on the studied molecules)
- good repeatability (analyse quantitative)
- → Narrow injection band : rapid injection of small quantities of products (a few tens of ng / peak) and concentration at the head of the column (for very volatile Syringe injection molecules, sometimes need to re-concentrate them "Cryofocusing")

Sample Injection Methods

Inlet/Sample injector chambre

Objective criteria for an ideal injection

- Chemical inertia and sealing of the injector:
 - > no oxidative degradation during vaporization (heated injectors)
 - no interfering signals due to sealing systems (septa and other mechanical parts)

NB: If pressure drops in the gas circuit are observed, this often indicates that the septum, worn by the multiple injections, must be changed.

- Automation possibilities
- Easy regulation of injection conditions (flow, temperature)

Sample Injection Methods

- split injection,
- splitless injection
- direct injection
- on-column injection

Sample Injection Methods Split Injection

- split injection
- splitless injection
- direct injection
- on-column injection

Sample Injection Methods Splitless Injection

- split injection
- splitless injection
- direct injection
- on-column injection

Sample Injection Methods Direct Injection

- split injection
- splitless injection
- direct injection
- on-column injection

Sample Injection Methods On-column Injection Methods

□ There are many different injection methods:

- split injection
- splitless injection
- direct injection
- on-column injection

a. Cold on-column caps Injection (Cold OCI)

b. PTV Injection System (Programmable Temperature Vaporizer)

Sample Injection Methods - Cold Injection Methods Cold on-column caps Injection (Cold OCI)

- Samples with low concentrations (less than about 200 ppm per component) are also suitable.
- Risk of contamination.

Sample Injection Methods - Cold Injection Methods PTV (Programmable Temperature Vaporizer) Injection System

GC Detectors

GC Detectors

Detector			Example of Detectable Compound	Example of Minimum Detectable Amount*
	Thermal Conductivity Detector	TCD	All compounds except for carrier gas	10 ppm (10 ng)
	Flame Ionization Detector	FID	Organic compounds	0.1 ppm (0.1 ng)
Universal	Barrier Discharge Ionization Detector	BID	All compounds except for He and Ne	0.07 ppm (0.07 ng)
Detector	Mass Spectrometer MS is explained	мs d in an and	Ionized molecule other lesson	10 ppm (10 ng) in Scan mode 0.5 ppm (0.5 ng) in SIM mode 10 ppb (10 pg) in MRM mode
	Electron Capture Detector	ECD	Organic Halogen compounds Organic mercury compounds	0.01 ppb (0.01 pg)
Selective High-	Flame Photometric Detector	FPD	Sulfur compounds Organic phosphorus compounds Organic tin compounds	10 ppb (10 pg)
Detector	Flame Thermionic Detector	FTD (NPD)	Organic phosphorus compounds Organic nitrogen compounds	0.1 ppb (0.1 pg) 1 ppb (1 pg)
	Sulfur Chemiluminescence Detector	SCD	Sulfur compounds	1 ppb (1 pg)

Features of GC Detectors.

This table serve as a rough indication, it may be different depending on the compound chemical structure and analytical condition

GC Detectors Thermal Conductivity Detector (TCD)

- katherometer or hot-wire detector
 - first universal detector developed for GC

Compounds	Thermal Conductivity Constant (10 ⁻⁶ cal/s-cm- [°] C)
He	408
H ₂	547 (Very High)
N ₂	73
Ar	52
0 ₂	76
H ₂ O	60
Ethane	77
Methanol	52
Acetone	40
Chloroform	24

Process

- measures a bulk property of the mobile phase leaving the column.
- measures ability to conduct heat away from a hot-wire (i.e., thermal conductivity)
- thermal conductivity changes with presence of other components in the mobile phase

GC Detectors Flame Ionization Detector (FID)

- most common type of GC detector
- "universal" detector capable of measuring the presence of almost any organic and many inorganic compound

Process

- measures the production of ions when a solute is burned in a flame in presence of $\rm H_2$ and Air.

- ions are collected at an electrode to create a current

GC Detectors Barrier Discharge Ionization Detector (BID)

• The barrier discharge ionization detector (BID- is a universal detector that offers high-sensitivity analysis by using a low-frequency dielectric barrier discharge plasma for ionization.

GC Detectors Electron Capture Detector (ECD)

- radiation-based detector
- selective for compounds containing electronegative atoms, such as halogens
- detects also polynuclear aromatic compounds, anhydrides and conjugated carbonyl compounds
- useful for environmental testing

Relative responses

- 10⁰ hydrocabons
- 10¹ esters, ethers
- 10² alcohols, ketones, monochlorides, amines
- 10³ monobromides, dichlorides
- 10⁴ anhydrides, trichlorides
- 10⁵ poly halogenated, mono and diiodo 10⁶

GC Detectors Flame Photometric Detector (FPD)

• The detection principle is the formation of excited sulphur (S2*) and excited hydrogen phosphorous oxide species (HPO*) in a reducing flame.

GC Detectors Sulfur Chemiluminescence Detector (SCD)

R-S + O → SO + H-R + H₂O SO + O₃ → SO₂ * + O₂ SO₂ * → SO₂ + hv (300~400nm)

Linear retention index

Relative retention time (RRT)

RRT depends on the stationary phase \rightarrow support identification of the analytes by comparison with reference using the same stationary phase

Linear retention index (Kovats retention index)

Ready

NUM 89

GC-MS and FAMEs: some disadvantages

✤ Spectral similarity

Low reliability of commercial libraries

