Il muscolo scheletrico e liscio

In una cellula muscolare scheletrica in contrazione, la contrazione di Ca^{2+} intracellulare libero aumenta da 10^{-7} M a 10^{-6} M

La sommazione di scosse aumenta la forza di contrazione e non dipende dalla frequenza di stimolazione

La proteina regolatoria troponina si lega alla miosina

I tubuli T in una cellula muscolare scheletrica servono da deposito di Ca²⁺

Secondo la teoria dello slittamento dei filamenti, nella contrazione muscolare il movimento è causato dall'accorciamento del sarcomero.

I tubuli T non propagano i potenziali d'azione perché non possiedono canali del Na⁺ voltaggiodipendenti

I RyR₁ sono recettori della rianodina aperti dall'attivazione dei DHPR e dal Ca²⁺ rilasciato dal RS (Ca²⁺-induced Ca²⁺-release)

Nel muscolo liscio il ciclo dei ponti trasversi viene innescato dal legame della calcio-calmodulina con l'actina

La contrazione del muscolo liscio è volontaria e quindi controllata del sistema nervoso centrale Nel m. liscio, il Ca^{2+} extracellulare entra dal sarcolemma per mezzo dei canali del Ca^{2+} L e T

Eccitabilità delle cellule cardiache

La depolarizzazione sistolica dura circa 40 millisecondi.

L'effetto inotropo positivo è mediato dall'attivazione dei recettori M₂

Nelle cellule del nodo SA i canali del Na⁺ sono responsabili della depolarizzazione veloce.

Nelle cellule del nodo SA la corrente del calcio "T", a bassa soglia, si attiva durante la fase di depolarizzazione lenta prima dei canali del calcio "L".

L'aumento di cAMP intracellulare nelle cellule ventricolari aumenta la forza di contrazione.

L'azione β1-adrenergica sulle cellule ventricolari è mediata dalla PKA e culmina con un aumento delle correnti di calcio di tipo "L".

La stimolazione del sistema nervoso simpatico causa rilascio massivo di ACh.

La stimolazione vagale riduce la frequenza e la forza di contrazione del miocardio

L'azione del nervo vago sulle cellule del miocardio è mediata da recettori nicotinici N2.