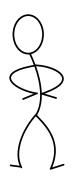
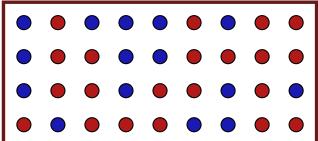
Docente

- Domenico Zambella
- ▶ domenico.zambella@unito.it (Scrivere da server di posta di ateneo.)
- ► Telefono 340 544 1936
- Ricevimento a Palazzo Campana su appuntamento.
- http://elearning.moodle2.unito.it/dstf/

Spazi di probabilità



Un'urna contiene biglie di colore rosso e blu.



Qual'è la probabilità di estrarre una biglia blu?

Ci sono 36 biglie 21 rosse e 15 blu quindi la risposta è $\frac{15}{36} = \frac{5}{12}$

$$=\frac{5}{12}$$

Uno spazio di probabilità è una terna $\langle \Omega, \mathcal{E}, \mathsf{P} \rangle$

Spesso si indica solo Ω sottointendendo \mathcal{E} e P

In inglese sample space

- Ω è un insieme detto spazio campionario o anche popolazione
 Es.: Ω è l'insieme di tutte le biglie dell'urna (che indicheremo con U)
- \blacktriangleright $\mathcal E$ è un insieme di sottoinsiemi di Ω detto algebra degli **eventi**.

Es.: $\{R, B, \mathbf{U}, \varnothing\}$, con R e B gli insiemi delle biglie rosse e blu.

N.B. Ω e \varnothing sono sempre in ${\mathcal E}$ per comodità/convenzione.

 $ightharpoonup P: \mathcal{E}
ightarrow \mathbb{R}$ è una funzione detta **misura di probabilità**.

Es.:
$$P(R) = \frac{21}{36}$$
, $P(B) = \frac{15}{36}$, $P(U) = 1$, $P(\emptyset) = 0$

Si richiede che $\langle \Omega, \mathcal{E}, P \rangle$ soddisfi a queste proprietà:

- $\triangleright \Omega \neq \varnothing$.
- \triangleright \mathcal{E} deve soddisfare ad alcune condizioni di chiusura:
 - $\triangleright \Omega, \varnothing \in \mathcal{E}$
 - $A, B \in \mathcal{E} \Rightarrow A \cup B \in \mathcal{E}$
 - $A \in \mathcal{E} \Rightarrow \neg A \in \mathcal{E}$

$$\neg A = \Omega \setminus A =$$
complemento di A

- $ightharpoonup P: \mathcal{E}
 ightarrow \mathbb{R}$ deve soddisfare le seguenti condizioni:
 - $\triangleright P(\Omega) = 1$
 - ▶ $P(A) \ge 0$ per ogni $A \in \mathcal{E}$
 - ▶ $P(A \cup B) = P(A) + P(B)$ per $A, B \in \mathcal{E}$ disgiunti

 $A \cap B = \emptyset$ = mutualmente esclusivi

Questi assiomi sono sufficienti quando \mathcal{E} è finito. Più avanti considereremo il caso generale e dovremo aggiungere una richiesta a \mathcal{E} e P. Se seguenti proprietà dell'insieme degli eventi seguono dagli assiomi:

L'algebra degli eventi è chiusa per combinazioni booleane:

$$ightharpoonup A, B \in \mathcal{E} \Rightarrow A \cap B \in \mathcal{E}$$

$$\triangleright$$
 $A, B \in \mathcal{E} \Rightarrow A \setminus B \in \mathcal{E}$

$$A, B \in \mathcal{E} \Rightarrow A \triangle B \in \mathcal{E}$$

Inoltre:

$$A_1, \ldots, A_n \in \mathcal{E} \implies \bigcup_{i=1}^n A_i \in \mathcal{E}$$

$$A \cap B = \neg(\neg A \cup \neg B)$$

$$A \setminus B = A \cap \neg B$$

$$A\triangle B=(A\smallsetminus B)\cup (B\smallsetminus A)$$

$$\bigcup_{i=1}^n A_i = A_1 \cup \cdots \cup A_n$$