Conditional Probability

Table of contents

Conditional probability

Bayes' Rule

Diagnostic tests

DLRs

Conditional Probability

October 15, 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Table of contents

Table of contents

Conditional Probability

Conditional probability Baves' Rule

Diagnostic tests

DLRs

1 Table of contents

2 Conditional probability

3 Bayes' Rule

4 Diagnostic tests

5 DLRs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Conditional probability, motivation

contents

Conditional Probability

- Conditional probability
- Bayes' Rule
- Diagnostic tests
- DLRs

- The probability of getting a one when rolling a (standard) die is usually assumed to be one sixth
- Suppose you were given the extra information that the die roll was an odd number (hence 1, 3 or 5)
- conditional on this new information, the probability of a one is now one third

Conditional Probability

Table of contents

Conditional probability

Bayes' Rule

Diagnostic tests

DLRs

Conditional probability, definition

- Let B be an event so that P(B) > 0
- Then the conditional probability of an event A given that B has occurred is

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

• Notice that if A and B are independent, then

$$P(A \mid B) = \frac{P(A)P(B)}{P(B)} = P(A)$$

Example

Conditional Probability

Table of contents

Conditional probability

Bayes' Rule

Diagnostic tests

DLRs

- Consider our die roll example
- $B = \{1, 3, 5\}$

• $A = \{1\}$

 $P(\text{one given that roll is odd}) = P(A \mid B)$

$$= \frac{P(A \cap B)}{P(B)}$$
$$= \frac{P(A)}{P(B)}$$
$$= \frac{1/6}{3/6} = \frac{1}{3}$$

▲日▶▲圖▶▲≣▶▲≣▶ ■ 釣ぬぐ

Bayes' rule

Conditional Probability

Table of contents

Conditional probability

Bayes' Rule

Diagnostic tests

DLRs

For two sets A and B, which yields that

$$P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A \mid B)P(B) + P(A \mid \neg B)P(\neg B)}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Example: diagnostic tests

- Let + and be the events that the result of a diagnostic test is positive or negative respectively
- Let *D* and ¬*D* be the event that the subject of the test has or does not have the disease respectively
- The **sensitivity** is the probability that the test is positive given that the subject actually has the disease, $P(+ \mid D)$
- The **specificity** is the probability that the test is negative given that the subject does not have the disease, $P(- | \neg D)$

contents

Conditional probability

Bayes' Rule

Diagnostic tests

More definitions

contents

Conditional Probability

Conditional probability

Bayes' Rule

Diagnostic tests

- The **positive predictive value** is the probability that the subject has the disease given that the test is positive, $P(D \mid +)$
- The negative predictive value is the probability that the subject does not have the disease given that the test is negative, P(¬D | −)
- The prevalence of the disease is the marginal probability of disease, P(D)

More definitions

• The diagnostic likelihood ratio of a positive test, labeled DLR_+ , is $P(+ \mid D)/P(+ \mid \neg D)$, which is the

Conditional Probability

Diagnostic tests

sensitivity/(1 - specificity)

• The diagnostic likelihood ratio of a negative test, labeled DLR_- , is $P(- \mid D)/P(- \mid \neg D)$, which is the

(1 - sensitivity)/specificity

Example

contents

Conditional Probability

- Conditional probability
- Bayes' Rule
- Diagnostic tests
- DLRs

- A study comparing the efficacy of HIV tests, reports on an experiment which concluded that HIV antibody tests have a sensitivity of 99.7% and a specificity of 98.5%
- Suppose that a subject, from a population with a .1% prevalence of HIV, receives a positive test result. What is the probability that this subject has HIV?
- Mathematically, we want $P(D \mid +)$ given the sensitivity, $P(+ \mid D) = .997$, the specificity, $P(- \mid \neg D) = .985$, and the prevalence P(D) = .001

Using Bayes' formula

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ - ∽へ⊙

$$P(D | +) = \frac{P(+ | D)P(D)}{P(+ | D)P(D) + P(+ | \neg D)P(\neg D)}$$

= $\frac{P(+ | D)P(D)}{P(+ | D)P(D) + \{1 - P(- | \neg D)\}\{1 - P(D)\}}$
= $\frac{.997 \times .001}{.997 \times .001 + .015 \times .999}$
= .062

- In this population a positive test result only suggests a 6% probability that the subject has the disease
- (The positive predictive value is 6% for this test)

Conditional Probability

contents

Conditional probability

Bayes' Rule

Diagnostic tests

More on this example

contents

Conditional Probability

- Conditional probability
- Bayes' Rule
- Diagnostic tests
- DLRs

- The low positive predictive value is due to low prevalence of disease and the somewhat modest specificity
- Suppose it was known that the subject was an intravenous drug user and routinely had intercourse with an HIV infected partner
- Notice that the evidence implied by a positive test result does not change because of the prevalence of disease in the subject's population, only our interpretation of that evidence changes

Likelihood ratios

• Using Bayes rule, we have

$$P(D \mid +) = \frac{P(+ \mid D)P(D)}{P(+ \mid D)P(D) + P(+ \mid \neg D)P(\neg D)}$$

and

$$P(\neg D \mid +) = rac{P(+ \mid \neg D)P(\neg D)}{P(+ \mid D)P(D) + P(+ \mid \neg D)P(\neg D)}$$

Therefore

$$\frac{P(D \mid +)}{P(\neg D \mid +)} = \frac{P(+ \mid D)}{P(+ \mid \neg D)} \times \frac{P(D)}{P(\neg D)}$$

ie

post-test odds of $D = DLR_+ imes$ pre-test odds of D

• Similarly, *DLR*_ relates the decrease in the odds of the disease after a negative test result to the odds of disease prior to the test.

lable of contents

Conditional probability

Bayes' Rule

Diagnostic tests

HIV example revisited

contents

Conditional probability

Conditional Probability

Bayes' Rule

Diagnostic tests

- Suppose a subject has a positive HIV test
- $DLR_{+} = .997/(1 .985) \approx 66$
- The result of the positive test is that the odds of disease is now 66 times the pretest odds
- Or, equivalently, the hypothesis of disease is 66 times more supported by the data than the hypothesis of no disease

HIV example revisited

contents

Conditional probability

Conditional Probability

Bayes' Rule

Diagnostic tests

- Suppose that a subject has a negative test result
- $DLR_{-} = (1 .997)/.985 \approx .003$
- Therefore, the post-test odds of disease is now .3% of the pretest odds given the negative test.
- Or, the hypothesis of disease is supported .003 times that of the hypothesis of absence of disease given the negative test result