Per la chimica in ambiente acquoso, un acido è una sostanza che, aggiunta all'acqua, determina un aumento della concentrazione di ione idronio, \([H_3O^+]\). Al contrario, una base è una sostanza che, aggiunta all'acqua, determina una diminuzione della concentrazione di ione idronio, ossia un incremento nella concentrazione di ioni idrossido, \([OH^-]\), dal momento che la concentrazione di ioni idronio e ioni idrossido in acqua è legata dall'equilibrio di autoprotolisi dell'acqua:

\[
H_2O + H_2O \rightleftharpoons K_w H_3O^+ + OH^- \quad (16)
\]

\[
H_2O \rightleftharpoons K_w H^+ + OH^- \quad (17)
\]

I due modi di scrivere l'equilibrio di autoprotolisi dell'acqua (16) e (17) sono equivalenti. Nell'equilibrio di autoprotolisi l'acqua agisce sia come acido che come base, in virtù della propria natura anfotera. La costante dell'equilibrio di autoprotolisi si indica come \(K_w\) ed è spesso chiamata prodotto ionico dell'acqua:

\[
K_w = [H^+][OH^-] = 1.0 \cdot 10^{-14} \quad \text{a} 25\,^\circ C
\]

Il prodotto ionico dell'acqua consente immediatamente di calcolare le concentrazioni di ioni \(H^+\) e \(OH^-\), quando sia nota una delle due.
La definizione di acidi e basi protici viene dalla loro capacità di trasferire protoni. Abbiamo già visto la definizione di acidi e basi secondo Lewis, ossia rispettivamente come accettori o donatori di un doppietto elettronico di non-legame. Per la chimica acido-base in ambiente acquoso una definizione più adatta ad acidi e basi protici è quella secondo Brønsted–Lowry:

- Acido: donatore di protoni
- Base: accettore di protoni

\[
\text{HCl} + \text{H}_2\text{O} \xrightleftharpoons{K_a} \text{H}_3\text{O}^+ + \text{Cl}^-
\]

\[
\text{NH}_3 + \text{H}_2\text{O} \xrightleftharpoons{K_b} \text{NH}_4^+ + \text{OH}^-
\]

L'acido cloridrico è un acido secondo Brønsted–Lowry essendo capace di cedere un protone all'acqua, mentre l'ammoniaca è una base secondo Brønsted–Lowry essendo capace di accettare un protone dall'acqua. In realtà la definizione di Brønsted–Lowry non comprende necessariamente l'acqua come mediatore del trasferimento di protoni, che può anche avvenire in fasi non-acquose o in fase gassosa, tra cloruro di idrogeno e ammoniaca gassosa a formare un sale:

\[
\text{NH}_3(g) + \text{HCl}(g) \xrightleftharpoons{} \text{NH}_4\text{Cl}(s)
\]

Si ricordi che il termine "acido cloridrico" indica una soluzione di cloruro di idrogeno gassoso in acqua.
Si definiscono sali i solidi di natura ionica. I sali derivano formalmente dalla reazione di un acido con una base, *e.g.*:

\[
\text{NaOH} + \text{HCl} \rightleftharpoons \text{NaCl} + \text{H}_2\text{O}
\]

La maggior parte dei sali inorganici costituiti da un catione e un anione portanti ciascuno una singola carica, rispettivamente positiva e negativa, sono ben solubili in acqua e si comportano da *elettroliti forti*, ossia si dissociano completamente negli ioni componenti:

\[
\text{NaCl}_{(s)} \rightleftharpoons \text{Na}^{+}_{(aq)} + \text{Cl}^{-}_{(aq)}
\]

Anche i sali di natura organica derivano dalla reazione di un acido con una base, *e.g.*:

\[
\text{CH}_3\text{COOH} + \text{NH}_3 \rightleftharpoons \text{CH}_3\text{COONH}_4
\]
Si definiscono sali i solidi di natura ioniaca. I sali derivano formalmente dalla reazione di un acido con una base, *e.g.:

\[
\text{NaOH} + \text{HCl} \rightleftharpoons \text{NaCl} + \text{H}_2\text{O}
\]

La maggior parte dei sali inorganici costituiti da un catione e un anione portanti ciascuno una singola carica, rispettivamente positiva e negativa, sono ben solubili in acqua e si comportano da elettroliti forti, ossia si dissociano completamente negli ioni componenti:

\[
\text{NaCl}_\text{(s)} \rightleftharpoons \text{Na}^{+}_\text{(aq)} + \text{Cl}^-_\text{(aq)}
\]

Anche i sali di natura organica derivano dalla reazione di un acido con una base, *e.g.:

\[
\text{CH}_3\text{COOH} + \text{NH}_3 \rightleftharpoons \text{CH}_3\text{COONH}_4
\]
Si definiscono sali i solidi di natura ionica. I sali derivano formalmente dalla reazione di un acido con una base, \textit{e.g.}:

\[
\text{NaOH} + \text{HCl} \rightleftharpoons \text{NaCl} + \text{H}_2\text{O}
\]

La maggior parte dei sali inorganici costituiti da un catione e un anione portanti ciascuno una singola carica, rispettivamente positiva e negativa, sono ben solubili in acqua e si comportano da \textit{elettroliti forti}, ossia si dissociano completamente negli ioni componenti:

\[
\text{NaCl}^{(s)} \rightleftharpoons \text{Na}^{(aq)} + \text{Cl}^{- (aq)}
\]

Anche i sali di natura organica derivano dalla reazione di un acido con una base, \textit{e.g.}:

\[
\text{CH}_3\text{COOH} + \text{NH}_3 \rightleftharpoons \text{CH}_3\text{COONH}_4
\]
I prodotti della reazione tra un acido e una base possono essere a loro volta essere classificati come acidi e basi:

\[
\text{CH}_3\text{COOH} \quad + \quad \text{NH}_3 \quad \rightleftharpoons \quad \text{CH}_3\text{COO}^- \quad + \quad \text{NH}_4^+
\]

Acido acetico (acido) + Ammoniaca (base) \rightarrow Ione acetato (base) + Ione ammonio (acido)

Tanto lo ione acetato quanto lo ione ammonio soddisfano la definizione di base e acido secondo Brønsted-Lowry, potendo rispettivamente accettare e donare un protone. Le coppie acido-base coniugate sono messe in relazione dall'acquisto o dalla cessione di un protone.

Acidi e basi coniugati
I protoni non esistono come tali in acqua; la forma più semplice trovata mediante diffrattometria a raggi X in alcuni sali cristallini idrati è lo ione idronio, H_3O^+, avente struttura piramidale:

Acta Cryst. (1962). 15, 18

The Crystal Structure of Hydronium Perchlorate at -80° C.

BY C. E. NORDMAN

Department of Chemistry, University of Michigan, Ann Arbor, Michigan, U.S.A.

(Received 6 April 1961)

The structure of the low temperature phase of perchloric acid monohydrate, stable below -30° C., has been determined at -80° C. The crystals belong to the monoclinic space group $P2_1/n$ with cell parameters

\[\begin{align*}
 a &= 7.541 \pm 0.006, \\
 b &= 9.373 \pm 0.011, \\
 c &= 5.359 \pm 0.006 \text{ Å}, \\
 \beta &= 97^\circ 41' \pm 4'.
\end{align*}\]

Table 2. *Atomic coordinates and standard deviations*

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>0.2184 ± 0.0001</td>
<td>0.4643 ± 0.0001</td>
<td>0.2779 ± 0.0001</td>
</tr>
<tr>
<td>O₁</td>
<td>0.0623 ± 0.0002</td>
<td>0.3920 ± 0.0005</td>
<td>0.2317 ± 0.0005</td>
</tr>
<tr>
<td>O₂</td>
<td>0.1925 ± 0.0004</td>
<td>0.6152 ± 0.0002</td>
<td>0.3242 ± 0.0006</td>
</tr>
<tr>
<td>O₃</td>
<td>0.3138 ± 0.0001</td>
<td>0.4517 ± 0.0002</td>
<td>0.0819 ± 0.0007</td>
</tr>
<tr>
<td>O₄</td>
<td>0.3258 ± 0.0004</td>
<td>0.4039 ± 0.0003</td>
<td>0.4939 ± 0.0009</td>
</tr>
<tr>
<td>O₅</td>
<td>0.3250 ± 0.0002</td>
<td>0.6926 ± 0.0002</td>
<td>0.7866 ± 0.0004</td>
</tr>
<tr>
<td>H₁</td>
<td>0.279 ± 0.018</td>
<td>0.679 ± 0.009</td>
<td>0.650 ± 0.014</td>
</tr>
<tr>
<td>H₂</td>
<td>0.330 ± 0.008</td>
<td>0.621 ± 0.004</td>
<td>0.876 ± 0.010</td>
</tr>
<tr>
<td>H₃</td>
<td>0.274 ± 0.006</td>
<td>0.765 ± 0.008</td>
<td>0.884 ± 0.013</td>
</tr>
</tbody>
</table>

A partire dai dati contenuti nell'articolo (coordinate cartesiane 3D e parametri della cella) oggi è possibile ricostruire al computer l'aspetto di una singola molecola e dell'intero reticolo cristallino.
Dall'espressione del prodotto ionico dell'acqua è facile calcolare la concentrazione degli ioni H^+ e OH^- nell'acqua pura. Di qui in poi indicheremo indifferentemente lo ione idronio come H^+ o H_3O^+, in quanto ai fini della stechiometria delle reazioni non c'è alcuna differenza.

$$H_2O \xrightleftharpoons{K_w} H^+ + OH^- \quad (17)$$

$$K_w = [H^+][OH^-] = 1.0 \cdot 10^{-14} \quad \text{a } 25 \, ^\circ C$$

Dal momento che la reazione (17) mostra che ioni H^+ e OH^- si formano in rapporto 1:1 dall'autoprotolisi dell'acqua, ponendo x la concentrazione di H^+, e conseguentemente anche di OH^-:

$$[H^+] = [OH^-] = x$$

$$K_w = [H^+][OH^-] = x^2 = 1.0 \cdot 10^{-14} \Rightarrow x = \sqrt{1.0 \cdot 10^{-14}} = 1.0 \cdot 10^{-7}$$

$$[H^+] = [OH^-] = 1.0 \cdot 10^{-7} \, \text{M}$$

Se invece fissiamo la concentrazione di ioni H^+ a, poniamo, $1.0 \cdot 10^{-4}$, la concentrazione di ioni OH^- si trova altrettanto facilmente:

$$K_w = [H^+][OH^-] = 1.0 \cdot 10^{-14}$$

$$1.0 \cdot 10^{-4} \cdot [OH^-] = 1.0 \cdot 10^{-14} \Rightarrow [OH^-] = \frac{1.0 \cdot 10^{-14}}{1.0 \cdot 10^{-4}} = 1.0 \cdot 10^{-10}$$

Ancora sul prodotto ionico dell'acqua
Il pH è il logaritmo negativo della concentrazione di ioni H⁺:

\[
\text{pH} = -\log[H^+] \quad (18)
\]

In realtà a rigore questa definizione non è corretta, dal momento che piuttosto che di concentrazione bisognerebbe riferirsi all'attività degli ioni H⁺, come ricordereste dai corsi di Chimica Generale e dalla Chimica Analitica. Durante questo corso noi faremo l'assunzione che le concentrazioni coincidano con le attività, il che naturalmente in senso stretto non è corretto.

Analogamente, si può definire pOH come il logaritmo negativo della concentrazione di ioni OH⁻:

\[
\text{pOH} = -\log[OH^-] \quad (19)
\]

pH e pOH, così come [H⁺] e [OH⁻], sono legati dall'espressione del prodotto ionico dell'acqua:

\[
K_w = [H^+][OH^-] \quad ; \quad -\log K_w = -\log([H^+][OH^-]) = -\log[H^+] - \log[OH^-] \\
pH + pOH = -\log(1.0 \cdot 10^{-14}) = 14.0
\]
Normalmente si tende a considerare la scala di pH come da 0 a 14; tuttavia, in forza della definizione stessa di pH, è evidente che sono ammissibili anche valori negativi di pH. Ad esempio, una soluzione di HCl 10 M, che è un acido forte completamente dissociato, avrà un pH dato dall'equazione (18):

\[\text{pH} = -\log[H^+] = -\log(10) = -1 \]

Per misurare il pH di una soluzione in laboratorio utilizzeremo due metodi:

- **Cartina indicatrice universale**: è un rotolino di carta da filtro che è stato imbevuto di una miscela di indicatori acido-base e fatto seccare, cosicché gli indicatori si trovano adsorbiti sulla carta stessa. Gli indicatori acido-base sono molecole organiche che assumono una diversa colorazione a seconda che si trovino in forma protonata oppure deprotonata. Toccando la cartina universale con una bacchetta di vetro precedentemente inumidita con la soluzione di cui si vuole misurare il pH, si osserva una colorazione dovuta al viraggio della miscela di indicatori. Questa colorazione, confrontata con una scala colorimetrica fornita dal produttore della cartina, consente di determinare, con un'approssimazione di circa una unità logaritmica, il pH della soluzione.

- **pH-metro**: è uno strumento dotato di un elettrodo sensibile alla concentrazione di ioni H⁺ e di un display LCD. Dopo aver calibrato lo strumento con soluzioni standard a pH noto, è possibile misurare il pH di una soluzione incognita, con una precisione di circa 0.01 unità logaritmiche.
La composizione della miscela di indicatori adsorbiti sulla cartina può variare a seconda del produttore; una composizione tipicamente utilizzata è:

<table>
<thead>
<tr>
<th>Indicatore</th>
<th>Formula di struttura</th>
<th>pH viraggio</th>
<th>Colore a pH minore</th>
<th>Colore a pH maggiore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosso metile (sale sodico)</td>
<td></td>
<td>4.4–6.2</td>
<td>rosso</td>
<td>giallo</td>
</tr>
<tr>
<td>Fenolfaleina (sale sodico)</td>
<td></td>
<td>8.3–10</td>
<td>incolore</td>
<td>lilla</td>
</tr>
<tr>
<td>Blu timolo (sale sodico)</td>
<td></td>
<td>1.2–2.8</td>
<td>rosso</td>
<td>giallo</td>
</tr>
<tr>
<td>Blu di bromotimolo</td>
<td></td>
<td>8.0–9.6</td>
<td>giallo</td>
<td>blu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.0–7.6</td>
<td>giallo</td>
<td>blu</td>
</tr>
</tbody>
</table>
E' possibile realizzare elettrodi in grado di rispondere selettivamente ad analiti specifici presenti in una soluzione; un esempio sono gli **elettrodi sensibili al pH**. L'utilizzo di elettrodi per misurare differenze di potenziale (ddp) nell'analisi chimica va sotto il nome di **potenziometria**. In potenziometria si utilizzano sempre due elettrodi:

- **elettrodo indicatore**: è l'elettrodo della prima semi-cella, sensibile alla concentrazione di analita

- **elettrodo di riferimento**: è l'elettrodo della seconda semi-cella, caratterizzata da una composizione costante e nota, in modo da poter fungere da riferimento in virtù del suo potenziale costante e noto

Il pH-metro misura la ddp della cella come differenza tra il potenziale variabile dovuto alle diverse concentrazioni di ioni H^+ e il potenziale costante dell'elettrodo di riferimento. Normalmente i due elettrodi sono riuniti in unico **elettrodo combinato**, per ragioni di praticità, che può essere schematizzato come segue:

\[
\begin{array}{c|c|c|c|c|c|c|c}
| Ag_{(s)} | AgCl_{(s)} | Cl_{(aq)}^- | \parallel | H_+^{(aq, esterno)} & Ag_{(s)} | AgCl_{(s)} | Cl_{(aq)}^- | \parallel | H_+^{(aq, interno)} \\
| elettrodo indicatore esterno | H^+ all'esterno dell'elettrodo (soluzione dell'analita) & elettrodo di riferimento interno | H^+ all'interno dell'elettrodo \\
\end{array}
\]

membrana di vetro selettiva per ioni H^+
I due elettrodi di riferimento Ag | AgCl (filo di argento rivestito di AgCl) misurano la ddp attraverso la sottile membrana di vetro del bulbo; la linea tratteggiata nello schema in alto rappresenta il setto poroso che garantisce la comunicazione elettrica tra le due semi-celle (ponte salino). Il pH della soluzione tampone interna può variare a seconda del produttore.

La figura a destra rappresenta la struttura del reticolo di silicato che costituisce la membrana di vetro del bulbo, dove atomi di ossigeno portanti una carica negativa coordinano cationi metallici, in particolare Na\(^+\), che sono liberi di migrare attraverso il reticolo.
La figura a sinistra rappresenta una sezione della sottile membrana di vetro del bulbo. Le due superfici esposte alle soluzioni interna ed esterna assorbono acqua e si rigonfiano, mentre parte dei cationi metallici presenti nel vetro diffondono nelle due soluzioni. Al tempo stesso ioni H\(^+\) provenienti dalle due soluzioni diffondono nel reticolo, occupando alcuni dei siti di coordinazione dei cationi metallici (equilibrio di scambio ionico). La sensibilità selettiva al pH dell'elettrodo a vetro è dovuto al fatto che solo gli ioni H\(^+\) sono in grado di rimpiazzare in misura apprezzabile gli ioni metallici nel reticolo idratato.

Il collegamento elettrico tra le due superfici idratate sensibili agli ioni H\(^+\) è garantito dal sottile strato di vetro secco, attraverso il quale fluisce una piccola corrente di ioni Na\(^+\), mentre gli ioni H\(^+\) non attraversano la membrana; la corrente è molto piccola per via dell'elevata resistenza del vetro. La ddp tra i due elettrodi Ag | AgCl esterno ed interno dipende quindi unicamente dalla ddp attraverso la membrana, dato che le concentrazioni degli ioni Cl\(^-\) sono costanti nei due compartimenti. La ddp varia di circa 59.16 mV per ogni variazione di un'unità del pH a 25 °C. Mediante un'opportuna calibrazione usando soluzioni tampone a diversi pH è possibile correlare la misura di ddp al pH di una soluzione incognita mediante la seguente equazione:

\[
E = c + \beta \log[H^+]_{esterna}
\]
Prima di ogni utilizzo un pH-metro deve essere **calibrato (o tarato)** mediante due o tre soluzioni tampone a pH noto scelti in modo tale che il pH della soluzione incognita possa essere **interpolato** dallo strumento nell'intervallo di pH coperto dai tamponi usati per la calibrazione. Mediante la calibrazione lo strumento è in grado di trovare automaticamente i valori di c e β per correlare il pH della soluzione con la ddp E misurata in base all'equazione riportata nella slide precedente.

Prima della taratura l'elettrodo va lavato con acqua deionizzata e asciugato delicatamente con della carta, quindi immerso sequenzialmente nei due o tre tamponi standard, assicurandosi che il setto poroso si trovi all'interno della soluzione, e lasciato equilibrare per un minuto, mantenendo sotto agitazione magnetica la soluzione, lavando e asciugando ogni volta l'elettrodo prima di immergerlo in una nuova soluzione.

La precisione della misura fornita da un pH-metro è di circa ±0.01 unità pH. Errori maggiori nella misurazione del pH possono derivare da:

- cattivo stato di conservazione dell'elettrodo
- pH misurato esterno all'intervallo di pH dei tamponi usati per la taratura (in questo caso lo strumento **estrapola**, anziché interpolare)
- a pH fortemente acido, gli strati idratati della membrana potrebbero saturarsi di ioni H\(^+\), e quindi il pH letto dallo strumento risulta superiore a quello reale
- a pH fortemente basico per NaOH, l'elettrodo risponde anche a Na\(^+\) oltre che a H\(^+\), per cui il pH letto dallo strumento risulta inferiore a quello reale (**errore alcalino** o **errore da sodio**)

Occorre sempre tenere presente che il pH-metro in realtà è sensibile all'**attività** degli ioni H\(^+\), e non alla loro concentrazione; questo significa che il pH-metro restituirà letture diverse su soluzioni contenenti la stessa concentrazione di H\(^+\) ma con forza ionica diversa.
Acidi e basi vengono classificati come:

- **forti**: in soluzione acquosa si dissociano completamente in H^+ / OH^- e nel rispettivo anione/catione:

 \[
 \text{HCl}_{(aq)} \rightleftharpoons \text{H}^+ + \text{Cl}^- \\
 \text{NaOH}_{(aq)} \rightleftharpoons \text{Na}^+ + \text{OH}^-
 \]

 Ciò significa che di fatto in soluzione non esistono HCl/NaOH in forma indissociata. Sono acidi forti HCl, HBr, HI, H_2SO_4; sono basi forti gli idrossidi dei metalli alcalini e alcalino-terrosi, anche se questi ultimi sono meno solubili degli idrossidi alcalini.

- **deboli**: in soluzione acquosa si dissociano solo parzialmente in H^+ / OH^- e nel rispettivo anione/catione:

 \[
 \text{HA}_{(aq)} \rightleftharpoons \text{H}^+ + \text{A}^- \\
 K_a = \frac{[\text{H}^+][\text{A}^-]}{[\text{HA}]}
 \]

 \[
 \text{B}_{(aq)} + \text{H}_2\text{O} \rightleftharpoons \text{BH}^+ + \text{OH}^- \\
 K_b = \frac{[\text{BH}^+][\text{OH}^-]}{[\text{B}]}
 \]

La costante di equilibrio (20) si chiama **costante di dissociazione acida**, la (21) è invece la costante di idrolisi basica; per gli acidi/basi deboli hanno un valore piuttosto basso ($\ll 1$).
Un tipico esempio di acido debole è l'acido acetico:

\[
\text{CH}_3\text{COOH} \rightleftharpoons K_a \quad \text{H}^+ + \text{CH}_3\text{COO}^- \quad K_a = 1.75 \cdot 10^{-5}
\]

acido debole \hspace{2cm} base coniugata

L'acido acetico si dissocia parzialmente in acqua a dare ione H\(^+\) e ione acetato, la base coniugata dell'acido acetico. Lo ione acetato è quindi una base debole, che dà origine al seguente equilibrio di idrolisi basica:

\[
\text{CH}_3\text{COO}^- + \text{H}_2\text{O} \rightleftharpoons K_b \quad \text{CH}_3\text{COOH} + \text{OH}^- \\
\text{base debole} \hspace{2cm} \text{acido coniugato}
\]

E' possibile ricavare facilmente il valore di \(K_b\) per lo ione acetato a partire dalla \(K_a\) dell'acido acetico.
Sommando membro a membro le due reazioni:

\[
\begin{align*}
\text{CH}_3\text{COOH} & \overset{K_a}{\rightleftharpoons} \text{H}^+ + \text{CH}_3\text{COO}^- \\
\text{CH}_3\text{COO}^- + \text{H}_2\text{O} & \overset{K_b}{\rightleftharpoons} \text{CH}_3\text{COOH} + \text{OH}^- \\
\text{H}_2\text{O} & \overset{K_w}{\rightleftharpoons} \text{H}^+ + \text{OH}^-
\end{align*}
\]

\[
K_w = [\text{H}^+][\text{OH}^-] = \frac{[\text{H}^+][\text{A}^-]}{[\text{HA}]} = \frac{[\text{HA}][\text{OH}^-]}{[\text{A}^-]} = K_a K_b
\quad (22)
\]

\[
-\log K_w = -\log(K_a K_b) = -\log K_a - \log K_b \Rightarrow pK_a + pK_b = 14.0
\quad (23)
\]

Le equazioni (22) e (23) mostrano la relazione tra \(K_a\) e \(K_b\) per una coppia acido-base coniugata, da cui si ricava facilmente che per lo ione acetato

\[
K_b = \frac{K_w}{K_a} = \frac{1.00 \cdot 10^{-14}}{1.75 \cdot 10^{-4}} = 5.71 \cdot 10^{-11}
\]
Un tipico esempio di base debole è l'ammoniaca:

\[
\text{NH}_3 + \text{H}_2\text{O} \rightleftharpoons \text{NH}_4^+ + \text{OH}^- \quad K_b = 1.75 \cdot 10^{-5}
\]

L'ammoniaca si idrolizza parzialmente in acqua a dare ione OH\(^-\) e ione ammonio, l'acido coniugato dell'ammoniaca. Lo ione ammonio è quindi un acido debole, che dà origine al seguente equilibrio di dissociazione:

\[
\text{NH}_4^+ \rightleftharpoons \text{NH}_3 + \text{H}^+
\]

Normalmente in letteratura vengono riportate unicamente le \(K_a\) dei composti, quindi per conoscere la \(K_b\) dell'ammoniaca occorre ricercare la \(K_a\) del suo acido coniugato, ossia lo ione ammonio, e ricavare da essa la \(K_b\) come

\[
K_b = \frac{K_w}{K_a}
\]

Si osservi come la forza della base coniugata sia inversamente proporzionale a quella del rispettivo acido: più è forte l'acido, meno forte è la base coniugata, e viceversa. La stessa osservazione vale per le sostanze basiche: più è forte la base, meno forte è l'acido coniugato, e viceversa.

Acidi e basi coniugate: l'ammoniaca
Acidi e basi poliprotici sono composti che possono cedere o accettare più di un protone. Ad esempio, l'acido ossalico ($H_2C_2O_4$) è un acido diprotico:

\[
H_2C_2O_4 \underset{K_{a1}}{\rightleftharpoons} H^+ + HC_2O_4^- \quad K_{a1} = \frac{[H^+][HC_2O_4^-]}{[H_2C_2O_4]} = 5.60 \cdot 10^{-2}
\]

\[
HC_2O_4^- \underset{K_{a2}}{\rightleftharpoons} H^+ + C_2O_4^{2-} \quad K_{a2} = \frac{[H^+][C_2O_4^{2-}]}{[HC_2O_4^-]} = 5.42 \cdot 10^{-5}
\]

Analogamente lo ione fosfato è un composto tribasico:

\[
PO_4^{3-} + H_2O \underset{K_{b1}}{\rightleftharpoons} HPO_4^{2-} + OH^- \quad K_{b1} = \frac{[OH^-][HPO_4^{2-}]}{[PO_4^{3-}]} = 1.40 \cdot 10^{-2}
\]

\[
HPO_4^{2-} + H_2O \underset{K_{b2}}{\rightleftharpoons} H_2PO_4^- + OH^- \quad K_{b2} = \frac{[OH^-][H_2PO_4^-]}{[HPO_4^{2-}]} = 1.58 \cdot 10^{-7}
\]

\[
H_2PO_4^- + H_2O \underset{K_{b3}}{\rightleftharpoons} H_3PO_4 + OH^- \quad K_{b3} = \frac{[OH^-][H_3PO_4]}{[H_2PO_4^-]} = 1.41 \cdot 10^{-12}
\]
Come già fatto notare in precedenza, le K_b riportate per ione fosfato, ione moniodrogenofosfato e ione diiodrogenofosfato difficilmente possono essere trovate in letteratura come tali; sarà invece piuttosto facile reperire i valori delle K_a dei rispettivi acidi coniugati:

$$
H_3PO_4 \rightleftharpoons K_{a1} H_2PO_4^- + H^+ \quad K_{a1} = \frac{[H^+][H_2PO_4^-]}{[H_3PO_4]} = 7.11 \cdot 10^{-3}
$$

$$
H_2PO_4^- \rightleftharpoons K_{a2} HPO_4^{2-} + H^+ \quad K_{a2} = \frac{[H^+][HPO_4^{2-}]}{[H_2PO_4^-]} = 6.32 \cdot 10^{-8}
$$

$$
HPO_4^{2-} \rightleftharpoons K_{a3} PO_4^{3-} + H^+ \quad K_{a3} = \frac{[H^+][PO_4^{3-}]}{[HPO_4^{2-}]} = 7.1 \cdot 10^{-13}
$$

$$
PO_4^{3-} + H_2O \rightleftharpoons K_{b1} HPO_4^{2-} + OH^- \quad K_{b1} = \frac{[OH^-][HPO_4^{2-}]}{[PO_4^{3-}]} = \frac{K_w}{K_{a3}} = \frac{1.0 \cdot 10^{-14}}{7.1 \cdot 10^{-13}} = 1.4 \cdot 10^{-2}
$$

$$
HPO_4^{2-} + H_2O \rightleftharpoons K_{b2} H_2PO_4^- + OH^- \quad K_{b2} = \frac{[OH^-][H_2PO_4^-]}{[HPO_4^{2-}]} = \frac{K_w}{K_{a2}} = \frac{1.0 \cdot 10^{-14}}{6.32 \cdot 10^{-8}} = 1.58 \cdot 10^{-7}
$$

$$
H_2PO_4^- + H_2O \rightleftharpoons K_{b3} H_3PO_4 + OH^- \quad K_{b3} = \frac{[OH^-][H_3PO_4]}{[H_2PO_4^-]} = \frac{K_w}{K_{a1}} = \frac{1.0 \cdot 10^{-14}}{7.11 \cdot 10^{-3}} = 1.41 \cdot 10^{-12}
$$

Acidi poliprotici e K_w
Il trattamento sistematico dell’equilibrio consente di trattare qualsiasi tipo di equilibrio chimico. Il procedimento di base consiste nello scrivere tante equazioni quante sono le incognite del problema. Le equazioni si ottengono a partire da tutte le condizioni di equilibrio chimico in gioco, cui si aggiungono il bilancio di carica e il bilancio di massa.

Il bilancio di carica trae il proprio fondamento teorico dal fatto che qualunque soluzione è elettricamente neutra, i.e. la somma delle cariche positive è uguale alla somma delle cariche negative. Ad esempio, in una soluzione di K_3PO_4, il bilancio di carica sarà:

$$[\text{H}^+] + [\text{K}^+] = [\text{H}_2\text{PO}_4^-] + 2[\text{HPO}_4^{2-}] + 3[\text{PO}_4^{3-}] + [\text{OH}^-]$$

Il bilancio di massa ha la sua origine nella legge di conservazione della materia, e impone che la quantità delle specie in soluzione contenenti un determinato atomo (o gruppo di atomi) deve essere uguali alla quantità di atomi (o gruppi di atomi) originariamente introdotti in soluzione. Nell'esempio della soluzione di K_3PO_4, il bilancio di massa sarà:

$$[\text{K}^+] = 3([\text{H}_3\text{PO}_4] + [\text{H}_2\text{PO}_4^-] + [\text{HPO}_4^{2-}] + [\text{PO}_4^{3-}])$$
Vediamo un esempio pratico di applicazione del trattamento sistematico dell'equilibrio: la solubilità di CaF$_2$. Gli equilibri che ci interessano sono:

\[
\text{CaF}_2(s) \rightleftharpoons \text{Ca}^{2+} + 2 \text{F}^- \quad K_{ps} = \left[\text{Ca}^{2+}\right] \left[\text{F}^-\right]^2 = 3.9 \cdot 10^{-11} \quad (24)
\]

\[
\text{HF} \rightleftharpoons \text{H}^+ + \text{F}^- \quad K_a = \frac{\left[\text{H}^+\right] \left[\text{F}^-\right]}{\left[\text{HF}\right]} = 6.8 \cdot 10^{-4} \quad (25)
\]

\[
\text{H}_2\text{O} \rightleftharpoons \text{H}^+ + \text{OH}^- \quad K_w = \left[\text{H}^+\right] \left[\text{OH}^-\right] = 1.0 \cdot 10^{-14} \quad (26)
\]

bilancio di carica:

\[
\left[\text{H}^+\right] + 2\left[\text{Ca}^{2+}\right] = \left[\text{F}^-\right] + \left[\text{OH}^-\right] \quad (27)
\]

bilancio di massa:

\[
2\left[\text{Ca}^{2+}\right] = \left[\text{HF}\right] + \left[\text{F}^-\right] \quad (28)
\]
Dall'equazione (25) si ricava che

\[[HF] = \frac{[H^+][F^-]}{K_a} \]

Sostituendo nell'equazione (28):

\[2[Ca^{2+}] = [HF] + [F^-] = \frac{[H^+][F^-]}{K_a} + [F^-] = \left(1 + \frac{[H^+]}{K_a}\right)[F^-] \]

\[[F^-] = \frac{2[Ca^{2+}]}{\left(1 + \frac{[H^+]}{K_a}\right)} \quad (29) \]

\[[HF] = \frac{[H^+]}{K_a} \frac{2[Ca^{2+}]}{\left(1 + \frac{[H^+]}{K_a}\right)} = \frac{2[Ca^{2+}][H^+]}{K_a + [H^+]} \quad (30) \]

Sostituendo nell'equazione (24):

\[K_{ps} = [Ca^{2+}] \frac{4[Ca^{2+}]^2}{\left(1 + \frac{[H^+]}{K_a}\right)^2} \quad \Rightarrow \quad [Ca^{2+}]^3 = \frac{K_{ps}}{4} \left(1 + \frac{[H^+]}{K_a}\right)^2 \]

\[[Ca^{2+}] = \left(\frac{K_{ps}}{4} \left(1 + \frac{[H^+]}{K_a}\right)^2\right)^{\frac{1}{3}} \quad (31) \]
Le equazioni (29)-(31) consentono di ricavare la concentrazione di tutte le specie in funzione del pH; troveremo quindi il valore del pH, da cui la concentrazione delle varie specie, per approssimazioni successive con uno spreadsheet, imponendo come condizione che sia soddisfatto il bilancio di carica.

Solubilità di CaF$_2$
Lo stesso *spreadsheet* utilizzato prima consente di monitorare le concentrazioni delle diverse specie in soluzione in funzione del pH; sapete giustificare l'andamento delle curve?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>H</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[F⁻]</td>
<td>[OH⁻]</td>
<td>[HF]</td>
<td>[Ca²⁺]</td>
<td>[H⁺]</td>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.78E-05</td>
<td>1.00E-14</td>
<td>5.62E-02</td>
<td>0.02764</td>
<td>1.00E+00</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.56E-05</td>
<td>1.78E-14</td>
<td>3.11E-02</td>
<td>0.01884</td>
<td>5.62E-01</td>
<td>0.2500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5.51E-05</td>
<td>3.16E-14</td>
<td>1.75E-02</td>
<td>0.01284</td>
<td>3.16E-01</td>
<td>0.5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6.67E-05</td>
<td>5.62E-14</td>
<td>9.62E-03</td>
<td>0.00876</td>
<td>1.78E-01</td>
<td>0.7500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8.08E-05</td>
<td>1.00E-13</td>
<td>5.52E-03</td>
<td>0.00598</td>
<td>1.00E-01</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>9.77E-05</td>
<td>1.78E-13</td>
<td>3.11E-03</td>
<td>0.00409</td>
<td>5.62E-02</td>
<td>1.2500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.18E-04</td>
<td>3.16E-13</td>
<td>1.75E-03</td>
<td>0.0028</td>
<td>3.16E-02</td>
<td>1.5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.42E-04</td>
<td>5.62E-13</td>
<td>9.62E-04</td>
<td>0.00193</td>
<td>1.78E-02</td>
<td>1.7500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.71E-04</td>
<td>1.00E-12</td>
<td>5.52E-04</td>
<td>0.00134</td>
<td>1.00E-02</td>
<td>2.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2.03E-04</td>
<td>1.78E-12</td>
<td>3.11E-04</td>
<td>0.00094</td>
<td>5.62E-03</td>
<td>2.2500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2.40E-04</td>
<td>3.16E-12</td>
<td>1.75E-04</td>
<td>0.00086</td>
<td>3.16E-03</td>
<td>2.5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2.78E-04</td>
<td>5.62E-12</td>
<td>9.82E-05</td>
<td>0.0005</td>
<td>1.78E-03</td>
<td>2.7500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3.18E-04</td>
<td>1.00E-11</td>
<td>6.62E-05</td>
<td>0.00039</td>
<td>1.00E-03</td>
<td>3.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3.50E-04</td>
<td>1.78E-11</td>
<td>3.11E-05</td>
<td>0.00032</td>
<td>5.62E-04</td>
<td>3.2500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>3.76E-04</td>
<td>3.16E-11</td>
<td>1.75E-05</td>
<td>0.00028</td>
<td>3.16E-04</td>
<td>3.6000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3.95E-04</td>
<td>5.62E-11</td>
<td>9.82E-06</td>
<td>0.00025</td>
<td>1.78E-04</td>
<td>3.7500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>4.08E-04</td>
<td>1.00E-10</td>
<td>5.52E-06</td>
<td>0.00023</td>
<td>1.00E-04</td>
<td>4.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>4.16E-04</td>
<td>1.78E-10</td>
<td>3.11E-06</td>
<td>0.00023</td>
<td>5.62E-05</td>
<td>4.2500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4.21E-04</td>
<td>3.16E-10</td>
<td>1.75E-06</td>
<td>0.00022</td>
<td>3.16E-05</td>
<td>4.5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>4.24E-04</td>
<td>5.62E-10</td>
<td>9.82E-07</td>
<td>0.00022</td>
<td>1.78E-05</td>
<td>4.7500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4.25E-04</td>
<td>1.00E-09</td>
<td>5.52E-07</td>
<td>0.00022</td>
<td>1.00E-05</td>
<td>5.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4.26E-04</td>
<td>1.78E-09</td>
<td>3.11E-07</td>
<td>0.00021</td>
<td>5.62E-06</td>
<td>5.2500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4.27E-04</td>
<td>3.16E-09</td>
<td>1.75E-07</td>
<td>0.00021</td>
<td>3.16E-06</td>
<td>5.5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>4.27E-04</td>
<td>5.62E-09</td>
<td>9.82E-08</td>
<td>0.00021</td>
<td>1.78E-06</td>
<td>5.7500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>4.27E-04</td>
<td>1.00E-08</td>
<td>5.52E-08</td>
<td>0.00021</td>
<td>1.00E-06</td>
<td>6.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>4.27E-04</td>
<td>1.78E-08</td>
<td>3.11E-08</td>
<td>0.00021</td>
<td>5.62E-07</td>
<td>6.2500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>4.27E-04</td>
<td>3.16E-08</td>
<td>1.75E-08</td>
<td>0.00021</td>
<td>3.16E-07</td>
<td>6.5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>4.27E-04</td>
<td>5.62E-08</td>
<td>9.82E-09</td>
<td>0.00021</td>
<td>1.78E-07</td>
<td>6.7500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>4.27E-04</td>
<td>1.00E-07</td>
<td>5.52E-09</td>
<td>0.00021</td>
<td>1.00E-07</td>
<td>7.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solubilità di CaF₂
Un caso leggermente più complesso è rappresentato dalla solubilità di BaC$_2$O$_4$ (bario ossalato), poiché l'acido ossalico è un acido diprotico. Gli equilibri che ci interessano allora sono:

\[
\text{BaC}_2\text{O}_4(s) \rightleftharpoons K_{ps} \text{ Ba}^{2+} + \text{C}_2\text{O}_4^{2-} \\
H_2\text{C}_2\text{O}_4 \rightleftharpoons K_{a1} \text{ H}^+ + \text{HC}_2\text{O}_4^{-} \\
\text{HC}_2\text{O}_4^- \rightleftharpoons K_{a2} \text{ H}^+ + \text{C}_2\text{O}_4^{2-} \\
\text{H}_2\text{O} \rightleftharpoons K_w \text{ H}^+ + \text{OH}^- \\
\]

\[K_{ps} = \frac{[\text{Ba}^{2+}][\text{C}_2\text{O}_4^{2-}]}{[\text{BaC}_2\text{O}_4]} = 1.0 \cdot 10^{-6} \quad (32)\]

\[K_{a1} = \frac{[\text{H}^+][\text{HC}_2\text{O}_4^-]}{[\text{H}_2\text{C}_2\text{O}_4]} = 5.60 \cdot 10^{-2} \quad (33)\]

\[K_{a2} = \frac{[\text{H}^+][\text{C}_2\text{O}_4^{2-}]}{[\text{HC}_2\text{O}_4^-]} = 5.42 \cdot 10^{-5} \quad (34)\]

\[K_w = [\text{H}^+][\text{OH}^-] = 1.0 \cdot 10^{-14} \quad (35)\]

bilancio di carica:
\[\text{[H}^+] + 2\text{[Ba}^{2+}] = 2\text{[C}_2\text{O}_4^{2-}] + \text{[HC}_2\text{O}_4^-] + \text{[OH}^-] \quad (36)\]

bilancio di massa:
\[\text{[Ba}^{2+}] = \text{[H}_2\text{C}_2\text{O}_4] + \text{[HC}_2\text{O}_4^-] + \text{[C}_2\text{O}_4^{2-}] \quad (37)\]
Dall'equazione (34) si ricava che
\[[\text{HC}_2\text{O}_4^-] = \frac{[\text{H}^+]}{K_{a2}} [\text{C}_2\text{O}_4^{2-}] \]
(38)

Dall'equazione (33) si ricava che
\[[\text{H}_2\text{C}_2\text{O}_4] = \frac{[\text{H}^+]}{K_{a1}} [\text{HC}_2\text{O}_4^-] = \frac{[\text{H}^+]^2}{K_{a1}K_{a2}} [\text{C}_2\text{O}_4^{2-}] \]
(39)

Sostituendo nell'equazione (37):
\[[\text{Ba}^{2+}] = [\text{H}_2\text{C}_2\text{O}_4] + [\text{HC}_2\text{O}_4^-] + [\text{C}_2\text{O}_4^{2-}] = \]
\[= \left(\frac{[\text{H}^+]^2}{K_{a1}K_{a2}} + \frac{[\text{H}^+]}{K_{a2}} + 1 \right) [\text{C}_2\text{O}_4^{2-}] \Rightarrow [\text{C}_2\text{O}_4^{2-}] = \frac{1}{\frac{[\text{H}^+]^2}{K_{a1}K_{a2}} + \frac{[\text{H}^+]}{K_{a2}} + 1} [\text{Ba}^{2+}] \]
(40)

Sostituendo nell'equazione (32):
\[K_{ps} = \frac{1}{\frac{[\text{H}^+]^2}{K_{a1}K_{a2}} + \frac{[\text{H}^+]}{K_{a2}} + 1} [\text{Ba}^{2+}]^2 \]
\[[\text{Ba}^{2+}] = \sqrt{K_{ps} \left(\frac{[\text{H}^+]^2}{K_{a1}K_{a2}} + \frac{[\text{H}^+]}{K_{a2}} + 1 \right)} \]
(41)

Solubilità di \(\text{BaC}_2\text{O}_4 \)
Come nel caso di CaF$_2$, le equazioni (38)-(41) consentono di ricavare la concentrazione di tutte le specie in funzione del pH; ripetendo l'operazione di ottimizzazione del pH:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.00E-03</td>
<td>1.85E-08</td>
<td>1.00E-05</td>
<td>3.29E-16</td>
<td>0.001</td>
<td>1.00E-09</td>
<td>9.0000</td>
<td>9.99E-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9.1E-04</td>
<td>1.70E-04</td>
<td>1.00E-06</td>
<td>3.03E-08</td>
<td>0.001088</td>
<td>1.00E-06</td>
<td>5.0000</td>
<td>1.80E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.00E-03</td>
<td>1.84E-07</td>
<td>1.00E-06</td>
<td>3.29E-14</td>
<td>0.001</td>
<td>1.00E-08</td>
<td>8.0000</td>
<td>8.00E-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>9.99E-04</td>
<td>1.84E-06</td>
<td>1.00E-07</td>
<td>3.29E-12</td>
<td>0.001001</td>
<td>1.00E-07</td>
<td>7.0000</td>
<td>1.84E-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.00E-03</td>
<td>5.18E-07</td>
<td>3.16E-07</td>
<td>3.29E-13</td>
<td>0.001</td>
<td>3.16E-08</td>
<td>7.5000</td>
<td>2.99E-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.00E-03</td>
<td>2.92E-07</td>
<td>6.31E-07</td>
<td>8.27E-14</td>
<td>0.001</td>
<td>1.58E-08</td>
<td>7.8000</td>
<td>3.23E-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.00E-03</td>
<td>4.13E-07</td>
<td>4.47E-07</td>
<td>1.66E-13</td>
<td>0.001</td>
<td>2.24E-08</td>
<td>7.6500</td>
<td>1.13E-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.00E-03</td>
<td>4.63E-07</td>
<td>3.96E-07</td>
<td>2.68E-13</td>
<td>0.001</td>
<td>2.51E-08</td>
<td>7.6000</td>
<td>9.04E-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.00E-03</td>
<td>4.23E-07</td>
<td>4.37E-07</td>
<td>1.73E-13</td>
<td>0.001</td>
<td>2.29E-08</td>
<td>7.6400</td>
<td>8.97E-09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1.00E-03</td>
<td>4.18E-07</td>
<td>4.42E-07</td>
<td>1.69E-13</td>
<td>0.001</td>
<td>2.26E-08</td>
<td>7.6450</td>
<td>8.18E-09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.00E-03</td>
<td>4.19E-07</td>
<td>4.41E-07</td>
<td>1.70E-13</td>
<td>0.001</td>
<td>2.27E-08</td>
<td>7.6440</td>
<td>8.51E-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1.00E-03</td>
<td>4.18E-07</td>
<td>4.41E-07</td>
<td>1.69E-13</td>
<td>0.001</td>
<td>2.27E-08</td>
<td>7.6445</td>
<td>1.65E-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ottimizzazione del valore di pH

Solubilità di BaC$_2$O$_4$
Come prima, possiamo riportare in un grafico le concentrazioni delle diverse specie in soluzione in funzione del pH; sapete giustificare l'andamento delle curve?

Solubilità di \(\text{BaC}_2\text{O}_4 \)
Per trovare il pH di una soluzione di HCl 0.1 M, in base a ciò che si è descritto in precedenza, imposteremo soltanto il bilancio di carica e l'equilibrio di autoprotolisi dell'acqua, dal momento che l'equilibrio di dissociazione è completamente spostato a destra, essendo HCl un acido forte:

\[
[H^+][OH^-] = 1.0 \cdot 10^{-14}
\]

\[
[H^+] = [OH^-] + [Cl^-] \Rightarrow [H^+] = \frac{K_w}{[H^+]} + [Cl^-]
\]

da cui, moltiplicando entrambi i membri per \([H^+]\) e riarrangiando si ottiene:

\[
[H^+]^2 - [Cl^-][H^+] - K_w = 0
\]

\[
[H^+] = \frac{[Cl^-] \pm \sqrt{[Cl^-]^2 + 4K_w}}{2}
\] (42)

Se \([Cl^-]^2 \gg 4K_w\), l'equazione (42) si riduce (scartando la soluzione \([H^+] = 0\), che è palesemente in contraddizione con il fatto che abbiamo preparato una soluzione di HCl 0.1 M) a \([H^+] = [Cl^-]\).

Nell'esempio sopra 0.01 \(\gg 4 \cdot 10^{-14}\), quindi l'approssimazione è legittima e possiamo concludere che \([H^+] = [Cl^-] = 0.01\) M

pH di una soluzione contenente un acido forte
Se invece vogliamo calcolare il pH di una soluzione di HCl piuttosto diluita (1.0 \cdot 10^{-8} – 1.0 \cdot 10^{-6} M), dal momento che non è più verificata la condizione $[\text{Cl}^-]^2 \gg 4K_w$, occorre risolvere l'equazione di secondo grado (42). Ad esempio, se la concentrazione di HCl è $1.0 \cdot 10^{-6} M$

$$[H^+] = \frac{[\text{Cl}^-] \pm \sqrt{[\text{Cl}^-]^2 + 4K_w}}{2} = \frac{1.0 \cdot 10^{-6} \pm \sqrt{1.0 \cdot 10^{-12} + 4.0 \cdot 10^{-14}}}{2} =$$

$$= \frac{1.0 \cdot 10^{-6} \pm 1.02 \cdot 10^{-6}}{2} = 1.01 \cdot 10^{-6}$$

scartando ovviamente la soluzione negativa. Potreste obiettare: "ma con l'approssimazione avrei trovato $1.0 \cdot 10^{-6} M$, non è una differenza significativa, considerando la precisione delle costanti di equilibrio!". Sostanzialmente vero, ma facciamo l'esempio che la concentrazione di HCl sia $1.0 \cdot 10^{-8} M$. In questo caso con l'approssimazione avreste concluso che $[H^+] = [\text{Cl}^-] = 1.0 \cdot 10^{-8} M$, corrispondente addirittura a un pH = 8, cioè basico! Chiaramente è assurdo pensare che per aggiunta di un acido, per quanto diluito, si possa ottenere una soluzione basica. Risolvendo l'equazione di secondo grado si ottiene invece:

$$[H^+] = \frac{[\text{Cl}^-] \pm \sqrt{[\text{Cl}^-]^2 + 4K_w}}{2} = \frac{1.0 \cdot 10^{-8} \pm \sqrt{1.0 \cdot 10^{-16} + 4.0 \cdot 10^{-14}}}{2} =$$

$$= \frac{1.0 \cdot 10^{-6} \pm 2.00 \cdot 10^{-7}}{2} = 1.05 \cdot 10^{-7}$$

pari a un pH di 6.98, ossia appena sotto la neutralità, ma acido, come era logico aspettarsi.
Chiaro che quanto appena esposto vale anche nel caso in cui, anziché un acido forte, si usi una base forte come NaOH 0.01 M:

\[
\left[H^+ \right] \left[OH^- \right] = 1.0 \cdot 10^{-14}
\]

\[
\left[H^+ \right] + \left[Na^+ \right] = \left[OH^- \right] \Rightarrow \left[OH^- \right] = \frac{K_w}{\left[OH^- \right]} + \left[Na^+ \right]
\]

da cui, moltiplicando entrambi i membri per \([OH^-]\) e riarrangiando si ottiene:

\[
\left[OH^- \right]^2 - \left[Na^+ \right] \left[OH^- \right] - K_w = 0
\]

\[
\left[OH^- \right] = \frac{\left[Na^+ \right] \pm \sqrt{\left[Na^+ \right]^2 + 4K_w}}{2} \quad (43)
\]

Se \([Na^+]^2 \gg 4K_w\), l'equazione (43) si riduce (scartando come prima la soluzione \([OH^-] = 0\)) a \([OH^-] = [Na^+]\).

Nell'esempio sopra \(0.01 \gg 4 \cdot 10^{-14}\), quindi l'approssimazione è legittima e possiamo concludere che \([OH^-] = [Na^+] = 0.01 \text{ M}\), altrimenti come per HCl si sarebbe dovuta risolvere l'equazione di secondo grado completa (43).
Riportando tutto in un grafico, quanto sopra riportato dovrebbe essere ancora più chiaro:

Tabella:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>[HCl]</td>
<td>[NaOH]</td>
<td>[H+]</td>
<td>[NaOH]</td>
<td>-log[H+]</td>
<td>-log[NaOH]</td>
<td>pH (HCl)</td>
<td>pH (HCl)</td>
<td>pH (NaOH)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{-14}</td>
<td>10^{-14}</td>
<td>10^{-7}</td>
<td>10^{-7}</td>
<td>7.00</td>
<td>7.00</td>
<td></td>
</tr>
<tr>
<td>3.16E+14</td>
<td>3.16E+14</td>
<td>10^{-7}</td>
<td>10^{-7}</td>
<td>7.00</td>
<td>7.00</td>
<td></td>
</tr>
<tr>
<td>1.00E+13</td>
<td>1.00E+13</td>
<td>10^{-7}</td>
<td>10^{-7}</td>
<td>7.00</td>
<td>7.00</td>
<td></td>
</tr>
<tr>
<td>3.16E+13</td>
<td>3.16E+13</td>
<td>10^{-7}</td>
<td>10^{-7}</td>
<td>7.00</td>
<td>7.00</td>
<td></td>
</tr>
<tr>
<td>1.00E+12</td>
<td>1.00E+12</td>
<td>10^{-7}</td>
<td>10^{-7}</td>
<td>7.00</td>
<td>7.00</td>
<td></td>
</tr>
</tbody>
</table>

Grafico:

Dipendenza del pH dalla concentrazione di acido o base forte

\[\text{pH in funzione della concentrazione di acido/base forte} \]

\[-\log[\text{conc}] \]

Formule:

- \(A_2 = 10^{A} \)
- \(B^2 = 10^{B} \)
- \(C_2 = (A_2 + \sqrt{(A_2^2 + 4 \times B^2)}) / 2 \)
- \(D^2 = \sqrt{(B^2 + 4 \times C_2)} / 2 \)
- \(G = -\log (C_2) \)
- \(H_2 = -\log (D^2) \)
Come fatto in precedenza per trovare la solubilità di CaF$_2$, per calcolare il pH di una soluzione di acido acetico (acido debole) 0.1 M impostiamo tutti gli equilibri esistenti in soluzione; $F(\text{CH}_3\text{COOH})$ indica la concentrazione iniziale di acido acetico in soluzione, la stessa che si avrebbe se non avesse luogo alcuna dissociazione (concentrazione formale):

$$\text{CH}_3\text{COOH} \rightleftharpoons K_a \text{ H}^+ + \text{CH}_3\text{COO}^-$$

$$K_a = \frac{[\text{H}^+][\text{CH}_3\text{COO}^-]}{[\text{CH}_3\text{COOH}]} = 1.75 \cdot 10^{-5} \quad (43)$$

$$\text{H}_2\text{O} \rightleftharpoons K_w \text{ H}^+ + \text{OH}^-$$

$$K_w = [\text{H}^+][\text{OH}^-] = 1.0 \cdot 10^{-14} \quad (44)$$

bilancio di carica:

$$[\text{H}^+] = [\text{CH}_3\text{COO}^-] + [\text{OH}^-] \quad (45)$$

bilancio di massa:

$$F_{\text{CH}_3\text{COOH}} = [\text{CH}_3\text{COOH}] + [\text{CH}_3\text{COO}^-] \quad (46)$$

Equilibri di acidi deboli: l'acido acetico
Dall'equazione (46) si ricava:

\[
\left[\text{CH}_3\text{COOH} \right] = F_{\text{CH}_3\text{COOH}} - \left[\text{CH}_3\text{COO}^- \right] \quad (47)
\]

Sostituendo nell'equazione (43):

\[
K_a = \frac{[\text{H}^+][\text{CH}_3\text{COO}^-]}{F_{\text{CH}_3\text{COOH}} - \left[\text{CH}_3\text{COO}^- \right]} \Rightarrow K_a \left(F_{\text{CH}_3\text{COOH}} - \left[\text{CH}_3\text{COO}^- \right] \right) = [\text{H}^+][\text{CH}_3\text{COO}^-]
\]

\[
\left[\text{CH}_3\text{COO}^- \right] = \frac{K_a F_{\text{CH}_3\text{COOH}}}{K_a + [\text{H}^+]} \quad (48)
\]

Sostituendo nell'equazione (45):

\[
[\text{H}^+] = [\text{CH}_3\text{COO}^-] + \frac{K_w}{[\text{H}^+]} \Rightarrow [\text{H}^+] - \frac{K_a F_{\text{CH}_3\text{COOH}}}{K_a + [\text{H}^+]} - \frac{K_w}{[\text{H}^+]} = 0 \quad (49)
\]

Quest'ultima equazione è un'equazione di 3° grado, che si può risolvere facilmente in modo numerico, ricavando il valore di \([\text{H}^+]\) ottimale che la soddisfa.
A questo punto dovreste essere in grado di impostare lo spreadsheet che vi fornisce il valore ottimale di pH che minimizza l'equazione del bilancio di carica; si trova pH = 2.88. Ma non c'è un modo più semplice?

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[CH3COC-]</td>
<td>[OH-]</td>
<td>[CH3COOH]</td>
<td>[H+]</td>
<td>pH</td>
<td>Bilancio di carica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9.94E-02</td>
<td>1E-07</td>
<td>5.68E-04</td>
<td>1.00E-07</td>
<td>7.00000</td>
<td>-9.94E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9.46E-02</td>
<td>1E-08</td>
<td>5.41E-03</td>
<td>1.00E-06</td>
<td>6.00000</td>
<td>-9.46E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6.36E-02</td>
<td>1E-09</td>
<td>3.04E-02</td>
<td>1.00E-05</td>
<td>5.00000</td>
<td>-8.36E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.49E-02</td>
<td>1E-10</td>
<td>8.51E-02</td>
<td>1.00E-04</td>
<td>4.00000</td>
<td>-1.48E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.72E-03</td>
<td>1E-11</td>
<td>9.83E-02</td>
<td>1.00E-03</td>
<td>3.00000</td>
<td>-7.20E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.75E-04</td>
<td>1E-12</td>
<td>9.98E-02</td>
<td>1.00E-02</td>
<td>2.00000</td>
<td>9.83E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5.50E-04</td>
<td>3.16E-12</td>
<td>9.94E-02</td>
<td>3.16E-03</td>
<td>2.50000</td>
<td>2.61E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9.75E-04</td>
<td>5.62E-12</td>
<td>9.90E-02</td>
<td>1.78E-03</td>
<td>2.75000</td>
<td>8.04E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.09E-03</td>
<td>6.31E-12</td>
<td>9.89E-02</td>
<td>1.58E-03</td>
<td>2.80000</td>
<td>4.93E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1.37E-03</td>
<td>7.94E-12</td>
<td>9.86E-02</td>
<td>1.26E-03</td>
<td>2.60000</td>
<td>-1.12E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.22E-03</td>
<td>7.08E-12</td>
<td>9.88E-02</td>
<td>1.41E-03</td>
<td>2.65000</td>
<td>1.89E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1.28E-03</td>
<td>7.41E-12</td>
<td>9.87E-02</td>
<td>1.38E-03</td>
<td>2.67000</td>
<td>8.83E-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1.31E-03</td>
<td>7.59E-12</td>
<td>9.87E-02</td>
<td>1.32E-03</td>
<td>2.88000</td>
<td>8.14E-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.34E-03</td>
<td>7.76E-12</td>
<td>9.87E-02</td>
<td>1.28E-03</td>
<td>2.89000</td>
<td>-6.20E-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.31E-03</td>
<td>7.6E-12</td>
<td>9.87E-02</td>
<td>1.32E-03</td>
<td>2.88100</td>
<td>2.13E-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1.32E-03</td>
<td>7.62E-12</td>
<td>9.87E-02</td>
<td>1.31E-03</td>
<td>2.68200</td>
<td>-1.99E-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1.31E-03</td>
<td>7.61E-12</td>
<td>9.87E-02</td>
<td>1.31E-03</td>
<td>2.88150</td>
<td>-8.81E-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1.31E-03</td>
<td>7.61E-12</td>
<td>9.87E-02</td>
<td>1.31E-03</td>
<td>2.88130</td>
<td>3.22E-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.31E-03</td>
<td>7.61E-12</td>
<td>9.87E-02</td>
<td>1.31E-03</td>
<td>2.88140</td>
<td>-2.79E-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1.31E-03</td>
<td>7.61E-12</td>
<td>9.87E-02</td>
<td>1.31E-03</td>
<td>2.88135</td>
<td>2.13E-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1.31E-03</td>
<td>7.61E-12</td>
<td>9.87E-02</td>
<td>1.31E-03</td>
<td>2.88138</td>
<td>-3.88E-08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Equilibri di acidi deboli: l'acido acetico
Analisi dei Farmaci I - Mod. 1

Equilibri di acidi deboli: l'acido acetico

<table>
<thead>
<tr>
<th></th>
<th>[CH₃COO⁻]</th>
<th>[OH⁻]</th>
<th>[CH₃COOH]</th>
<th>[H⁺]</th>
<th>pH</th>
<th>(K_a)</th>
<th>(K_w)</th>
<th>(F(CH₃COOH))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.75E-05</td>
<td>1E-14</td>
<td>1.00E-01</td>
<td>1.00E-00</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.11E-06</td>
<td>1.78E-14</td>
<td>1.00E-01</td>
<td>5.62E-01</td>
<td>0.2500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5.53E-06</td>
<td>3.18E-14</td>
<td>1.00E-01</td>
<td>3.18E-01</td>
<td>0.5000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9.84E-06</td>
<td>5.52E-14</td>
<td>1.00E-01</td>
<td>1.78E-01</td>
<td>0.7500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.11E-05</td>
<td>1.78E-13</td>
<td>1.00E-01</td>
<td>1.00E-01</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.75E-05</td>
<td>1E-13</td>
<td>1.00E-01</td>
<td>1.00E-01</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3.11E-05</td>
<td>1.78E-13</td>
<td>1.00E-01</td>
<td>5.62E-02</td>
<td>1.2500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5.53E-05</td>
<td>3.16E-13</td>
<td>9.99E-02</td>
<td>3.16E-02</td>
<td>1.5000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9.83E-05</td>
<td>5.62E-13</td>
<td>9.99E-02</td>
<td>1.78E-02</td>
<td>1.7500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.75E-04</td>
<td>1E-12</td>
<td>9.98E-02</td>
<td>1.00E-02</td>
<td>2.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3.10E-04</td>
<td>1.78E-12</td>
<td>9.97E-02</td>
<td>5.62E-03</td>
<td>2.2500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>5.50E-04</td>
<td>3.16E-12</td>
<td>9.94E-02</td>
<td>3.16E-03</td>
<td>2.5000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>9.75E-04</td>
<td>5.62E-12</td>
<td>9.90E-02</td>
<td>1.78E-03</td>
<td>2.7500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1.72E-03</td>
<td>1E-11</td>
<td>9.83E-02</td>
<td>1.00E-03</td>
<td>3.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3.02E-03</td>
<td>1.78E-11</td>
<td>9.70E-02</td>
<td>5.62E-04</td>
<td>3.2500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>5.24E-03</td>
<td>3.16E-11</td>
<td>9.48E-02</td>
<td>3.16E-04</td>
<td>3.5000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>8.96E-03</td>
<td>5.62E-11</td>
<td>9.10E-02</td>
<td>1.78E-04</td>
<td>3.7500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1.49E-02</td>
<td>1E-10</td>
<td>8.51E-02</td>
<td>1.00E-04</td>
<td>4.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2.37E-02</td>
<td>1.78E-10</td>
<td>7.83E-02</td>
<td>5.62E-05</td>
<td>4.2500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3.56E-02</td>
<td>3.16E-10</td>
<td>6.44E-02</td>
<td>3.16E-05</td>
<td>4.5000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>4.95E-02</td>
<td>5.62E-10</td>
<td>5.04E-02</td>
<td>1.78E-05</td>
<td>4.7500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>6.38E-02</td>
<td>1E-09</td>
<td>3.64E-02</td>
<td>1.00E-05</td>
<td>5.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>7.57E-02</td>
<td>1.78E-09</td>
<td>2.43E-02</td>
<td>5.62E-06</td>
<td>5.2500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>8.47E-02</td>
<td>3.16E-09</td>
<td>1.53E-02</td>
<td>3.16E-06</td>
<td>5.5000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>9.95E-02</td>
<td>5.62E-09</td>
<td>9.22E-03</td>
<td>1.78E-06</td>
<td>5.7500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>9.46E-02</td>
<td>1E-08</td>
<td>5.41E-03</td>
<td>1.00E-06</td>
<td>6.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>9.68E-02</td>
<td>1.78E-08</td>
<td>3.11E-03</td>
<td>5.62E-07</td>
<td>6.2500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>9.62E-02</td>
<td>3.16E-08</td>
<td>1.77E-03</td>
<td>3.16E-07</td>
<td>6.5000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>9.90E-02</td>
<td>5.62E-08</td>
<td>1.01E-03</td>
<td>1.78E-07</td>
<td>6.7500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>9.94E-02</td>
<td>1E-07</td>
<td>5.68E-04</td>
<td>1.00E-07</td>
<td>7.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>9.97E-02</td>
<td>1.78E-07</td>
<td>3.20E-04</td>
<td>5.62E-08</td>
<td>7.2500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>9.95E-02</td>
<td>3.16E-07</td>
<td>1.80E-04</td>
<td>3.16E-08</td>
<td>7.5000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>9.99E-02</td>
<td>5.62E-07</td>
<td>1.02E-04</td>
<td>1.78E-08</td>
<td>7.7500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>9.99E-02</td>
<td>0.000001</td>
<td>6.71E-05</td>
<td>1.00E-08</td>
<td>8.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>1.00E-01</td>
<td>1.78E-06</td>
<td>3.21E-05</td>
<td>5.62E-09</td>
<td>8.2500</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Alla luce del risultato ottenuto \([H^+] = [CH_3COO^-] = 1.31 \cdot 10^{-3}, [OH^-] = 7.61 \cdot 10^{-12} \), riconsideriamo criticamente l'equazione (45):

\[
[H^+] = [CH_3COO^-] + [OH^-] \quad (45)
\]

Nell'esempio dell'acido acetico 0.1 M appena visto, la concentrazione degli ioni idrossido è molto inferiore a quella degli ioni acetato, e quindi la (45) si può semplificare a:

\[
[H^+] = [CH_3COO^-] \quad (50)
\]

Effettuando questa semplificazione, l'equazione (43) diventa di facile risoluzione:

\[
K_a = \frac{[H^+][CH_3COO^-]}{F_{CH_3COOH} - [CH_3COO^-]} = \frac{[H^+]^2}{F_{CH_3COOH} - [H^+]} \Rightarrow [H^+]^2 + K_a [H^+] - K_a F_{CH_3COOH} = 0 \quad (51)
\]

\[
[H^+] = \frac{-K_a \pm \sqrt{K_a^2 + 4K_a F_{CH_3COOH}}}{2} = 1.31 \cdot 10^{-3}
\]

E, come atteso, si arriva allo stesso risultato che con il trattamento sistematico completo. La semplificazione dell'equazione (45) è lecita a patto che l'acido non sia troppo debole e/o troppo diluito.
L'acido borico è un acido molto debole, con $K_a = 5.81 \cdot 10^{-10}$. Utilizzando l'equazione (51) per calcolare il pH di una soluzione di acido borico $1.0 \cdot 10^{-5}$ M si trova:

$$\left[H^+ \right] = \frac{-K_a \pm \sqrt{K_a^2 + 4K_aF_{H_3BO_3}}}{2} = 7.59 \cdot 10^{-8} \Rightarrow \text{pH} = 7.12$$

Questo risultato è chiaramente sbagliato, dal momento che non è possibile che una soluzione di un acido, per quanto debole e diluito, abbia un pH leggermente basico.
Se non si introduce la semplificazione $\left[H^+ \right] = \left[H_2BO_3^- \right]$, come mostrato nelle prossime slide, si trova un pH di 6.90, che è un valore ragionevole.
Considerando l'equazione (52) e i valori trovati per le concentrazioni di ione borato e idrossido all'equilibrio, è chiaro che le due concentrazioni sono di grandezza comparabile e non autorizzano la semplificazione $\left[H^+ \right] = \left[H_2BO_3^- \right]$.

$$\left[H^+ \right] = \left[H_2BO_3^- \right] + \left[OH^- \right] \quad (52)$$

Alla luce di questi risultati, non stupitevi quando in laboratorio, misurando il pH di una soluzione diluita di acido borico con una cartina universale, non vedrete nessuna variazione rispetto al pH dell'acqua deionizzata: quest'ultima, non essendo bollita di fresco, avrà già un pH tra 6 e 7 per effetto della dissoluzione della CO$_2$ atmosferica. Il pH acido indurà un'ulteriore retrocessione dell'equilibrio di dissociazione dell'acido borico verso sinistra, cosicché il pH non subirà sostanzialmente alcuna variazione.
\[
\left[H^+ \right] = \left[H_2BO_3^- \right] + \left[OH^- \right] \quad (52)
\]

Dal momento che all'equilibrio \(\left[H_2BO_3^- \right] = 4.60 \cdot 10^{-8} \) e \(\left[OH^- \right] = 7.96 \cdot 10^{-8} \), chiaramente non è lecito trascurare \(\left[OH^- \right] \) nell'equazione (52).

<table>
<thead>
<tr>
<th></th>
<th>H2BO3-</th>
<th>OH-</th>
<th>H2O3</th>
<th>[H+]</th>
<th>pH</th>
<th>Bilancio di carica</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5.76E-08</td>
<td>1E-07</td>
<td>9.94E-08</td>
<td>100E-07</td>
<td>7.0000</td>
<td>-5.76E-08</td>
</tr>
<tr>
<td>3</td>
<td>5.18E-09</td>
<td>1E-08</td>
<td>9.99E-08</td>
<td>100E-06</td>
<td>6.0000</td>
<td>9.84E-07</td>
</tr>
<tr>
<td>4</td>
<td>1.03E-08</td>
<td>3.16E-08</td>
<td>9.98E-08</td>
<td>3.16E-07</td>
<td>6.5000</td>
<td>2.66E-07</td>
</tr>
<tr>
<td>5</td>
<td>3.65E-08</td>
<td>5.31E-08</td>
<td>9.98E-08</td>
<td>5.31E-07</td>
<td>6.8000</td>
<td>5.80E-08</td>
</tr>
<tr>
<td>6</td>
<td>4.59E-08</td>
<td>7.94E-08</td>
<td>9.95E-08</td>
<td>7.94E-07</td>
<td>6.9000</td>
<td>5.21E-10</td>
</tr>
<tr>
<td>7</td>
<td>5.15E-08</td>
<td>8.91E-08</td>
<td>9.95E-08</td>
<td>8.91E-07</td>
<td>6.9000</td>
<td>-2.84E-08</td>
</tr>
<tr>
<td>8</td>
<td>4.81E-08</td>
<td>8.32E-08</td>
<td>9.95E-08</td>
<td>8.32E-07</td>
<td>6.9200</td>
<td>-1.10E-08</td>
</tr>
<tr>
<td>9</td>
<td>4.70E-08</td>
<td>8.13E-08</td>
<td>9.95E-08</td>
<td>8.13E-07</td>
<td>6.9100</td>
<td>-5.26E-09</td>
</tr>
<tr>
<td>10</td>
<td>4.65E-08</td>
<td>8.04E-08</td>
<td>9.95E-08</td>
<td>8.04E-07</td>
<td>6.9200</td>
<td>-2.37E-09</td>
</tr>
<tr>
<td>11</td>
<td>4.60E-08</td>
<td>7.98E-08</td>
<td>9.95E-08</td>
<td>7.98E-07</td>
<td>6.9200</td>
<td>-5.68E-11</td>
</tr>
<tr>
<td>12</td>
<td>4.61E-08</td>
<td>7.99E-08</td>
<td>9.95E-08</td>
<td>7.99E-07</td>
<td>6.9200</td>
<td>-3.35E-10</td>
</tr>
<tr>
<td>13</td>
<td>4.60E-08</td>
<td>7.95E-08</td>
<td>9.95E-08</td>
<td>7.95E-07</td>
<td>6.9000</td>
<td>2.32E-10</td>
</tr>
<tr>
<td>14</td>
<td>4.60E-08</td>
<td>7.95E-08</td>
<td>9.95E-08</td>
<td>7.95E-07</td>
<td>6.9000</td>
<td>5.88E-11</td>
</tr>
<tr>
<td>15</td>
<td>4.60E-08</td>
<td>7.95E-08</td>
<td>9.95E-08</td>
<td>7.95E-07</td>
<td>6.9000</td>
<td>9.94E-13</td>
</tr>
</tbody>
</table>

Equilibri di acidi deboli: l'acido borico
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>[H₂BO₃⁻]</td>
<td>[OH⁻]</td>
<td>[H₃BO₃]</td>
<td>[H⁺]</td>
<td>pH</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5.81E-15</td>
<td>1E-14</td>
<td>1.00E-05</td>
<td>1.00E-00</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.03E-14</td>
<td>1.78E-14</td>
<td>1.00E-05</td>
<td>5.62E-01</td>
<td>0.2500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.84E-14</td>
<td>3.16E-14</td>
<td>1.00E-05</td>
<td>3.16E-01</td>
<td>0.5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.27E-14</td>
<td>5.62E-14</td>
<td>1.00E-05</td>
<td>1.78E-01</td>
<td>0.7500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.81E-14</td>
<td>1E-13</td>
<td>1.00E-05</td>
<td>1.00E-01</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.03E-13</td>
<td>1.78E-13</td>
<td>1.00E-05</td>
<td>5.62E-02</td>
<td>1.2500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.84E-13</td>
<td>3.16E-13</td>
<td>1.00E-05</td>
<td>3.16E-02</td>
<td>1.5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3.27E-13</td>
<td>5.62E-13</td>
<td>1.00E-05</td>
<td>1.78E-02</td>
<td>1.7500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5.81E-13</td>
<td>1E-12</td>
<td>1.00E-05</td>
<td>1.00E-02</td>
<td>2.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1.03E-12</td>
<td>1.78E-12</td>
<td>1.00E-05</td>
<td>5.62E-03</td>
<td>2.2500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.84E-12</td>
<td>3.16E-12</td>
<td>1.00E-05</td>
<td>3.16E-03</td>
<td>2.5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>3.27E-12</td>
<td>5.62E-12</td>
<td>1.00E-05</td>
<td>1.78E-03</td>
<td>2.7500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>5.81E-12</td>
<td>1E-11</td>
<td>1.00E-05</td>
<td>1.00E-03</td>
<td>3.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.03E-11</td>
<td>1.78E-11</td>
<td>1.00E-05</td>
<td>5.62E-04</td>
<td>3.2500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.84E-11</td>
<td>3.16E-11</td>
<td>1.00E-05</td>
<td>3.16E-04</td>
<td>3.5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3.27E-11</td>
<td>5.62E-11</td>
<td>1.00E-05</td>
<td>1.78E-04</td>
<td>3.7500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>5.81E-11</td>
<td>1E-10</td>
<td>1.00E-05</td>
<td>1.00E-04</td>
<td>4.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1.03E-10</td>
<td>1.78E-10</td>
<td>1.00E-05</td>
<td>5.62E-05</td>
<td>4.2500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.84E-10</td>
<td>3.16E-10</td>
<td>1.00E-05</td>
<td>3.16E-05</td>
<td>4.5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3.27E-10</td>
<td>5.62E-10</td>
<td>1.00E-05</td>
<td>1.78E-05</td>
<td>4.7500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>5.81E-10</td>
<td>1E-09</td>
<td>1.00E-05</td>
<td>1.00E-05</td>
<td>5.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1.03E-09</td>
<td>1.78E-09</td>
<td>1.00E-05</td>
<td>5.62E-06</td>
<td>5.2500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1.84E-09</td>
<td>3.16E-09</td>
<td>1.00E-05</td>
<td>3.16E-06</td>
<td>5.5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>3.27E-09</td>
<td>5.62E-09</td>
<td>1.00E-05</td>
<td>1.78E-06</td>
<td>5.7500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>5.81E-09</td>
<td>1E-08</td>
<td>9.99E-06</td>
<td>1.00E-06</td>
<td>8.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1.03E-08</td>
<td>1.78E-08</td>
<td>9.99E-06</td>
<td>5.62E-07</td>
<td>8.2500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1.83E-08</td>
<td>3.16E-08</td>
<td>9.98E-06</td>
<td>3.16E-07</td>
<td>6.5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>3.26E-08</td>
<td>5.62E-08</td>
<td>9.97E-06</td>
<td>1.78E-07</td>
<td>6.7500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>5.78E-08</td>
<td>1E-07</td>
<td>9.94E-06</td>
<td>1.00E-07</td>
<td>7.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>1.02E-07</td>
<td>1.78E-07</td>
<td>9.90E-06</td>
<td>5.62E-08</td>
<td>7.2500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1.80E-07</td>
<td>3.16E-07</td>
<td>9.82E-06</td>
<td>3.16E-08</td>
<td>7.5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>3.16E-07</td>
<td>5.62E-07</td>
<td>9.66E-06</td>
<td>1.78E-08</td>
<td>7.7500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>5.49E-07</td>
<td>0.000001</td>
<td>9.45E-06</td>
<td>1.00E-08</td>
<td>8.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>9.36E-07</td>
<td>1.78E-06</td>
<td>9.06E-06</td>
<td>5.62E-09</td>
<td>8.2500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Equilibri di acidi deboli: l'acido borico

.Concentrazione specie in funzione del pH

\[
\text{Concentrazione specie in funzione del pH}
\]

\[
\text{pH}
\]
Il grado di dissociazione di un acido debole, o grado di associazione di una base debole, α, è la frazione di acido o di base debole che è presente in soluzione in forma, rispettivamente, deprotonata o protonata. In base a questa definizione:

$$\alpha = \frac{[A^-]}{[HA] + [A^-]} = \frac{[A^-]}{F_{HA}}$$

grado di dissociazione di un acido debole

$$\alpha = \frac{[BH^+]}{[B] + [BH^+]} = \frac{[BH^+]}{F_B}$$

grado di associazione di una base debole

Grado di dissociazione di CH$_3$COOH in funzione del pH

Grado di associazione di NH$_3$ in funzione del pH

Equilibri di acidi e basi deboli: il grado di dissociazione