

Borgogno Mondino Enrico 2021

Spectral Indices Meaning and interpretation in the space and time domain (time series)

Borgogno Mondino Enrico 2021

Borgogno Mondino Enrico 2021

@ / E 4

WORKING WITH XS IMAGERY SPECTRAL INDICES

ONCE IMAGES HAVE BEEN CALIBRATED (i.e. DN converted to the at-the-ground reflectance values) in some applications, it can be preferable to synthesize the spectral content of the whole spectral signature (typically more than 6 bands) focusing on a limited number of bands.

Bands of interest can be combined along mathematical formulas whose meaning can be directly related to the surface feature of interest (vegegative activity, water content, snow state, etc.). Formulas relating bands of a XS image to generate a synthetic information for a specific application are called **SPECTRAL INDICES**. They are computed at PIXEL LEVEL generating new raster layers containing the result of the formula obtained with the local values of the involved bands..

 $\phi \neq \equiv \phi$

SPECTRAL INDICES FOR VEGETATION

 $\phi \neq \equiv \phi$

DISAF

SPECTRAL INDICES FOR VEGETATION

 $NDRE = \frac{NIR - RedEdge}{NIR + RedEdge}$

The red edge is the part of the spectrum centred around 715 nm (S2 band 5 or 6) .

ENHANCED VEGETATION INDEX, EVI

 $EVI = 2.5 \cdot \frac{NIR - RED}{NIR + 6 \cdot RED - 7.5 \cdot BLUE + 1}$

Differently from NDVI, EVI is a vegetation index optimized for highly vegetated areas:.

SOIL ADJUSTED VEGETATION INDEX, SAVI

 $SAVI = (1 + L) \cdot \frac{NIR - RED}{NIR + RED + L}$

SAW is a vegetation index that takes into account bares soil background, using the empirical factor L to tune reflectances according to cover type hosting vegetation. L ranges between -0.9 and +1.6. Higher the vegetation cover, lower L value.

 $\langle \phi \rangle \equiv \phi$

SPECTRAL INDICES FOR VEGETATION

Borgogno Mondino Enrico 2021

The most of spectral indices aimed at synthesizing similar properties of surfaces are highly correlated in spite of any literature fostering.

ino Enrico 2021

SPECTRAL INDICES FOR VEGETATION

NDRE provides a measurement that is able to catch information about a deeper layer of vegetation giving a better insight at permanent or later stages of crops, being Red Edge wavelength able to better penetrate down into the canopy.

NDRE is said to be also less sensitive to saturation related to dense vegetation. Consequently, NDRE can sometimes provide a better measurement of variability in an area that NDVI would see as uniform.

DISAFA

Borgogno I

 $\phi \neq \equiv \phi$

SPECTRAL INDICES WATER CONTENT

NORMALIZED DIFFERENCE WATER INDEX

NDWI is ordinarily related to surface water content. Its meaning (therefore its value) depends on the explored cover type. Higher is NDWI value, higher the water content. Its interpretation cannot be given without taking care about stability of observed surface.

In SPACE DOMAIN it defines the relative water content of pixels within a patch that is known to host the same land cover type

NIR - MIR1/2

 $\frac{1}{NIR + MIR1/2}$

 $NDWI = \frac{N}{2}$

In TIME DOMAIN variations are significant only if the pixel does not change its nature (e.g. during transitional phase of crop growing variations in time are not significant)

In this case, NDVI can be used to test stability of crop.

A time series of NDWI over changing areas ha NO MEANING and can drive to COMPLETELY WRONG CONCLUSIONS.

Borgogno Mondino Enrico 202

	Index	Formula	Estimated Parameter		Index		Formula	Estimated Parameter	
NDVI	Normalized Difference Vegetation Index	$\frac{\rho_{NIR} - \rho_{RED}}{\rho_{NIR} + \rho_{RED}}$	LAI	11	MCARI	Modified Chlorophhyll Absorption in Reflectance Index	$[(\rho_{700} - \rho_{670}) - 0.2 \cdot (\rho_{700} - \rho_{550})] \cdot \frac{\rho_{700}}{\rho_{670}}$	Leaf Chlorophyll Content	
SR	Simple Ratio Index	$\frac{\rho_{NIR}}{\rho_{RED}}$			TCARL	Transformed Chlorophhyll Absorption in Reflectance	$3 \cdot [(a_{700} - a_{770}) - 0.2 \cdot (a_{700} - a_{770})] \cdot \frac{\rho_{700}}{\rho_{700}}$	Leaf Chlorophyll	
PVI	Perpendicular Vegetation Index	$\sqrt{(\rho_{\textit{NIR_soil}} - \rho_{\textit{NIR_vege}})^2 + (\rho_{\textit{NIR_soil}} - \rho_{\textit{NIR_vege}})^2}$	LAI		TOAIN	Index	- 10-700 - 16703 0-700 - 25033 ρ ₆₇₀	Content	
MTVI	Modified Triangular Vegetation Index	$1.2 \cdot [1.2 \cdot (\rho_{800} - \rho_{550}) - 2.5 \cdot (\rho_{670} - \rho_{550})]$	LAI		ZM	Zarco-Miller	<u>ρ₇₅₀</u> ρ ₇₁₀	Leaf Chlorophyll Content	
RDVI	Renormalized Difference Vegetation Index	$\frac{\rho_{N800} - \rho_{670}}{\sqrt{\rho_{800} + \rho_{670}}}$	PAR	JU	PRI	Photochemical Reflectance Index	$\frac{\rho_{531} - \rho_{570}}{\rho_{531} + \rho_{570}}$	Efficenza fotosintetica	
TVI	Triangular Vegetation Index	$0.5 \cdot [120 \cdot (\rho_{750} - \rho_{550}) - 200 \cdot (\rho_{670} - \rho_{550})]$	LAI		RGI, BGI, BRI	Blue, Red, Green Indices	$\frac{\rho_{690}}{\rho_{550}}, \frac{\rho_{400}}{\rho_{550}}, \frac{\rho_{400}}{\rho_{690}}$	Leaf Chlorophyll Content	
OSAVI	Optimized Soil Adjusted Vegetation Index	$(1+0.16) \cdot \frac{\rho_{800} - \rho_{670}}{\rho_{800} + \rho_{670} + 0.16}$	Leaf Chlorophyll Content		WDRVI	Wide Dynamic Range Vegetation Index	$\frac{a \cdot \rho_{NIR} - \rho_{RED}}{a \cdot \rho_{NIR} + \rho_{RED}}$	LAI	

Q / E 9

DISAFA

SPECTRAL INDICES

B	01	Solution III	DICIN Formula	Estimated Parameter
	SIPI	Structure-Intensive Pigment Index	(p800–p450)/(p800+p650)	carotenoids
B		Gitelson Car	$[\rho(510-520)^{-1}-\rho(540-560)^{-1}]*\rho(760-800)$	carotenoids
	SR	Blackburn Car	(p800–p470)/(p800+p470)	carotenoids
		Gitelson Anth	$[\rho(540-560)^{-1}-\rho(690-710)^{-1}]*\rho(760-800)$	carotenoids
B	01		Formula	Parametro stimato
D	NDWI	Normalized Difference Water Index	(ρ860–ρ1240)/(ρ860+ρ1240)	Vegetation liquid water changes
D	NDII	Normalized Difference Infrared Index	(ρ850–ρ1650)/(ρ850+ρ4650)	Leaf equivalent water thickness

4/84

DISAFA

DISAFA

SPECTRAL INDICES- ONLINE DATBASES

https://www.indexdatabase.de/search/?s=NDVI

Index DataBa A database for remote sensing indices	SC NDVI	o En	rice		
Search results for »NDVI«					
27 Indices 8 References					
Indices					
Indices Nr Name	Abbrev.	Formula	Variables		
Indices Nr Name 1 Atmospherically Resistant Vegetation Index	Abbrev. ARVI	Formula NIR-RED-y(RED-BLUE) NIR+RED-y(RED-BLUE)	Variables NIR = [781:1399]	220	
Indices Nr Name 1 Atmospherically Resistant Vegetation Index 2 Atmospherically Resistant Vegetation Index 2	Abbrev. ARVI ARVI2	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Variables NIR = [781:1399]	720	
Nr Name 1 Atmospherically Resistant Vegetation Index 2 Atmospherically Resistant Vegetation Index 2 3 CASI NDVI	Abbrev. ARVI ARVI2 CASI NDVI	Formula NIR-RED-y(RED-BLUE) NIR+RED-y(RED-BLUE) -0.18 + 1.17 (NIR+RED (1770:780+1784:700)-(1655:665)+1676:685) (1770:780+1784:700)-(1655:665)+1676:685)	Variables NIR = [781:1399]	20	
Nr Name 1 Atmospherically Resistant Vegetation Index 2 Atmospherically Resistant Vegetation Index 2 3 CASI NDVI 4 Crop water stress index	Abbrev. ARVI ARVI2 CASI NDVI CWSI	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Variables NIR = [781:1399]	20	
Nr Name 1 Atmospherically Resistant Vegetation Index 2 Atmospherically Resistant Vegetation Index 2 3 CASI NDVI 4 Crop water stress index 5 Green Normalized Difference Vegetation Index	Abbrev. ARVI ARVI2 CASI NDVI CWSI GNDVI	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Variables NIR = [781:1399]	20	
Name Name 1 Atmospherically Resistant Vegetation Index 2 Atmospherically Resistant Vegetation Index 2 3 CASI NDVI 4 Crop water stress index 5 Green Normalized Difference Vegetation Index 6 Green-Blue NDVI	Abbrev. ARVI ARVI2 CASI NDVI CWSI GNDVI GBNDVI	Formula NIR-RED- $y(RED-BLUE)$ NIR+RED- $y(RED-BLUE)$ -0.18 + 1.17 ($\frac{NIR-RED}{NIR+RED}$) ([770:780]+[784:700])-([655:665]+[676:685] ([770:780]+[784:700])+([655:665]+[676:685] $\frac{C-A}{B-A}$ NIR-[640:570] NIR+[640:570] NIR-[640:570] NIR-(GREEN+BLUE) NIR-[640:570]	Variables NIR = [781:1399]	20	
Name Name 1 Atmospherically Resistant Vegetation Index 2 Atmospherically Resistant Vegetation Index 2 3 CASI NDVI 4 Crop water stress index 5 Green Normalized Difference Vegetation Index 6 Green-Blue NDVI 7 Green-Red NDVI	Abbrev. ARVI ARVI2 CASI NDVI CWSI GNDVI GBNDVI GRNDVI	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Variables NIR = [781:1399]	20	
Name 1 Atmospherically Resistant Vegetation Index 2 Atmospherically Resistant Vegetation Index 2 3 CASI NDVI 4 Crop water stress index 5 Green Normalized Difference Vegetation Index 6 Green-Relue NDVI 7 Green-Red NDVI 8 Modified NDVI	Abbrev. ARVI ARVI2 CASI NDVI CWSI GNDVI GBNDVI GRNDVI GRNDVI mNDVI	Formula NIR-RED- $y(RED-BLUE)$ NIR+RED- $y(RED-BLUE)$ O.18 + 1.17 ($NIR-RED$) (I770:780)+[784:700)-(I655:665)+I676:685) (I770:780)+[784:700)+(I655:665)+I676:685) (I770:780)+[784:700])+(I655:665)+I676:685) NIR-IGREEN+RED NIR-IGREEN+BLUE) NIR-(GREEN+BLUE) NIR+(GREEN+BLUE) NIR+(GREEN+RED) S00mm-680mm S00mm-680mm	Variables NIR = [781:1399]))	20	
Indices Nme 1 Atmospherically Resistant Vegetation Index 2 Atmospherically Resistant Vegetation Index 2 3 CASI NDVI 4 Crop water stress index 5 Green Normalized Difference Vegetation Index 6 Green-Relue NDVI 7 Green-Red NDVI 8 Modified NDVI 9 Normalized Difference 750/550 Green NDVI	Abbrev. ARVI ARVI2 CASI NDVI CWSI GNDVI GBNDVI GRNDVI MNDVI NDVIg	Formula NIR-RED- $y(RED-BLUE)$ NIR+RED- $y(RED-BLUE)$ NIR+RED- $y(RED-BLUE)$ (170:780)+[784:700)-[105:605]+[676:685] (1770:780)+[784:700])+(105:605]+[676:685] (1770:780)+[784:700])+(105:605]+[676:685] (1770:780)+[784:700])+(105:605]+[676:685] (1770:780)+[784:700])+(105:605] NIR-(GREEN+BLUE) NIR+(GREEN+BLUE) NIR+(GREEN+BLUE) NIR+(GREEN+BLUE) NIR+(GREEN+BLUE) S00mm-680mm 90mm-680mm 750mm-560mm 770mm-570m	Variables NIR = [781:1399]	20	
Indices Name 1 Atmospherically Resistant Vegetation Index 2 Atmospherically Resistant Vegetation Index 2 3 CASI NDVI 4 Crop water stress index 5 Green Normalized Difference Vegetation Index 6 Green-Red NDVI 7 Green-Red NDVI 8 Modified NDVI 9 Normalized Difference 750/550 Green NDVI 10 Normalized Difference 750/650	Abbrev. ARVI ARVI2 CASI NDVI CWSI GNDVI GBNDVI GRNDVI MNDVI NDVI9 NDVI750/65	Formula NIR-RED-g(RED-BLUE) NIR+RED-g(RED-BLUE) NIR+RED $-0.18 + 1.17 \left(\frac{NIR-RED}{NIR+RED} \right)$ (1770:780)+[784:700)-[(655:665)+(676:685] (1770:780)+[784:700]+((655:665)+(676:685] $C-A$ $B-A$ NIR-[G40:570] NIR+[640:570] NIR+(GREEN+BLUE) NIR+(GREEN+BLUE) NIR+(GREEN+BLUE) NIR+(GREEN+HED) S00nm-650nm 750nm-550nm 770nm-550nm 770nm-650nm 770nm-650nm 770nm-650nm 770nm-650nm	Variables NIR = [781:1399]	¥20	

Q / E P

What about working with no IMAGE calibration?

RESULTS ARE DIFFERENT since CALIBRATION COEFFICIENTS, BACKSCATTERING AND ATMOSPHERE TRANSMISSIVITY TERMS depends on BAND and ACQUISITION DATE/TIME.

Spectral indices, built as normalized RATIOS, can reduce difference. Nevertheless, some test done on satellite imagery proved that:

- 1. NDVI values from NOT CALIBRATED data is often UNDERESTIMATED (- 0.2, 0.3 NDVI points)
- Correlation (Pearson's r) between NDVI temporal profiles from calibrated and not calibrated images varies between 0.5 and 0.95 depending on the pixel.
- 3. Temporal comparisons from not calibrated data are not reliable at all.

Spectral signatures of the same pixel from calibrated (red) an not calibrated Landsat image

Borgogno Mondino Enico ZuZi

\$ Z = \$

Borgogno Mondino Enrico 2021 SPECTRAL INDICES

Exploring vegetation phenology - temporal profiles and metrics

Borgogno Mondino Enrico 2021

Borgogno Mondino Enrico 2021

@ / E 4

REMOTE SENSING IN THE TIME DOMAIN

Borgogno 2 MAIN APPROACHES ARE EXPECTED 11100

A) If the analysis just involves two time stages, i.e. AFTER – BEFORE, the approach is called CHANGE DETECTION. This approach is typical of analyses concerning geometric variations of land cover patches. It generally involves TWO CLASSIFICATIONS. Expected results are a quantification of changes (e.g. ha), a contingency matrix defining migration of classes and a map of occurred changes. INPUT data are, in general, 2 multispectral images properly selected, that permit to classify accurately land cover classes.

B) If the analysis is somehow continuous, tending to a monitoring approach, we more properly have to define it as MULTITEMPORAL ANALYSIS. The latter requires that the data to base deductions on are TIME SERIES of images, i.e. stacks of bands, indices, classifications organized in a chronological way to cover the reference period. In general, deductions are based on the joint interpretation of many sequential observations, having a proper time frequency. The observation period depends on the application: for example, precision farming generally require that an entire year is sampled and the correspondent image time series analysed to represent phenology of crops, or evapotranspiration seasonality, etc. Differently, climate change related effects are expected to be perceived along a wider time series covering some decades. INPUT data are, generally, time series of spectral indices maps, that are able to summarize the spectral content of a whole spectrum useful for the specific application we're facing (e.g. VI for phenology). Sometimes, analysis can rely on maps of estimates of a bio-physical parameter obtained by statistical (or machine learning) inference from remotely sensed images or derived indices (e.g. Evapotranspiration, GPP, FAPAR, LAI, etc.)

\$ 2 B \$

SPECTRAL INDICES TIME SERIES

If acquisitions of the same area are recurrent (e.g. satellite missions) a spectral index map can be computed for each passage. Consequently a time series (temporal stack) of index maps can be generated.

If the spectral index is a vegetation one, related time series can be used to interpret plant/crops phenology.

If time series include more years, yearly profiles can be compared and used to address proper management actions

 $\phi \neq \equiv \phi$

DISAF

MONITORING CROPS

 $\phi \neq \equiv \phi$

DISAFA

SPECTRAL INDICES TIME SERIES

令 / 目 ゆ

SPECTRAL INDICES TIME SERIES

SPECTRAL INDICES TIME SERIES

Borgogna Monding Enrico 2021

Not all the spectral indices can be opportunely read along time series! Reasonability of the approach has to be carefully considered.

Indices used to explore «relative» water quantity differences have to be interpreted admitting that observed surfaces are not changing (in type) spatially and temporally.

E.g. a crop field monitored along its growing season cannot give any information about temporal trend of water content since pixels are changing their innest nature while crop develops. Only at a mature stage this is achievable.

@ / E 4

DISAFA

NDVI MAP TIME SERIES

Sampled NDVI Temporal Profiles

 $\phi \neq \equiv \phi$

SENSITIVITY (PRECISION) OF SPECTRAL INDICES

Which VI differences are significant? It depends on the calibration quality of involved bands. VI is an indirect measure and, consequently, it absorbs all errors from partecipating players (i.e. at-the ground reflectance of involved bands)

An estimate of VI precision can be obtained by applying the Variance Propagation Law to its formula, once precision of reflectance measures is known.

With reference to NDV:

$$\sigma_{NDVI} = \sqrt{\left[\frac{2 \cdot \rho_{RED}}{(\rho_{NIR} + \rho_{RED})^2}\right]^2} \cdot \sigma_{NIR}^2 + \left[\frac{2 \cdot \rho_{NIR}}{(\rho_{NIR} + \rho_{RED})^2}\right]^2} \cdot \sigma_{RED}^2$$

$$f \sigma_{NR} = 0.026 \text{ and } \sigma_{RED} = 0.013 \text{ (Sentinel 2 L2A product)} \Rightarrow$$
A significant difference is the one having a value greater than the expected precision for its measurement. This is true for VI differences in TIME and SPACE DOMAIN
Expected precision ? $\Rightarrow \sqrt{\sigma_{NDVI1}^2 + \sigma_{NDVI2}^2}$

$$\sigma_{NDVI1}^2 + \sigma_{NDVI2}^2$$

PROCESSING OF SPECTRAL INDICES TIME SERIES

Nominal time resolution is drastically reduced by clouds. Clouds are mapped during data preparation and derived maps made available for users. When composing a time series

- a) the first task is to operate a selection of «good» observations, masking out the bad ones;
- b) An interpolation and regularization step is required to fill the gaps generated at the previous stage;
- c) a further filtering is expected to smooth local (but «good») sudden variations possibly due to specific situations like snow falls, floods or residual uncorrected observations that were not possible to mask out as «bad» observations.

Borgogno Mondino Enrico 2021

@ / B •

MASKING OUT «BAD» OBSERVATIONS

Data coming from Scientific HUB (archives) like those from NASA/USGS and Copernicus/ESA are in general supplied together with auxiliary layers where flags are mapped to indicate class and quality of pixels. Consequently, every pixel at whatever date is known to be a "good" or "bad" pixel. One can decode if using it when composing the local temporal profile. \rightarrow E.g. Sentinel 2 Level 2A data are supplied together with a **CLASSIFICATION** and a **QUALITY LAYER (SCL, QI)** that makes possible to recognize pixels of interest over the scene.

THE GAPS IN TEMPORAL PROFILES

Once «bad» observations have been removed with reference to auxiliary data, an interpolating step is required to fill the remaining GAPs before proceeding to interpret profiles.

Profiles can be interpolated adopting many approaches but two processing stages can be recognized.

1- One aimed at filling the gap and possibly regularizing profiles (estimating new VI values at regularly spaced dates);

2- One aimed at simplifying the regularized (or not, depending on the model) profile fitting the dominant trend with functions typically shaped like bells.

Regularization (1) can be obtained

```
a) by 1°, 2° or 3° order polynomials (LINEAR)
b) by spline-based models
```

A filtering step (Savitzky-Golay, convolution) can be also associated to this processing phase (after or before)

```
2 can be operated with reference to
```

- a) bell-shaped fitting models (LOGISTIC, DOUBLE LOGISTIC, GAUSSIAN, etc.)
- b) FFT (Fast Fourier Transform) to retain only low frequency components

Logistic Model

DISAF

- Straightforward logistic model
- *a* and *b* are empirical coefficients that are associated with the timing and rate of change in VI.
- The term *c+d* give the potential maximum VI value
- The term *c+d* give the potential maximum VI value d represents the minimum value (the background EVI value). $VI(t) = \frac{c}{1 + e^{a+bt}} + d$

Gaussian Local Functions

The upper part of the equation is fitted to the right half of the time series. The lower part of the equation fits to the left half of the time series.

a2 and a4; the width of the curves; a3 and a5; the flatness (or kurtosis) of the curves; c1 and c2; base parameters determine the intercept and the amplitude of the curves, respectively. a1: the timing of the maximum (measured in time units).

BOD
$$VI(t) = c_1 + c_2 \cdot \left\{ e^{-\left(\frac{t-a_1}{a_2}\right)^{a_3}} & \text{if } t > a_1 \\ e^{-\left(\frac{a_1-t}{a_4}\right)^{a_5}} & \text{if } t < a_1 \right\}$$

FFT (FAST FOURIER TRANSFORM) can be operated only for REGULARLY SPACED DATA.

FFT decomposes a complex signal, possibly periodic, into a sum of multiple sine and cosine functions each characterized by a frequency and amplitude. High frequency components describe local and sudden profile variations; low frequency components describe slow and seasonal components. Once the spectrum of all possible components (the number depend on the number of observations)

Borgogno Mondino Enrico 2021

Borgogno Mondino Enrico 2021

 $\phi \neq \equiv \phi$

DISAF

SYNTHESIZING VI TEMPORAL PROFILES Phenological metrics

Once the profile has been modelled/filtered some METRICS can be obtained and used to explore eventual trends in phenology along a wide time range.

Phenological metrics are numerical parameters that can be used to synthesize phenology of vegetation. A temporal profile of a vegetation index (VI) can be used as representative of vegetation phenology. Consequently, for each vegetated pixel of a VI image time series, we can derive information about its phenology at year and multi-year level.

- Date of SOS/EOS: day of the year (DOY) when the phenolgical season starts (SOS) or ends (EOS)
- Length/Duration of Season (LOS): EOS-SOS difference (days)
- Date of MAX VI : day of the year (DOY) when VI is maximum.
- Maximum VI
- VI@SOS and VI@EOS : VI value at SOS and EOS
- VI seasonal integral: total vegetative activity within SOS and EOS (VI sum)
- Rate of Greenup and Rate of Senescence: speed of greening increasing (@SOS) or decreasing (@EOS)

 $\phi \neq \equiv \phi$

APPROACHES FOR PM ESTIMATE

A diversity of satellite measures and methods has been developed. Methods can be divided into 2 main categories:

Threshold-based Methods

DISAF

A search range in the time domain has to be set to avoid problems related to multiple phenological cycles along the year

Derivative-based Methods

Threshold-based Methods (ABSOLUTE)

- It's the simplest method to determine SOS and EOS. ٠
- Threshold is arbitrarily set at a certain VI value (e.g. 0.3, 0.4, 0.5 etc). •

Threshold-based Methods (RELATIVE)

NDVI is translated to a ratio based on the yearly minimum and maximum

1st / 2nd derivative-based Methods (ABSOLUTE)

Derivative maxima/minima/zeroes of a continuous function define objective geometrical conditions of a curve, related to its steepness (1st derivative), concavity (2nd derivative) or singular points.

Main PM can somehow be associated to these peculiar points of a function. Derivative can be computed in an analytical way if the profile was fitted by a function (like Gaussian, Logistic or Double Logistic) or computed by a numerical approach based on finite differences.

To be effective, this approach needs that fitting curves are monotonic in both the ascending and descending traits. Otherwise, local minima/maxima can compromise results.

 $\phi \neq \equiv \phi$

The COPERNICUS HR-VPP (High resolution – Vegetation Phenology and Productivity) Product

	Phenological Metric (from PPI trajectories)
1	Amplitude (season 1/2/2)
2	End-of-season date (season 1/2)
3	End-of-season value (season 1/2)
4	Season length (season 1/2) days
5	Season maximum date (season 1/2)
6	Season maximum value (season 1/2)
7	Season minimum value (season 1/2)
8	Seasonal productivity (season 1/2) PPI day
9	Slope of green-down period (season 1/2) PPI/day
10	Slope of green-up period (season 1/2) PPI/day
11	Start-of-season date (season 1/2)
12	Start-of-season value (season 1/2)
13	Total productivity (season 1/2) PPI-day

co 2021

The COPERNICUS HR-VPP (High resolution – Vegetation Phenology and Productivity) Product

Fig. 6 from Jin and Eklundh (2014). The figure shows linearity of PPI with leaf area index (LAI) (left), in comparison with NDVI (center) and EVI (right). Lines are model data and circles are measurements.

This figure shows that PPI is minimally affected by snow:

Fig. 10 from Jin and Eklundh (2014). The figure shows time series of PPI (red) in comparison to the NDSI snow index, and the indices NDVI and EVI. Note the smoothness of PPI at the ends and beginnings of the snow seasons. The left figure shows data from t

Phenological Metrics are computed with reference to the PPI (Plant Phenology Index).

Hongxiao Jin, Lars Eklundh, A physically based vegetation index for improved monitoring of plant phenology, Remote Sensing of Environment, Volume 152, 2014, Pages 512-525, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2014.07.010.

EXPLORING THE LOCAL TREND OF PHENOLOGICAL METRICS ALONG TIME

Borgogno Mondino Enrico 2021

 $\phi \neq \equiv \phi$

Exploring Changes of Biophysical Parameters that Spectral Indices are Predictor for

 $\langle \phi \rangle \equiv \phi$