INDICE GENERALE

		Pag
1. El	CLEMENTI DI STATISTICA DESCRITTIVA PER DISTRIBUZIONI UNIVARIATE	
1.1.	La statistica nella ricerca ambientale e biologica	1
1.2.	Il disegno sperimentale, il campionamento e l'inferenza	2
1.3.	Tipi di dati e scale di misurazione	9
	1.3.1 La scala nominale o classificatoria	10
	1.3.2 La scala ordinale o per ranghi	10
	1.3.3 La scala ad intervalli	12
	1.3.4 La scala di rapporti	12
1.4.	Classificazione in tabelle	13
1.5.	Rappresentazioni grafiche di distribuzioni univariate	20
1.6.	Le misure di tendenza centrale	34
	1.6.1 Le misure di tendenza centrale o posizione	33
	1.6.2 La mediana	37
	1.6.3 La moda	39
1.7.	Misure di dispersione o variabilità	41
	1.7.1 Intervallo di variazione	41
	1.7.2 La differenza interquartile	42
	1.7.3 Lo scarto medio assoluto dalla media	43
	1.7.4 Lo scarto medio assoluto dalla mediana	43
	1.7.5 La devianza	44
	1.7.6 La varianza	45
	1.7.7 La deviazione standard	46
	1.7.8 L'errore standard	47
	1.7.9 Il coefficiente di variazione	49
	1.7.10 La varianza in dati raggruppati: correzione di Sheppard	51
1.8.	Indici di forma: simmetria e curtosi	53
1.9.	Accuratezza, precisione e scelta del numero di cifre significative	64
1.10.	Metodi per calcolare un generico quantile da una serie di dati	70
1.11.	Rappresentazioni grafiche e semi-grafiche delle distribuzioni: data plot, box-and-whisker, line p	olot,
	stem-and-leaf	77
1.12.	Esercizi sulle misure di tendenza centrale, dispersione, simmetria e curtosi	81

2. DISTRIBUZIONI E LEGGI DI PROBABILITA'

2.1.	Elemer	nti di calcolo combinatorio semplice	1
	2.1.1	Permutazioni semplici	2
	2.1.2	Disposizioni semplici	3
	2.1.3	Combinazioni semplici	4
	2.1.4	Risposte alle domande del paragrafo 2.1	5
2.2.	Definiz	tioni di probabilità: matematica, frequentista e soggettiva, con elementi di statistica bayesiana	7
2.3.	Alcune	distribuzioni discrete	16
	2.3.1	Distribuzione binomiale	16
	2.3.2	Distribuzione multinomiale	23
	2.3.3	Distribuzione poissoniana	24
	2.3.4	Distribuzione geometrica e distribuzione di Pascal	36
	2.3.5	Distribuzione ipergeometrica	40
	2.3.6	Distribuzione binomiale negativa	45
	2.3.7	Distribuzione uniforme o rettangolare	60
2.4.	Alcune	distribuzioni continue	61
	2.4.1	Distribuzione normale o di Gauss	61
	2.4.2	Distribuzioni asintoticamente normali, con approssimazioni e trasformazioni	68
	2.4.3	Dalla disuguaglianza di Tchebycheff all'uso della distribuzione normale	70
	2.4.4	Approssimazioni e correzioni per la continuità	78
	2.4.5	Distribuzione rettangolare	81
	2.4.6	Distribuzione esponenziale negativa	82
	2.4.7	Le curve di Pearson	83
	2.4.8	La distribuzione gamma	85
2.5.	Distrib	uzioni campionarie derivate dalla normale ed utili per l'inferenza	88
	2.5.1	La distribuzione χ^2	88
	2.5.2	La distribuzione t di Student	94
	2.5.3	La distribuzione F di Fisher	95

3. ANALISI DELLE FREQUENZE

3.1.	Confronti tra distribuzioni osservate e distribuzioni attese	1
3.2.	Condizioni di validità del χ^2 e correzione di Yates	7
3.3.	Le tabelle di contingenza 2 x 2 (fourfold tables)	10
3.4.	Correzioni per la continuita' in tabelle 2 x 2: Yates e Haber	18
3.5.	Confronti tra frequenze relative con la distribuzione normale e sua correzione per la continuità	25
3.6.	Confronto tra test χ^2 per tabelle 2 x 2 e test Z, senza e con le correzioni per la continuità	32
3.7.	Confronto di una proporzione osservata con una attesa:	
	il test Z per grandi campioni e la distribuzione binomiale per piccoli campioni	37
3.8.	Tabelle di contingenza 2 x 2 in piccoli campioni: il metodo esatto di Fisher	42
3.9.	Le tabelle 2 x N con la formula generale e quella di Brandt-Snedecor. Le tabelle M x N	47
3.10.	Il log-likelihood ratio o metodo G	56
	3.10.1 Confronto tra una distribuzione osservata ed una attesa con la correzione di Williams	59
	3.10.2 Tabelle 2 x 2, con la correzione di Williams e quella di Mantel-Haenszel	62
	3.10.3 Tabelle M x N con la correzione di Williams	65
3.11.	Il chi quadro con il metodo di Cochran e di Mantel-Haenszel	70
3.12.	Esercizi svolti per dati in tabelle di contingenza	76

4. VERIFICA DELLE IPOTESI TEST PER UN CAMPIONE SULLA TENDENZA CENTRALE CON VARIANZA NOTA E TEST SULLA VARIANZA CON INTERVALLI DI CONFIDENZA

4.1.	Risultati significativi e non-significativi	1
4.2.	Perche' p < 0.05 ? e' un rito oppure una scelta razionale?	8
4.3.	Procedura di verifica delle ipotesi: vero o falso? utile o dannoso?	12
4.4.	I fattori che determinano la potenza di un test	17
4.5.	Calcolo della potenza, del numero minimo di dati e della differenza minima in test per un campione,	
	con la distribuzione z	26
4.6.	Stima approssimata della varianza della popolazione; il criterio di Cohen per la scelta di β; l'effetto	
	della media sulla potenza	46
4.7.	Intervallo di confidenza o di fiducia di una media con σ^2 nota	49
4.8.	Intervallo di confidenza di una mediana con varianza nota e ignota	52
4.9.	Stima della media con un intervallo di confidenza prefissato o con un errore prefissato, nel caso	
	di varianza nota	57
4.10.	Significatività della differenza tra due medie, con varianza nota	60
4.11.	Potenza e numero di dati per la significatività della differenza tra due medie, con la distribuzione normale	65
4.12.	Stima della differenza tra due medie con un errore o un intervallo di confidenza prefissati, nel caso	
	di varianza nota	75
4.13.	Significatività della differenza tra $$ una varianza campionaria S^2 e una varianza attesa σ^2	79
4.14.	La potenza a posteriori e a priori per la significatività della differenza tra una varianza osservata e	
	una varianza attesa	86
4.15.	Intervallo di confidenza o di fiducia di una varianza, con equal tail method e shortest unbiased	
	confidence intervals	96
4.16.	Intervallo di confidenza della deviazione standard e stima della dimensione del campione	102
4.17.	Il test F per il rapporto tra due varianze; relazioni tra F e χ^2 ; valori di F per $\alpha > 0.5$	109
4.18.	Potenza a priori e a posteriori del test F per l'uguaglianza di due varianze	119
4.19.	Intervallo di confidenza del rapporto F tra due varianze; stima di F con un errore o un intervallo di	
	confidenza prefissati	128
4.20.	Il confronto tra un coefficiente di variazione (CV) osservato e uno teorico o atteso	135
4.21.	Test per la differenza tra due coefficienti di variazione con la distribuzione z	136
4.22.	Parametri e statistiche. Le proprietà ottimali di uno stimatore: correttezza, consistenza, efficienza,	
	sufficienza. La robustezza di un test	138
4.23.	Precisione e accuratezza di uno strumento o di una analisi	146

5. PROPORZIONI E PERCENTUALI RISCHI, ODDS E TASSI

5.1.	Termini tecnici in epidemiologia: misure del rischio	1
5.2.	Altri termini tecnici: sensibilità, specificità, valore predittivo e efficienza di un test o di una classificazione	8
5.3.	Perché la varianza di p e' pq e sue conseguenze; varianza e errore standard di una frequenza	
	relativa o assoluta, in una popolazione infinita e finita	19
5.4.	Intervallo di confidenza di una frequenza relativa o assoluta con la normale, in una popolazione	
	infinita o finita; metodi grafici per l'intervallo fiduciale e la stima del numero di dati.	28
5.5.	Intervallo di confidenza di una proporzione, mediante la distribuzione F	41
5.6.	Calcolo del campione minimo necessario, per la stima di una proporzione campionaria con un errore	
	massimo prefissato	47
5.7.	Il confronto tra una proporzione campionaria e una proporzione attesa con il test z; dimensione	
	minima del campione, per l'uso della distribuzione normale	52
5.8.	La potenza a posteriori e a priori di un test sulla proporzione per un campione, con l'uso della normale	57
5.9.	Test per una proporzione: la binomiale per campioni piccoli e l'intervallo di confidenza con F per	
	campioni grandi	64
5.10.	La potenza di un test per una proporzione, con l'uso della distribuzione binomiale	68
5.11.	Test per la bontà dell'adattamento di una distribuzione osservata e la distribuzione binomiale,	
	costruita con una proporzione nota e con una proporzione ignota	71
5.12.	Test sulla differenza tra due proporzioni, con il metodo di Feldman e Kluger, per abbreviare	
	il metodo esatto di Fisher	78
5.13.	Significatività e intervallo di confidenza della differenza tra due proporzioni, con la distribuzione normale	82
5.14.	Potenza a posteriori (1-β) e a priori (n) dei test sulla differenza tra due proporzioni; bilanciamento	
	di due campioni	86
5.15.	Il rapporto tra due proporzioni (r): intervallo di confidenza e significativita'; formula test-based	
	di Miettinen per r	101
5.16.	Il rapporto tra due odds (or): intervallo di confidenza e significatività; formula test-based di	
	Miettinen per or	111
5.17.	Il rapporto tra due tassi (rr): intervallo di confidenza e significatività; formula test-based di Miettinen	120
5.18.	Dimensioni dei campioni e potenza, per test sulla differenza e sull'odds ratio delle proporzioni di	
	due campioni indipendenti 129	129

6. INFERENZA SU UNA O DUE MEDIE CON IL TEST t DI STUDENT

6.1.	Dalla popolazione infinita al campione piccolo: la distribuzione t di student	1
6.2.	Confronto tra una media osservata e una media attesa con calcolo dei limiti di confidenza di una media,	
	con σ ignota	7
6.3.	Confronto tra una osservazione e la media di un campione	13
6.4.	Il confronto tra le medie di due campioni	15
6.5.	Il test t per 2 campioni dipendenti o per dati appaiati con intervallo di confidenza della media delle	
	differenze	17
6.6.	Test di Sandler per due campioni dipendenti	26
6.7.	Il test t per 2 campioni indipendenti o per dati non appaiati	29
6.8.	Test F, test di Bartlett e test di Levene per la verifica di ipotesi bilaterali e unilaterali sull'uguaglianza	
	di due varianze	34
6.9.	Significatività e intervallo di confidenza di una differenza	48
6.10.	Potenza a priori e a posteriori del test t, con un campione e con due campioni dipendenti o indipendenti	55
6.11.	Dimensione del campione e precisione nella stima sia di una media sia di una differenza tra due medie	70
6.12.	Il bilanciamento di due campioni indipendenti: vantaggi e costi	74
6.13.	Correzione per il campionamento in una popolazione finita e il concetto di superpopolazione	79
6.14.	Test per la differenza tra due coefficienti di variazione con la distribuzione t di Student	86
6.15.	Il confronto tra due medie con varianze differenti o problema di Behrens-Fisher;	
	la statistica Welch e il metodo di Satterthwaite	87
6.16.	Effetto trattamento: $\widetilde{\omega}^2$ e cenni di $\widetilde{\eta}^2$, nel test t di Student per due campioni indipendenti	97
6.17.	Limiti di tolleranza e population coverage, con metodi parametrici	100

7. METODI NON PARAMETRICI PER UN CAMPIONE

7.1.	Caratteristiche dei test non parametrici	1
7.2.	I test esatti e il metodo Monte Carlo	7
7.3.	Il test delle successioni per un campione	10
7.4.	Il test dei segni per un campione	21
7.5.	Intervallo di confidenza per una probabilità o frequenza relativa, secondo il metodo di Clopper e Pearson	28
7.6.	Intervalli di confidenza non parametrici e intervalli di tolleranza	32
7.7.	Intervallo di confidenza della mediana con il test dei segni	36
7.8.	Il test dei segni per ranghi di Wilcoxon	39
7.9.	Differenze nulle e ties nel test T di Wilcoxon	50
7.10.	Teoria del test T di Wilcoxon e della correzione per i ties	53
7.11.	Intervalli di confidenza della locazione (mediana) con il T di Wilcoxon; medie di Walsh o quasimedians,	
	stimatore di Hodges – Lehmann o pseudomedian	59
7.12.	Test di casualizzazione (raw scores test, Pitman test, Fisher's randomization test)	64
7.13.	Test T di Wilcoxon per la simmetria	69
7.14.	Il test di Gosset per la eterogeneità di Poisson in conteggi; il test per l'indice di dispersione e il grafico	
	di Elliott	76
7.15.	Il metodo di Kolmogorov-Smirnov per un campione, con dati ordinali discreti e con dati continui	86
7.16.	Il T^2 di Freeman-Tukey e confronto con il χ^2 e il g^2 nei test per la bonta' dell'adattamento	105
7.17.	Il dibattito sulla significativita' dei test per la bontà dell'adattamento, rispetto a quelli per un parametro	115
7.18.	Rinvio ad altri test per un campione	118
7.19.	Presentazione dei risultati di programmi informatici e confronti tra test	118

8. METODI NON PARAMETRICI PER DUE CAMPIONI DIPENDENTI

8.1.	Test per 2 campioni dipendenti o per dati appaiati	1
8.2.	Il test di McNemar con la correzione di Edwards; la stima della potenza	3
8.3.	Intervallo di confidenza della differenza tra le proporzioni di due campioni dipendenti	14
8.4.	Il test dei segni con stima della potenza a priori	16
8.5.	Il test T di Wilcoxon o test dei segni per ranghi, con stima della potenza	25
8.6.	Intervallo di confidenza di una differenza con il test dei segni e il test T di Wilcoxon	35
8.7.	Test di casualizzazione per 2 campioni dipendenti o Fisher's randomization test	42

9. METODI NON PARAMETRICI PER DUE CAMPIONI INDIPENDENTI

9.1.	Test per 2 campioni indipendenti	1
9.2.	Test unilaterale per tabelle 2 x 2 analogo al χ^2	2
9.3.	Test per l'effetto dell'ordine del trattamento o test di Gart	4
9.4.	Il test della mediana	7
9.5.	L'intervallo di confidenza per una differenza mediana, con il metodo esatto di Fisher	12
9.6.	Il test di Wilcoxon-Mann-Whitney della somma dei ranghi	18
9.7.	Calcolo delle probabilita' associate ai valori di T, potenza (1-β, n) e robustezza del test	
	di Wilcoxon-Mann-Whitney	29
9.8.	Il test U di Mann-Whitney o dell'ordine robusto dei ranghi	35
9.9	L'intervallo di confidenza della differenza tra due mediane, con l'indice U di Mann-Whitney	45
9.10.	Test S di Kendall e suoi rapporti con il test T e il test U; potenza-efficienza dei tre test e confronti	
	tra i metodi	47
9.11.	Test di casualizzazione per 2 campioni indipendenti	57
9.12.	Il test delle successioni per due campioni o test di Wald-Wolfowitz	65
9.13.	Test di Siegel-Tukey per l'uguaglianza della varianza; cenni del test di Freund-Ansari-Bradley e	
	del test di Conover	74
9.14.	Il test dei ranghi equivalenti di Moses per le differenze nella dispersione o variabilità	81
9.15.	Confronto tra due distribuzioni osservate: il metodo di Kolmogorov-Smirnov per 2 campioni	
	indipendenti con dati ordinali discreti o gruppi e con dati continui	89

10. ANALISI DELLA VARIANZA (ANOVA I) A UN CRITERIO DI CLASSIFICAZIONE E CONFRONTI TRA PIU' MEDIE

10.1.	Analisi della varianza ad un criterio di classificazione o a campionamento completamente randomizzato	4
10.2.	Confronto tra analisi della varianza con due trattamenti e test t di Student per 2 campioni indipendenti	20
10.3.	Test per l'omogeneità della varianza tra più campioni: test di Hartley, Cochran, Bartlett, levene e Levene	
	modificato di Brown-Forsythe	24
10.4.	I confronti a priori o pianificati tra più medie	45
10.5.	Confronti multipli a posteriori o post hoc (UMCP)	57
	10.5.1 Il principio di Bonferroni e il metodo di Dunn-Sidak	61
	10.5.2 La procedura LSD di Fisher e la modifica di Winer	68
	10.5.3 Il test HSD di Tukey e la procedura di Tukey-Kramer	72
	10.5.4 Il test di Student-Newman-Keuls o test SNK	80
	10.5.5 Il test di Scheffé con l'estensione di Gabriel	89
	10.5.6 Il test di Dunnett	95
	10.5.7 Il test di Duncan	102
	10.5.8 Test multipli sequenziali di Holm e confronto con il test di Bonferroni; cenni sul metodo di Shaffer 109	
	10.5.9 Cenni su altri test	115
	10.5.10 Dibattito sul test post-hoc migliore	117
10.6.	Confronti post-hoc tra varianze	118
10.7.	Stima della dimensione n di k gruppi campionari per l'ANOVA	124
10.8.	Confronto tra medie con ANOVA, da dati aggregati di k campioni	128

11. ANALISI DELLA VARIANZA A PIU' CRITERI DI CLASSIFICAZIONE

11.1.	Analisi della varianza a due criteri di classificazione o a blocchi randomizzati, con una sola	
	osservazione per casella	1
11.2.	Confronto tra analisi della varianza a due criteri e test t di Student per 2 campioni dipendenti	11
11.3.	Analisi della varianza a tre o più criteri	16
11.4.	Quadrati latini e greco-latini	22
11.5.	Dati mancanti o anomali in disegni a più fattori	32
11.6.	Efficienza relativa (E.R.) e capacita' predittiva (R ²)	51
11.7.	Effetto trattamento nell'analisi della varianza: \mathbf{r}^2 , $\widetilde{\boldsymbol{\omega}}^2$ e $\widetilde{\boldsymbol{\eta}}^2$	57
11.8.	Potenza a priori e a posteriori nell' ANOVA, con grafici di Pearson e Hartley	60
11.9.	Lettura di tabulati sull'analisi della varianza	70

12. ANALISI FATTORIALE, DISEGNI COMPLESSI CON FATTORI INCROCIATI

12.1.	Analisi fattoriale ed interazione	1
12.2.	Interazione tra due fattori a più livelli	2
12.3.	Rappresentazione grafica dell'interazione a due fattori	18
12.4.	Analisi della varianza a due fattori con repliche ineguali	20
12.5.	Il test T di Tukey per il confronto tra le medie in disegni a due fattori con repliche	23
12.6.	Esperimenti fattoriali 2 x 2 e 2 x 2 x 2 con i confronti ortogonali	27
12.7.	Esperimenti fattoriali con P fattori a k livelli	36
12.8.	Test di Tukey per la non-additivita' con 1 df	42
12.9.	Quadrati latini con repliche	53
12.10.	Lettura di un tabulato informatico	58

13. TRASFORMAZIONI DEI DATI CON TEST PER NORMALITA' E PER OUTLIER

13.1.	Motivi delle trasformazione dei dati	1
13.2.	Alcune trasformazioni dei dati	4
13.3.	Altri effetti delle trasformazioni	18
13.4.	La scelta della trasformazione idonea: il metodo di Box-Cox	17
13.5.	Effetti delle trasformazioni sui risultati dell'ANOVA	25
13.6.	Test per la verifica di normalità, simmetria e curtosi, con i metodi proposti da Snedecor-Cochran	33
13.7.	Metodi grafici e altri test (Lilliefors, D'Agostino-Pearson) per normalita', simmetria e curtosi	
	(cenni dei test di Geary e di Shapiro-Wilk)	46
13.8.	Cenni del test di Cramer-Von Mises per un campione e per due campioni indipendenti	67
13.9.	L'outlier: dato anomalo o dato sbagliato? definizioni di outlier	76
13.10.	Identificazione degli outlier con il metodi grafici: il box-and-whiskers di Tukey	83
13.11.	Metodi statistici per grandi campioni: la distribuzione di Chebyshev e la distribuzione normale;	
	the huge rule	87
13.12.	Verifica degli outlier o gross error per campioni piccoli con distribuzione normale: il test di	
	Grubbs o extreme studentized residual; il test q di Dixon	93
13.13.	La extreme studentized deviate e la median absolute deviation	103
13.14.	Trattamento degli outlier: eliminarli o utilizzarli? come?	115

14. L'ANALISI GERARCHICA E LE COMPONENTI DELLA VARIANZA

14.1.	Analisi gerarchica o nested in ANOVA I, II e III	1
14.2.	Nested ANOVA I o a effetti fissi	4
14.3.	Interazione: l'analisi gerarchica in esperimenti fattoriali	15
14.4.	Disegni con fattori nested e crossed	19
14.5.	Confronti multipli e intervalli fiduciali in nested ANOVA I	24
14.6.	Potenza del test nell'analisi fattoriale e in nested ANOVA I	26
14.7.	Il concetto di effetti random e condizioni di validita' del test	28
14.8.	ANOVA II e le componenti della varianza con un solo fattore e campioni bilanciati o ineguali	31
14.9.	Cenni di nested ANOVA II in disegni a due e a piu' fattori	35
14.10.	Cenni di ANOVA III o a effetti misti	38
14.11.	Analisi nested e pattern spaziale	39
14.12.	Analisi nested e pattern temporale	42
14.13.	Esempio di analisi della varianza a due fattori con interazione, in un modello a effetti fissi e uno a	
	effetti random, su gli stessi dati; esempio di stima delle componenti della devianza	46
14.14.	Lettura di un tabulato informatico	68

15. TEST NON PARAMETRICI PER PIU' CAMPIONI

15.1.	I test non parametrici piu' utilizzati, per k campioni	1
15.2.	Estensione del test della mediana	2
15.3.	Cenni sul test di Nemenyi e altri per la mediana in k gruppi	10
15.4.	Analisi della varianza per ranghi ad un criterio di classificazione: il test di Kruskal-Wallis	13
15.5.	Confronto con il test F e confronti multipli con i ranghi	26
15.6.	Test per l'eterogeneità della varianza con k campioni	33
15.7.	Confronti tra più proporzioni e confronti multipli relativi	38
15.8.	Il test Q di Cochran	47
15.9.	Estensione del test di McNemar o test di Bowker	52
15.10.	Test di Friedman o analisi della varianza per ranghi a 2 criteri di classificazione, con una e con k repliche	57
15.11.	I confronti multipli tra medie di ranghi nell'analisi della varianza non parametrica, a due	
	criteri di classificazione	76
15.12.	Test di Quade	85
15.13.	L'esempio di Koch: uso di metodi non parametrici, nell'analisi statistica di un esperimento	
	complesso con k fattori	92

16. REGRESSIONE LINEARE SEMPLICE

16.1.	La statistica bivariata: utilizzare la regressione oppure la correlazione?	1
16.2.	descrizione di una distribuzione bivariata	3
16.3.	La regressione dei figli verso la mediocrità	9
16.4.	Modelli di regressione	14
16.5.	La regressione lineare semplice	16
16.6.	Valore predittivo della retta di regressione: estrapolazione o interpolazione?	30
16.7.	Significatività' del coefficiente angolare β o test per la linearità, mediante il test F e il test t	33
16.8.	Test per la significatività dell' intercetta α	47
16.9.	La potenza e la dimensione minima del campione, nel test della regressione: rinvio alla correlazione	50
16.10.	Intervalli di confidenza dei parametri β e α	53
16.11.	Intervallo di confidenza della retta di regressione e per un singolo \hat{Y}_k , stimato con i dati del campione	59
16.12.	Intervallo di confidenza o di previsione di \hat{Y}_k , stimato per un valore o la media di valori aggiuntivi al	
	campione	67
16.13.	Significatività della differenza tra un valore medio calcolato e un valore medio atteso	74
16.14.	Errori delle variabili e intervalli di tolleranza	75
16.15.	Indici della capacita' predittiva della regressione: R^2 , R^2_{adj} , $S^2_{Y/X}$, $PRESS$ e loro significatività	79
16.16.	La predizione inversa o problema della calibratura: stimare il valore medio e l'intervallo di confidenza	
	di x partendo da y	85
16.17.	La regressione per l'origine: retta, intervallo di confidenza e predizione inversa; vantaggi, limiti e	
	alternative	98
16.18.	Limite di determinazione e limite di rilevabilità, mediante la retta di calibrazione 112	
16.19.	La regressione per il confronto tra le medie di due o piu' gruppi, con variabile dummy; regressione,	
	test t di student e anova I	114
16.20.	Analisi della varianza a due criteri, mediante il metodo della regressione	122
16.21.	Devianza di tipo I, II, III, IV, V, VI nell'analisi della regressione	125

17. CONFRONTI TRA RETTE, CALCOLO DELLA RETTA CON Y RIPETUTE, CON VERIFICA DI LINEARITA' E INTRODUZIONE ALLA REGRESSIONE LINEARE MULTIPLA

17.1.	Confronto tra due rette di regressione con il test t di Student e calcolo della retta comune	1
17.2.	Confronto tra punti su due rette di regressione	14
17.3.	Confronto tra più rette di regressione con il test F, calcolo della retta comune e intervalli di confidenza	17
17.4.	Confronti multipli tra più coefficienti angolari	27
17.5.	Analisi della relazione dose-effetto con y ripetute: calcolo della retta di regressione e test per la linearità	28
17.6.	Calcolo dei termini della regressione, mediante i coefficienti polinomiali	40
17.7.	Test di linearità con y ripetute, in campioni non bilanciati	47
17.8.	Cenni sulla regressione pesata e della sua calibrazione	55
17.9.	La regressione nell'analisi della varianza a piu' criteri	58
17.10.	Condizioni di validità della regressione con l'analisi dei residui; test per la costanza della varianza	
	d'errore (Levene modificato e Breusch-Pagan o Cook-Weisberg), trasformazioni per la retta	62
17.11.	Scelta dei valori di x, per una regressione significativa	69
17.12.	La regressione lineare multipla e il modello generale di regressione lineare	72

18. CORRELAZIONE E COVARIANZA

18.1.	La correlazione	1
18.2.	Condizioni di validità e significatività di r con $\rho = 0$ e con $\rho \neq 0$	16
18.3.	Significatività della retta con R ² ?	28
18.4.	Intervallo di confidenza di ρ	30
18.5.	Potenza a priori e a posteriori per la significatività di r	40
18.6.	Differenza tra due coefficienti di correlazione in campioni indipendenti e calcolo del coefficiente con	mune 45
18.7.	Potenza a priori e a posteriori del test per la significatività della differenza tra due coefficienti di	
	correlazione	48
18.8.	Test per la differenza tra più coefficienti di correlazione; coefficiente di correlazione comune $r_{w}e$ su	ıa
	significatività	53
18.9.	Cenni sui confronti multipli tra più r	61
18.10.	La correlazione parziale o netta di primo ordine e di ordine superiore; la correlazione semiparziale	63
18.11.	Analisi della covarianza per due gruppi, con test t di Student per rette parallele e per rette non paralle	ele 71
18.12.	$Analisi\ della\ covarianza\ per\ k\ gruppi\ (ANCOVA)\ e\ riduzione\ proporzionale\ della\ varianza\ d'errore$	79
18.13.	Gli outlier nell'analisi di regressione e correlazione	97
18.14.	L'analisi dei residui per l'identificazione degli outlier; residuals, studentized residuals,	
	standardized residuals	101
18.15.	Hat value o leverage, studentized deleted residuals	107
18.16.	La distanza euclidea tra le statistiche della retta e la distanza di Cook; applicazioni del jackknife	119
18.17.	Lettura di tre tabulati di programmi informatici su regressione e correlazione lineare semplice	128
18.18.	Confronto tra quattro output informatici sulla regressione lineare semplice:	
	SAS, MINITAB, SYSTAT, SPSS	133

19. TEST NON PARAMETRICI PER IL TREND

19.1.	La media mobile e la scelta del test per la tendenza	1
19.2.	Il test di Cox e Stuart (e sue varianti) per il trend nella posizione e nella dispersione	6
19.3.	Test di Jonckheere o Jonckheere-Terpstra per alternative ordinate in k campioni indipendenti	18
19.4.	Test di Mack-Wolfe o umbrella test	33
19.5.	Il test di Page per alternative ordinate in k campioni dipendenti	52

20. COEFFICIENTI DI ASSOCIAZIONE, DI COGRADUAZIONE E DELL'ACCORDO RISCHIO RELATIVO E ODDS RATIO

20.1.	I primi anni del chi- quadrato: cenni su nascita ed evoluzione	1
20.2.	Il t^2 di Freeman-Tukey e confronto con il χ^2 e il G^2 nei test per la bontà dell'adattamento; cenni di altri test	
	analoghi	7
20.3.	Classificazione dei coefficienti d'associazione o d'indipendenza	20
20.4.	Associazione fra variabili categoriali o qualitative: il c con la correzione di Sakoda e il ϕ di Pearson,	
	il ϕ_c o v di Cramer, il d_t o t di Tschuprow	21
20.5.	Altri indici di associazione per variabili dicotomiche o tabelle 2×2 : q e y di Yule, d_{sim} . e	
	d_{xy} di Somers; cenni sul τ_b .di Kendall	36
20.6.	Associazione per variabili categoriali in tabelle r x c: la pre, il λ simmetrico ed asimmetrico di	
	Goodman e Kruskal, cenni su la UC o U di Theil	44
20.7.	Cograduazione per variabili ordinali in tabelle r x c: il γ di Goodman e Kruskall, il τ_c .di	
	Kendall-Stuart, il d _{ba} e d _{ab} di Somers	51
20.8.	Il kappa di Cohen: stima dell'accordo (agreement) tra due valutazioni con scala nominale	63
20.9.	Alcuni sviluppi della statistica kappa: la k pesata e i paradossi	81
20.10.	Differenza tra rischi e rischio relativo, con intervalli di confidenza	95
20.11.	Odds ratio e cross product ratio; intervallo di confidenza; test di significativita' per uno e tra due odds ratio	101
20.12.	Lettura dei tabulati di un pacchetto statistico	112

21. TEST NON PARAMETRICI PER CORRELAZIONE, CONCORDANZA, REGRESSIONE MONOTONICA E REGRESSIONE LINEARE

21.1.	La correlazione non parametrica ρ (rho) di Spearman, con la distribuzione di Hotelling-Pabst	1
21.2.	Il coefficiente di correlazione τ (tau) di Kendall; il τ_a e τ_b di Kendall con i ties	11
21.3.	Confronto tra ρ e τ ; potenza del test e numero di osservazioni necessarie per la significativita'	20
21.4.	Altri metodi per la correlazione non parametrica: test di Pitman con le permutazioni; test della	
	mediana di Blomqvist	25
21.5.	Il test di Daniels per il trend	34
21.6.	Significatività della regressione e della correlazione lineare parametrica con i test nonparametrici ρ e τ	41
21.7.	Il coefficiente di correlazione parziale: $\tau_{12,3}$ di Kendall, $\rho_{12,3}$ di Spearman	46
21.8.	Il coefficiente di concordanza tra valutatori: la w di Kendall; sue relazioni con la correlazione non	
	parametrica e con il test di Friedman per k campioni dipendenti. Cenni sulla top-down concordance	53
21.9.	Cenni sul coefficiente di concordanza u di Kendall, in confronti appaiati	63
21.10.	La regressione lineare non parametrica	66
21.11.	Calcolo della retta di regressione non parametrica con il metodo di Theil o test di Theil-Kendall	68
21.12.	Confronto tra la retta parametrica e la retta di Theil	76
21.13.	Significatività di b con il τ di Kendall	78
21.14.	La regressione lineare non parametrica con il metodo dei tre gruppi di Bartlett	86
21.15.	Il test di Hollander per il confronto tra due coefficienti angolari	92
21.16.	La regressione monotonica di Iman-Conover	98
21.17.	Trend lineare di Armitage per le proporzioni e le frequenze	104

22. ALTRI METODI INFERENZIALI: NORMAL SCORES E RICAMPIONAMENTO

22.1.	I normal scores di Van der Waerden; cenni su random normal deviates e su expected normal scorse	1
22.2.	Applicazioni dei normal scores di Van der Waerden ai test sulla mediana per uno, due e piu' campioni	ç
22.3.	Applicazione dei normal scores di Van der Waerden a test per omoschedasticità, regressione e	
	correlazione semplici	31
22.4.	Metodi di ricampionamento: Monte Carlo e principio plug-in	37
22.5.	Il Jackknife	41
22.6.	Il Bootstrap	47

23. IL DISEGNO SPERIMENTALE: CAMPIONAMENTO, PROGRAMMAZIONE DELL'ESPERIMENTO E POTENZA

23.1.	Il disegno sperimentale e il campionamento nella ricerca ambientale	1
23.2.	Campioni non probabilistici e campioni probabilistici, con uso delle tavole di numeri casuali	9
23.3.	L'errore di stima nel campionamento, per la scelta di quello più adeguato: l'esempio di Snedecor-Cochran	18
23.4.	I parametri importanti per il campionamento	22
23.5.	La programmazione degli esperimenti: scelta dei fattori sperimentali e suoi effetti sulla varianza d'errore	27
23.6.	Stime preliminari approssimate delle dimensioni del campione e della potenza del test, nella ricerca	
	biologica e ambientale	28
23.7.	Il disegno sperimentale totalmente randomizzato: vantaggi, limiti e potenza.	35
23.8.	Il disegno sperimentale a blocchi randomizzati: vantaggi, limiti e potenza	40
23.9.	Il disegno sperimentale a quadrati latini: vantaggi, limiti e potenza	45
23.10.	Il disegno sperimentale fattoriale semplice (due fattori con interazione): calcolo della potenza a posteriori	49
23.11.	L'assenza dell'evidenza non e' l'evidenza dell'assenza; significatività statistica e rilevanza disciplinare	62

24. LA REGRESSIONE LINEARE MODELLO II E LEAST-PRODUCTS. IL CONFRONTO TRA DUE METODI QUANTITATIVI. IL SEI-SIGMA NEL CONTROLLO DI QUALITA'

24.1.	I modelli I e II nella regressione lineare; il caso di Berkson	1
24.2.	La retta del coefficiente angolare dell'asse maggiore.	7
24.3.	Il plot delle differenze e delle medie; il test di Bland-Altman, per il confronto tra metodi e per la	
	ripetibilità di un metodo.	15
24.4.	La regressione modello II o least-products di Deming, per il confronto tra due metodi analitici.	24
24.5.	Effetti degli outlier sulla retta least-squares e indicazioni operative per il calcolo della retta di confronto	
	tra due metodi analitici.	31
24.6.	La formula rapida di Mandel e la regressione least-products di York.	35
24.7.	La regressione lineare e il test per l'equivalenza tra due metodi analitici di Passing-Bablok	37
24.8.	Dibattito sul confronto tra due metodi di analisi cliniche ed esempi di test	43
24.9.	II confronto con il gold standard: utilizzare il metodo della calibration oppure quello della comparability?	54
24.10.	Il test di Bland-Altman per il confronto tra due metodi, con misure ripetute per ogni metodo	
	sullo stesso soggetto	61
24.11.	La ripetibilità e la riproducibilità di uno strumento o di un metodo: range & average method	64
24.12.	La capability con il sei-sigma normale e Motorola	74
24.13.	La ripetibilità e la riproducibilità con le varianze dell'anova, in un disegno sperimentale a due criteri	
	con repliche	82
24.14.	Stima delle dimensioni minime del campione, per un'analisi della ripetibilità	85
24.15.	Le componenti della varianza negli studi r&r, con l'anova a effetti randon, fissi e misti	88
24.16.	Visione generale delle stime richieste nell'analisi di processo	100
24.17.	Storia del sei-sigma; un secolo di evoluzione dei metodi statistici, per il controllo di qualità	102