
1 Exercises on 1st order PDEs and Burgers equation

1.1 Burgers equation and generalisations

Ex. 1 . A slightly different Burgers.

Note:
Consider the generalised inviscid Burgers equation:

ut + u2ux = 0. (1.1)

1) Write a solution for the equation with the method of characteristics.

2) Do the solutions to this equation develop gradient singularities with time evolution?

Hint: Write the solution in implicit form, as was done in the lecture for the inviscid
Burgers equation, and starting from that formula deduce an expression for ux in terms of
the initial data. Study if this expression blows up.

3) If the answer to the question above is yes, compute the time it takes for a singularity to
form, given the initial profile u(x, t = 0) = e−x

2
. Compute the location where this first

singularity occurs in the (x, t) plane.

4) Consider the equation above as a conservation law:

∂t(u) + ∂x(
u3

3
) = 0. (1.2)

Consider the discontinuous initial condition: u(x, t = 0) = Θ(−x), where Θ(x) is the step
function. How does this initial condition evolve, if we want to preserve the integral form of
the conservation law?

Hint: Discontinuous solutions to conservation laws evolve according to the (appropriate
version) of the Rankine-Hugoniot constraints discussed in the lectures. In the case of a step
function, the solution preserves its shape but moves with a speed given by the Rankine-
Hugoniot conditions. Use the appropriate form of this condition to compute the speed of
the shock front.

Solution

1) Using the method of characteristics, we deduce

u(x, t) = u0(s), (1.3)

where u(s, 0) = u0(s) is the initial condition, and

x = s+ (u0(s))
2t. (1.4)

In implicit form, we can write the solution as

u = u0(x− u2t). (1.5)
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2) A solution to this equation will generally produce gradient singularities. In fact, from the
implicit solution we get

ux = u′0(s) (1− 2uuxt) −→ ux =
u0(s)

1 + 2u0(s)u′0(s)t
. (1.6)

The vanishing of the denominator to this equation produces the gradient singularity. It can
only vanish after a certain amount of time, if the initial data are smooth, namely

tshock = min

{(
− 1

2u0(s)u′0(s)

)
, for s such that − 1

2u0(s)u′0(s)
≥ 0

}
. (1.7)

3) With the initial profile u0(s) = e−s
2
, we get

tshock = min

{(
e2s

2

4s

)
, for s ≥ 0

}
. (1.8)

The minimum is reached at s = 1
2 and gives

tshock =
e

1
2

2
, −→ xshock =

1

2
+ (u0(

1

2
))2tshock =

1

2
+

1

2
= 1. (1.9)

4) If we want to preserve the conservation law

∂t(u) + ∂x(
u3

3
) = 0, (1.10)

a moving discontinuity must satisfy the Rankine-Hugoniot equation

vshock =

u3L
3 −

u3R
3

uL − uR
=

1

3
(u2L + u2R + uLuR), (1.11)

with uL, uR the values of the discontinuous solutions on the left and right side of the jump.

If we have a discontinuous initial condition: u(x, t = 0) = Θ(−x), with uL = 1, uR = 0, the
discontinuity will move uniformly with velocity given by the formula above:

vshock =
1

3
. (1.12)

Thus the solution will be
u(x, t) = Θ(−x+ t/3). (1.13)

Notice that it is only because of the extremely simple form of the initial condition (which
is flat, apart for the discontinuity) that we have vshock independent on time. In general,
we would need to still use the method of characteristics, and introduce the discontinuity
at the appropriate place using the Rankine-Hugoniot equations (which give an additional
differential equation for the position of the shock).
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Ex. 1b)

Si consideri l’equazione nonlineare
ut + 2tuux = 0, (1.14)

con la condizione iniziale u(s, 0) = tanh(s), ∈ R.

• Si scriva la soluzione dell’equazione per t ≥ 0 con il metodo delle caratteristiche, anche
in forma implicita.

• Data questa condizione iniziale, si analizzi per quale intervallo temporale la soluzione
ottenuta con il metodo delle caratteristiche rimane a un sol valore.

Solution La soluzione ottenuta usando il metodo delle caratteristiche si può scrivere in forma
implicita come

u = u0(s), t = `, x = `2u0(s) + s, con s ∈ R, ` ≥ 0, (1.15)

dove u0(s) = tanh(s) è il profilo iniziale.
Questa soluzione rimane a un sol valore fintanto che la mappa (`, s)→ (x, t) rimane 1 : 1 ,

cioè fintanto che il determinante dello Jacobiano rimane diverso da zero.
Il determinante della matrice Jacobiana è dato da∣∣∣∣ ∂`t ∂st

∂`x ∂sx

∣∣∣∣ =

∣∣∣∣ 1 0
∗ 1 + t2u′0(s)

∣∣∣∣ = 1 + t2u′0(s). (1.16)

Poichè la nostra condizione iniziale con u0(s) = tanh(s) soddisfa u′0(s) ≥ 0 per qualunque
s ∈ R, segue che lo Jacobiano non si annulla mai e la soluzione rimane a un sol valore per tutti
i tempi.

1.2 Initial value problems and general solutions for linear equations

Instructions: Solve the following initial value problems, or state if they do not admit a
single-valued solution and why.

Write also a fully general solution (NOTE: this can be done in two way: use the ad hoc
method we saw for 1st order linear PDEs, or keep the initial condition for u on an initial curve
as an undetermined function. The two methods should give the same result, upon identifying
correctly the arbitrary functions appearing in the solution).

Hint: To check that the initial condition problem can have a single-valued solution, check
that the Cauchy curve is not parallel to the characteristics.

Ex. 2

Solve:
ux + yuy = 2u, (1.17)

with initial condition u(1, s) = s, s ∈ R.
Find a formula for the general solution of this PDE and check the solution you found to

the above IVP is correct.
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Solution We look for characteristics

dy

dx
= y −→ y = exC (1.18)

Change variables we choose ξ = x and η = ye−x so that η is constant along characteristics.
Thus we get

uξ = 2u −→ u = e2xF (ye−x) (1.19)

with an arbitrary function F . To match the initial condition we have F (s) = s/e, so we have

u(x, y) = yex−1. (1.20)

Ex. 3

Solve:
ux + uy = u2, (1.21)

with initial condition u(s, 0) = s2, s ∈ R.
Find also a formula for the general solution.
Note: this equation is not linear, however the terms with partial derivatives

enter in a strictly linear way. Such equations are called “almost-linear”, not to
be confused with “quasi-linear”. A general solution can be found with the same
method that we have seen for linear first order PDEs.

Solution You can proceed in the same way as in the previous exercise. The special solution
with these initial conditions is

u =
(x− y)2

1− y(x− y)2
, (1.22)

while the general solution is

u = − 1

y + F (x− y)
, (1.23)

for an arbitrary function F .

Ex. 4

Solve:
xux + (y + x2)uy = u, (1.24)

with initial condition u(2, s) = s− 4, s ∈ R.
Find also a formula for the general solution.

Solution: For the special solution with this boundary condition you should find u(x, y) =

y − x2. For the general solution you should find u(x, y) = xF
(
y−x2
x

)
, with F an arbitrary

function.
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Ex. 5 . In 3 variables:

• Solve (if possible) the initial value problems:

zux + yzuz = 0 (1.25)

with initial condition u(x, y, 1) = xy.

• Consider the different equation:
zux + yzuy = 0 (1.26)

with the same initial condition u(x, y, 1) = xy.

If the problem does not have a solution, explain why.

Solution

• The equation for characteristics is (with t the parameter along characteristic curves):

∂tx = z, ∂ty = 0, ∂tz = zy, ∂tu = 0. (1.27)

The solution with initial conditions (x, y, z)|t=0 = (x0, y0, 1), u0 = xy00 is

(x, y, z) =

(
x0 +

ey0t − 1

y0
, y0, e

y0t

)
, u = xy00 , (1.28)

which can be written in terms of the explicit variables as:

u(x, y, z) =

(
x− z − 1

y

)y
. (1.29)

• This second problem is not well-posed, and does not have solution. In fact, the charac-
teristics in this case lie on the initial Cauchy surface and create a contradiction with the
initial condition.

We can see this formally if we compute the determinant (below, x0, y0 parametrize the
Cauchy surface (x0, y0, 1), t is the parameter along characteristics):∣∣∣∣∣∣∣∣

∂x
∂x0

∂y
∂x0

∂z
∂x0

∂x
∂y0

∂y
∂y0

∂z
∂y0

∂x
∂t

∣∣
t=0

∂y
∂t

∣∣∣
t=0

∂z
∂t

∣∣
t=0

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 0 0
0 1 0
1 y0 0

∣∣∣∣∣∣ = 0. (1.30)

1.3 More complicated equations: quasi-linear and fully nonlinear

Hint: Use the method of characteristics (if needed, use the version of the method for fully
nonlinear equations). For all these problems, check that the initial condition allows for a
solution, i.e., the Cauchy curve is not parallel to the characteristics.
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Ex. 6

Solve:
uxuy = 2, (1.31)

with initial condition u(s, s) = 3s, s ∈ [0, 1].

Solution Using the method for the completely nonlinear case, we get the characteristic
equations (using t for the parameter along the characteristics, and the symbols p ≡ ux, q ≡ uy):

∂tx = q, ∂ty = p, ∂tp = ∂tq = 0, ∂tu = 4. (1.32)

We need to find the initial conditions on the initial curve parametrised by s. We have:

x(s, t)|t=0 = s, y(s, t)|t=0 = s, u(s, t)|t=0 = 3s, (1.33)

for s ∈ [0, 1]. To find the initial conditions for p, q we use the constraints:

PDE: pq = 2, and ∂su|t=0 = 3 = (ux∂sx+ uy∂sy)|t=0 = (p+ q)|t=0 . (1.34)

This has two independent solutions:

case A: p(s, t = 0) = 2, q(s, t = 0) = 1, or: (1.35)

case B: q(s, t = 0) = 2, p(s, t = 0) = 1. (1.36)

We present the solution for both.

• Case A: in this case, the solution of the characteristics with initial conditions gives:

p(s, t) = 2, q(s, t) = 1, (1.37)

x(s, t) = s+ 2t, y(s, t) = s+ t, (1.38)

u(s, t) = 3s+ 4t. (1.39)

for s ∈ [0, 1]. The solution turns out to be simply u = x+ 2y, in the range 0 ≤ s ≤ 1 −→
0 ≤ 2y − x ≤ 1 (the initial data do not specify the solution outside).

• Case B: in this case, we can obtain the solution simply by exchanging x↔ y, so u = y+2x,
for 0 ≤ 2x− y ≤ 1.

Notice that the solution in this case turns out to be linear, but this is just a coincidence of
the simple initial data we gave. A generic solution would be complicated.

Ex. 7

Solve:
uxuy = u, (1.40)

with initial condition u(s, 1) = s, s ∈ [0, 1].
(Leave the solution in implicit form as obtained with the method of characteristics).
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Solution: It can be done with the method of the previous exercise. In this case we find for
the initial condition in p, q:

p(s, t = 0) = 1, q(s, t = 0) = s, (1.41)

and:
x(s, t)|t=0 = s, y(s, t)|t=0 = 1, u(s, t)|t=0 = s. (1.42)

The characteristics read:

∂tx = q, ∂ty = p, ∂tp = p, ∂tq = q, ∂tu = 2u. (1.43)

with solution

p(s, t) = et, q(s, t) = set, (1.44)

x(s, t) = set, y(s, t) = et, (1.45)

u(s, t) = se2t. (1.46)

Inverting s, t for x, y we find:
u(x, y) = xy, (1.47)

for 0 ≤ x/y ≤ 1.

Ex. 8

Solve (if possible) the following initial value problems for the PDE:

uux + u2uy = u, (1.48)

1) With initial condition: u(s, 1) = s, s ∈ [0, 1].

2) With initial condition: u(s, s) = 1, s ∈ [0, 1].

Note: One of these problems does not admit a single-valued solution close to the initial curve:
which one and why?

Solution It is not necessary but we can divide by u the whole equation. We can solve it also
in the original form.

ux + uuy = 1. (1.49)

1) With initial condition: u(s, 1) = s, s ∈ [0, 1].

Using the method of characteristics:

∂tx = 1, ∂ty = u, ∂tu = 1. (1.50)

Imposing the initial conditions we solve and find:

x(s, t) = s+ t, y(s, t) = 1 + st+
t2

2
, u(s, t) = s+ t. (1.51)

So in this particular simple case:
u(x, y) = x. (1.52)
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2) With initial condition: u(s, s) = 1, s ∈ [0, 1].

This second problem does not admit a single-valued solution. This is because the cha-
racteristics lie along the initial curve (s, s). We can see that by computing the determinant∣∣∣∣ ∂tx ∂ty

∂sx ∂sy

∣∣∣∣
t=0

=

∣∣∣∣ 1 1
1 1

∣∣∣∣ = 0. (1.53)

Notice that nothing actually stops us from writing a solution with the method of charate-
ristics also in this case. We would find

x(s, t) = s+ t, y(s, t) = s+ t+ t2/2, u(s, t) = 1 + t. (1.54)

What makes this solution “bad”? Simply, if we plot this solution we would find that it is
double-valued in a neighbourhood of the initial curve. On one side of the curve, the solution
cannot be found, since along the curve it folds on itself. This can be seen in the attached
pdf where the solution is plotted starting from the above expression for the characteristic
curves. Such solution can be considered as a legitimate solution of the PDE, the only issue
is that it is singular, precisely along the Cauchy curve (x, y) = (s, s), s ∈ [0, 2].

Ex. 9

Solve:
ut + uux = u, (1.55)

with initial condition u(x, t = 0) = x2, x ∈ [0, 1]. Leave the solution in implicit form with the
method of characteristics.

Solution This can be solved with the same method as above, the solution with this initial
condition is described by:

x(s, t) = s2(et − 1), u = s2et, s ∈ [0, 1], (1.56)

where t, the parameter along the characteristics, coincides with the variable t in the original
PDE.

Ex. 10 - Initial value problem, both specific and abstract

Consider the PDE:

ux +
1

2
u2y = 1, (1.57)

• Find the solution with the method of characteristics, corresponding to the initial condition
u(0, y) = y2. In this case, you should be able to write u(x, y) explicitly.

• Write a solution with the method of characteristics, corresponding to the initial condition
u(0, y) = U0(y). Does the solution ever become multi-valued? Specify if this depends on
U0(y) and how.
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• Show that ux and uy do not blow up for the solution, for any initial condition U0(y).

Hint: For the first point, the answer is u(x, y) = x+ y2

1+2x .
Observation: Notice that the solution can become multi-valued even without ux or uy

blowing up. In the present case, what happens is that uyy blows up, and after this uy, rather
than u, becomes discontinuous.

Solution

• It can be solved with the method for fully nonlinear equations (also detailed below). The

solution is u(x, y) = x+ y2

1+2x .

• The equations for characteristics give (setting p ≡ ux, q ≡ uy):

∂tx = 1, ∂ty = q, ∂tp = ∂tq = 0, ∂tu = p+ q2 = 2− p, (1.58)

where we used the PDE: p+ q2/2 = 1 in the last step.

The initial condition is

x(s, t = 0) = 0, y(s, t = 0) = s, u(s, t = 0) = U0(s), (1.59)

and using the PDE and the constraint us(s, t = 0) = U ′0(s) = (p∂sx+ q∂sy)|t=0 (which
becomes U ′0(s) = q(s, 0), we get

q(s, 0) = U ′0(s), p(s, 0) = 1− (U ′0(s))
2

2
. (1.60)

The solution of the characteristics sytem is:

x(s, t) = t, y(s, t) = s+ U ′0(s)t, (1.61)

q(s, t) = U ′0(s), p(s, t) = 1− (U ′0(s))
2

2
, (1.62)

u(s, t) = U0(s) + t+ t
(U ′0(s))

2

2
. (1.63)

This is the solution of the PDE in implicit form. Provided we can locally invert (s, t)→
(x, y), we can express u as function of x, y.

The solution becomes multi-valued if the characteristics cross. The condition for the
crossing of characteristics is that the map (s, t) → (x, y) is not invertible. To check this
we must compute the Jacobian:∣∣∣∣ ∂sx ∂sy

∂tx ∂ty

∣∣∣∣ =

∣∣∣∣ 0 1 + tU ′′0 (s)
1 U ′0(s)

∣∣∣∣ = −(1 + tU ′′0 (s)). (1.64)

So the condition for this system to produce a multivalued solution is that, for some value
of t, and s, the term 1 + tU ′′0 (s) vanishes. Notice that this is similar to the condition for
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Burgers’ equation, but now there is the second derivative of the initial condition involved,
rather than the first.

Given the data of the initial condition we can compute the earliest characteristic time
when the first singularity (i.e., multi-valuedness) occurs. This is given by

tsing = min

{
− 1

U ′′0 (s)
, for s such that − 1

U ′′0 (s)
≥ 0

}
. (1.65)

This was not asked in the exercise, but in class we startedstudying the concrete example
where U0(s) = e−s

2
. In this case from the condition above one would find that the

singularity forms for a value corresponding to s = 0, where − 1
U ′′
0 (s)

has a local positive

minimum (its only positive miminum), correspondingly we have tsing = − 1
U ′′
0 (s)

∣∣∣
s=0

= 1/2.

• The last question is on the type of singularity. In this case, as we have shown, there is
multi-valuedness. However, contrary to Burgers’ equation, for the present PDE ux does
not blow up (instead uxx does). We can see immediately that ux does not blow up at
the singularity, because ux = p and from the solution for p(s, t) we see that nothing bad
happens when 1 + tU ′′0 (s) = 0 or for any other values of s, t, provided the initial profile
U0(s) is regular.

Ex. 11 - Eikonal equation with variable propagation speed

Note: this exercise is quite a bit more complicated, because the ODEs of the
characteristics are not fully decoupled. Consider light propagating in a 2D material such
that light travels with speed c(x, y) = y proportional to the distance from the x-axis. In
the geometric optics approximation, the phase of a wave with unit frequency travelling in the
medium satisfies the eikonal equation:

u2x + u2y =
1

y2
, (1.66)

Consider the evolution of the initial wave front u(x = 0, y) = 0, y > 0 (i.e. the positive
y-axis). What is the shape of the other wave fronts (i.e., level curves of u) in the (x, y) plane?

What is the path travelled by light rays in the medium?
Hint: As explained in the lecture, this is just the path traced by the characteristic curves

for this equation.

Solution The characteristics system with the usual notation is:

∂tx = 2p, ∂ty = 2q, ∂tp = 0, ∂tq = −2/y3, ∂tu = 2/y2. (1.67)

with IC:
x(s, t = 0) = 0, y(s, t = 0) = s, u(s, t = 0) = 0, (1.68)
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and combining the PDE: p2 + q2 = 1/y2 with ∂su(s, t = 0) = 0 = ux∂sx+ uy∂sy|t=0 = q(s, 0),
we get

q(s, 0) = 0, p(s, 0) = ±1/s. (1.69)

We can easily integrate the equations for p and x.

p(s, t) = ±1/s, x(s, t) = ±2t/s. (1.70)

Dividing the equations for y and q for each other we get:

dy

dq
= −qy3 −→ y−2 = q2 + const (1.71)

and imposing the initial condition we fix the constant to y−2 = q2 + s−2, or q2 = y−2 − s−2.
Plugging this expression into the equation for y, we get ∂ty = 2

√
y−2 − s−2, which can be

solved (with our initial condition) to

y(s, t) = s

√
1− 4

t2

s4
. (1.72)

Notice that x(s, t) and y(s, t) satisfy:

x(s, t)2 + y(s, t)2 = s2, (1.73)

therefore this answers the last question: rays travel along characteristic curves, which are
circumferences crossing the imaginary axis orthogonally.

We can already answer the first equation also, geometrically: the wave fronts are perpen-
dicular to the characteristics, therefore they must be rays of the form y/x = tan θ for fixed θ
the angle of the ray with the x-axis.

To write the solution completely and check that indeed u is constant on these rays, we can
solve the last characteristic ODE for u. This gives (imposing u = 0 on the y-axis, which is our
initial condition):

∂tu =
2

s2 − 4 t
2

s2

−→ u(s, t) = arctanh

(
2
t

s2

)
= ±arctanh

(
x√

x2 + y2

)
. (1.74)

Indeed the value of u (apart for the discrete choice ±) depends only on x√
x2+y2

= cos(θ), and

is clearly constant on the rays.
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