
Exercises on Ordinary Differential Equations

0.1 Direct methods

Write the solutions to the following ODE problems for the function y(x) using the methods
discussed in the lectures. The methods are: separation of variables, the potential method,
and methods for homogeneous and inhomogeneous linear equations, in particular variation of
constants.

Problems

1) Find the general solution to xy′(x) = 1 + y(x);

2) Find the solution to xy′ − xy = y such that y = 1 for x = 1;

3) Write the general solution to y′
(
y + x2

)
+ 2xy + sin(x) = 0.

4) Consider the ODE y′′ + 2y′ + y = e−x. A particular solution is given by y = x2e−x

2 . Write
the general solution.

5) Find the general solution to y′ − xy = 1.

6) Solve (1 + y2) + xyy′ = 0 with y = 0 when x = 5.

7) Write in implicit form the general solution to y′ (xey + 1) + x2 + ey = 0.

8) Find the solution to y′ + x2y = x2 such that y = 3 for x = 0.

9) Consider the ODE: y′′ + 2xy′ − 2y = 0. A solution is given by y(x) = x. Write the general
solution.

10) Solve (cos(x) + 1)y′ − (y + 1) sin(x)− 2x = 0, with y(0) = 0.

Solutions and hints:

1) Hint: separable equation. Solution: y(x) = Ax− 1.

2) Hint: separable. Solution: y(x) = e−1+xx.

3) Hint: use the potential method. Solution: y(x) = ±
√
A+ x4 + 2 cos(x)− 1− x2.

4) Hint: we need to construct two solutions of the homogeneous equation, using the exponential
ansatz. Solution: The two independent solutions are e−x and xe−x (Notice that the indices of

the characteristic equation coincide). The general solution is y(x) = x2e−x

2 +(A1 +A2x)e−x.

5) Hint: use the variation of constants method. Solution: y(x) = Ae
x2

2 +
∫ x

0 e
x2−s2

2 ds, where
A is an arbitrary constant.
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6) Hint: separable. Solution: y(x) = ±
√

25−x2
x2

.

7) Hint: use the potential method. Solution: the potential is (apart for additive constant)

U(x, y) = x3

3 + xey + y − 1 and solutions are given in implicit form by U(x, y) = A.

8) Hint: (for instance) you can use the variation of constants method to find the particular
solution to the inhomogeneous equation (but you can also probably guess it). Solution:

y(x) = 1 + 2e−
x3

3 .

9) Hint: Construct a second independent solution by variation of constants. Solution: the
second solution is obtained after solving the ODE with the ansatz y2(x) = a2(x)x. We find
y2(x) = x

∫ x
e−s

2 ds
s2

. The general solution is y(x) = A1x+A2x
∫ x

e−s
2 ds
s2

.

10) Hint: Potential method. Solution: y(x) = x2−cos(x)+1
cos(x)+1 .

0.2 Linear 2nd order equations. Fuchsian points and P-symbol method

Exercises

Ex 1. Discuss the possible singularities of the ODE

x4y′′ + y = 0, (0.1)

and in particular the form of the solution at x ∼ 0 and x ∼ ∞.

Ex. 2 - Classification of singular points. Study the singular points of the following
equations.

a)
x2y′′ + xy′ + (x2 − a2)y = 0.

(Bessel equation) In this case, compute the form of the series expansion around x = 0. (This
was done in class).

b)
(1− x2)y′′ − 2xy′ + a(a+ 1)y = 0.

(Legendre equation).

c)
xy′′ + (1 + a− x)y′ + by = 0

(Laguerre equation),

where a, b ∈ C.

2



Ex. 3 Study the equation:
x2(x− 2)y′′ + xy′ − y = 0.

Notice that it has only 3 singularities, all Fuchsian. The singularities are: 0, 2,∞, with indices
(1, 1

2), (0, 1
2), (0,−1), respectively.

Use the P-symbol method to write a basis of solutions around x = 2.

Ex 4. Consider the example of this ODE:

x(x+ 1)y′′ − (x− 1)y′ + y = 0 (0.2)

• Discuss the possible singular points, and their type.

• Find explicitly the first two terms of two independent series solutions around x = 0.

• Write a solution around x = 0 with the P-symbol method and check the above result.

Ex 5. La soluzione di una certa equazione differenziale ordinaria è descritta dal simbolo di
Papperitz-Riemann:

f(t) = P

t;
1 2 ∞
−3

4 ρ −1
4

1 1
2 − ρ

1
2

 , ρ ∈ R. (0.3)

Si scrivano, in termini di funzioni speciali esplicite, due soluzioni indipendenti dell’equazione
che abbiano uno sviluppo in serie della forma

f(t) =
∞∑
n=1

cnt
−α−n, (0.4)

(dove α è un parametro diverso per le due soluzioni) per t sufficientemente grande. NON è
richiesto di calcolare coefficienti cn, ma di scrivere le due soluzioni in forma compatta in termini
di funzioni speciali.

Solutions

Ex. 1 x = 0 is an irregular singularity, so there is no series solution around x = 0 with
finitely many negative terms . The solution will have an essential singularity and a Laurent
series with infinitely many negative powers.

x = ∞ is a regular singular point. In fact, writing the equation as y′′ + p(x)y + q(x) = 0,
q(x) ∼ O(1/x4), and p(x) ∼ 0/x at infinity. Since 0 6= 2, infinity is a Fuchsian singularity and
not a regular point. Plugging in the equation xα, for x → ∞ we find α(α − 1) = 0. Since we
are expanding around infinity where the natural variable is 1/x, the indices are then 0 and −1.
Notice that this is a resonant case since they differ by an integer. The solution which has the
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standard form is the one which is subleading, in this case, the one with the index 0. Namely,
the form of the solutions around infinity are∗

y1(x) =

∞∑
n=0

anx
−n, y2(x) = A log(x)y1(x) + x

∞∑
n=0

bnx
−n, (0.5)

where these are series converging in a region of the form |x| > R, and A a constant to be
fixed. To determine A, we must plug the solution into the ODE at large x. We notice that
y2(x) ∼ A log(x)(1 + a1/x+ a2/x

2 + . . . ) + b0x+ b1 + b2/x+ . . . . Plugging this expansion into
the ODE and matching orders at x→∞, we find that we must have A = 0. So we find simply
y2(x) = x

∑∞
n=0 bnx

−n, where we can assume b0 = 1, b1 = 0, and the other coefficients are fixed
by recursion.

Ex. 2 (a) - Bessel equation In this case there are two singular points (for generic para-
meter a): x = 0 is a Fuchsian singularity, and x =∞ is an irregular singularity.

The solution cannot be found around infinity with the series expansion method.

We can write the solution as a series of the form:

y(x) = xρ
∞∑
n=0

cnx
n, (0.6)

and this series will converge everywhere except for x =∞. Plugging this expansion in the ODE
we find at leading order: [

(ρ− 1)ρ+ ρ− a2
]
c0 = 0, (0.7)

so ρ = ±a.
The following orders give in general:

cn
[
(a+ n)(a+ n− 1) + (a+ n)− a2

]
+ cn−2 = 0, (0.8)

where c−1 = c−2 = 0. For n = 0, this is automatically satisfied. For n = 1, it gives c1 = 0, the
next orders give

cn = −cn−2
1

n(n+ 2a)
, n ≥ 2. (0.9)

This implies that all odd coefficients are zero (since c1 = 0 ):

c2k+1 = 0. (0.10)

For the even ones, we can iterate the previous equation to lower the index until we find:

c2k = (−1)kc0
1

(2k)!! [(2k + 2a)(2k + 2a− 2) . . . (2a+ 2)]
. (0.11)

∗Note that in the second solution we can always make the choice to fix b1 = 0. In fact, this coefficient can be
set to zero by redefining y2(x)→ y2(x)− b1/a0y1(x).
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Noting that (2k)!! ≡ (2k)(2k − 2) . . . 4 · 2 = 2k(k!), and that

(2k + 2a)(2k + 2a− 2) . . . (2a+ 2) = 2k (a+ 1)(a+ 2) . . . (a+ k) = (a+ 1)k =
Γ(a+ 1 + k)

Γ(a+ 1)
,

then we can write the solution as

y(x) = xa
∑
k=0

c2kx
2k = xac0

∑
k=0

(−1)k
(x

2

)2k 1

(k!)(a+ 1)k
(0.12)

= xac0

∑
k=0

(−1)k
(x

2

)2k Γ(a+ 1)

(k!)Γ(a+ 1 + k)
. (0.13)

This solution (normalised with c0 = 1
Γ(a+1)2a ) is denoted as

Ja(x) ≡
∑
k=0

(−1)k
(x

2

)2k+a 1

(k!)Γ(a+ 1 + k)
(0.14)

(Bessel function of the first kind), for generic a ∈ C. If a is not integer, the two independent
solutions as J±a(x). If a ∈ N, then the solution Ja(x) still has the same form. The other
solution will in general also contain a log contribution and can be obtained as a limit of the
situation with a /∈ N.

Notice also that we can recognise the form above as a special kind of generalised hypergeometric:

Ja(x) ∝ 0F1( ; a+ 1;−x
2

). (0.15)

Ex. 2 (b) - Legendre

• x = 1 is a Fuchsian singularity with indices ρ = 0, 0. The solution could have the form:

y1(x) =
∑
n≥0

an(x− 1)n, y2(x) =
∑
n≥0

bn(x− 1)n +A log (x− 1) y1(x). (0.16)

Since the indices are degenerate, in this case we have with certainty A 6= 0.

• x = −1 is a Fuchsian singularity with indices ρ = 0, 0. The solution could have the form:

y1(x) =
∑
n≥0

an(x+ 1)n, y2(x) =
∑
n≥0

bn(x+ 1)n +A log (x+ 1) y1(x). (0.17)

Since the indices are degenerate, in this case we have with certainty A 6= 0.

• x =∞ is a Fuchsian singularity with indices ρ = a+ 1,−a. The solution could have the
form:

y1(x) = x−a−1
∑
n≥0

anx
−n, y2(x) = xa

∑
n≥0

bnx
−n. (0.18)
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Ex. 2 (c) - Laguerre

• x =∞ is an irregular singularity.

• x = 0 is a Fuchsian singularity with indices ρ = 0,−a. So the solution could have the
form:

y1(x) =
∑
n≥0

anx
n, y2(x) = x−a

∑
n≥0

bnx
n. (0.19)

Ex. 3 The solution can be represented in the P-symbol notation as

y(x) = P


2 0 ∞

x 0 1 −1
1
2

1
2 0

 . (0.20)

Since we are interested in behaviour around x = 2, first we map the points z1 = 2, z2 = 0,
z3 =∞ to the canonical positions 0,1,∞. This is done with the fractional linear transformation:

x→ 2− x
2

, (0.21)

so we have

y(x) = P


0 1 ∞

2−x
2 , 0 1 −1

1
2

1
2 0

 . (0.22)

Now we want to bring it to canonical form, i.e. we must have one zero index in column 1 and
one in column 2. We are not there yet. So we use another property to redefine the indices:

y(x) =

(
2− x

2
− 1

)
P


0 1 ∞

2−x
2 , 0 0 0

1
2 −1

2 1

 . (0.23)

(Notice how we wanted to change the indices for the point 1, but they get automatically
redefined also at infinity!)

This is now in canonical form, so from here we can read one solution:†‡

y1(x) =
(
−x

2

)
2F1(0, 1; 1/2; 1− x

2
) = −x

2
. (0.24)

We denoted this as y1 since it has the leading behaviour at x ∼ 2.

†Check the relevant formula in the notes or in the “UsefulEquations” file.
‡(Note: actually in this case, since (0)i = δi,0, the hypergeometric reduces to 1 and the solution is simply

∝ x. This is just a coincidence of the data of the problem).
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The second independent solution with the leading behaviour (x− 2)
1
2 is found by starting with

the equation written as (i.e., we swap the two indices for z1).

y(x) = P


0 1 ∞

2−x
2 , 1

2 1 −1
0 1

2 0

 . (0.25)

Then, using the property to redefine the indices:

y(x) =

(
2− x

2

) 1
2
(

2− x
2
− 1

)
P


0 1 ∞

2−x
2 , 0 0 1

2
−1

2 −1
2

3
2

 . (0.26)

From this canonical form we read the other independent solution:§

y2(x) =

(
2− x

2

) 1
2
(

2− x
2
− 1

)
2F1(

1

2
,
3

2
;
3

2
;
2− x

2
). (0.27)

Ex. 4

• The singularities are z1 ≡ 0, z2 ≡ −1, z3 ≡ ∞. We can check that they are all Fuchsian.

The behaviour of solutions around z1 (x = 0) is y ∼ xα, plugging in the ODE we find the
indicial equation α2 = 0.

Solutions around z2 (x = −1) behave like y ∼ (x + 1)α, plugging in the ODE we find
the indicial equation α(α− 3) = 0 (which is again a resonant case since they differ by an
integer).

Around z3 (infinity), taking the form y ∼ x−α and expanding the ODE for x → ∞ we
find α2 + 2α+ 1 = 0, so the indices are both −1.

• Around x = 0, since the indices are 0 and 0 (degenerate case), we can take two solutions
of the form: y1(x) = a0 +a1x+ . . . and y2(x) = (b0 +b1x+ . . . )+log(x)A(a0 +a1x+ . . . ).
We can normalize a0 = 1 without loss of generality.

Plugging these expansions in the ODE, at the leading order from the equation for y1 we
find a0 + a1 = 0, so we can take y1(x) = 1− x+O(x2).

From the equation for y2(x) we then find, at leading order, 4A− b0− b1 = 0. Subtracting
a quantity proportional to y1, we can assume without loss of generality b0 = 0. The-
refore, we find y2(x) = A log x

(
1− x+O(x2)

)
+ 4Ax + O(x2) (we can set A = 1 for

normalisation).

§In this case it turns out this is a simple algebraic function (again, a coincidence of the data of the problem
which produce a “simple” hypergeometric function).
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• With the P-symbol notation the generic solution is written as

y(x) = P


0 −1 ∞

x 0 0 −1
0 3 −1

 (0.28)

(Notice the subtlety that the solution behaves like ∼ x1 at x ∼ ∞, but this corresponds
to index −1, not +1, because the “distance” from infinity is 1/x, not x).

Using the fractional linear transformation x→ x′ = −x, we rewrite this in the canonical
form:

y(x) = P


0 1 ∞

−x 0 0 −1
0 3 −1

 . (0.29)

This is in canonical form with c = 1, a = b = −1, so we can read one solution immediately:

y(x) =2 F1(−1,−1; 1;−x). (0.30)

This is given by a power series around x = 0, starting as 1− x+ . . . , so indeed it agrees
with one of the solutions above.¶

It is a bit trickier to describe the second solution with the P-symbol method because of
the degeneracy, although it can also be done by introducing regularising parameters.

Ex. 5 Il P-symbol mostra che ci sono due soluzioni indipendenti caratterizzate da due
andamenti diversi intorno a infinito:

f1(t) = t
1
4
−ncn, f2(t) = t−

1
2
−ndn, (0.31)

dove gli indici sono quelli indicati dal P-symbol. Ogni serie converge per t sufficientemente
grande. Tali soluzioni (ognuna definita a meno di una costante arbitraria) sono chiaramente
indipendenti, e si possono scrivere esplicitamente in termini di funzioni ipergeometriche. Per
far questo occorre manipolare il P-symbol, ci sono diversi possibili modi di farlo, il seguito
mostra un possibile svolgimento che porta a uno dei modi di esprimere il risultato.

Introduco una mappa lineare fratta che mandi 1→∞, 2→ 1, ∞→ 0. La mappa è:

t→ t′ =
1

t− 1
. (0.32)

Il P-simbolo diventa

f(t) = P

t′;
0 1 ∞
−1

4 ρ −3
4

1
2

1
2 − ρ 1

 , (0.33)

¶Note: in fact, since a ∈ Z<0, the solution truncates and it is just a polynomial y1(x) = 1− x.
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e con alcuni passaggi standard arrivo a una forma canonica:

f(t) = (t′)−
1
4 (t′ − 1)ρP

t′;
0 1 ∞
0 0 −3

4 −
1
4 + ρ

3
4

1
2 − 2ρ 1− 1

4 + ρ

 , (0.34)

da cui posso estrarre nel modo standard una delle due soluzioni, quella con l’andamento t
1
4

per grande t, che corrisponde a (t′)−
1
4 per t′ → 0. Questa soluzione è (una volta sostituito

t′ → 1/(t− 1)):

f1(t) ∝ (t− 1)+ 1
4 (

2− t
t− 1

)ρ 2F1(ρ− 1, ρ+
3

4
;
1

4
;

1

t− 1
). (0.35)

Per trovare la seconda soluzione, f2(t), torno a (0.33) ma estraggo un andamento diverso per
t′ → 0:

f(t) = (t′)
1
2 (t′ − 1)ρP

t′;
0 1 ∞

−1
4 −

1
2 0 −3

4 + 1
2 + ρ

0 1
2 − 2ρ 1 + 1

2 + ρ,

 , (0.36)

da cui leggo la seconda soluzione indipendente. Una volta sostituito di nuovo t′ = 1/(t− 1):

f2(t) ∝ (t− 1)−
1
2 (

2− t
t− 1

)ρ 2F1(ρ− 1

4
, ρ+

3

2
;
7

4
;

1

t− 1
). (0.37)

Si noti che usando la definizione come serie delle funzioni ipergeometriche, da queste formule
si possono facilmente leggere i coefficienti di un’espansione in serie in potenze di 1

t−1 . Questa

serie converge per | 1
t−1 | < 1, che corrisponde a una regione per grande t. La serie si po-

trebbe riespandere per ottenere espansioni della forma (0.31), il che comunque non è richiesto
nell’esercizio.
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