Metodologie di Sintesi e Sviluppo Farmaceutico Synthesis and Development Pharmaceutical Methodologies

Laurea Magistrale in Chimica a.a. 2018/2019

- Capacità di giudicare una sostanza in termini di polarità/lipofilia
- Capacità di correlare lo stato fisico con la presenza di elementi strutturali
- Capacità di correlare la solubilità con la presenza di elementi strutturali
- Applicazione in Chimica Farmaceutica: concetto di *druggability*

"A numeric value associated to a *measurable* property that became <u>constant</u> if the experimental conditions are determined and maintained."

Associated to determine:

- Identity
- Purity

Some examples:

Melting point (mp), Boiling point (bp) Solubility logP, pK_{a} , Density Viscosity Chromatografic retention time (Rf) IR Vibration frequency, NMR chemical shift,

Some examples:

Melting point (mp), Boiling point (bp) Solubility logP, pK_{a} , Density Viscosity Chromatografic retention time (Rf) IR Vibration frequency, NMR chemical shift,

Aggregation states

Matter can exist in three aggregate states, i.e., **solid**, **liquid** and **gas**. The passages from one state to another (by adding or removing heat) are known as **phase changes**.

S < --- > L

The transformation from the solid state to the liquid state is said **fusion** or melting, the inverse is said **solidification**.

L < --- > G

The transformation from the liquid state to the vapor state is said **vaporizzation**, the inverse is said **condensation**.

S < --- > G

The passage from the solid state directly to the vapor state (i.e., without passing from the liquid state) is said **sublimation**

Marco L. Lolli

University of Torino (UniTO)

The melting point

Fusion is the passage from the solid state to the liquid state and it requires heat (energy) to take place.

Def I) The melting point is the temperature where both phases (S and L) are present

Def 2) The melting point is the temperature where both phases (S and L) own the same **vapour pressure**.

The **melting point** is a chemio-pysical constant that depend from the pressure

The boiling point

Vaporizzation is the passage from the liquid state to the vapour state and it requires heat (energy) to take place.

Def I) The boiling point is the temperature where both phases (L and V) are present

Def 2) The boiling point is the temperature where both phases (L and V) own the same **vapour pressure.**

The **boiling point** is a chemio-pysical constant that <u>strictly</u> depend from the pressure

Table 2.1	Table 2.1 Nomenclature and Physical Properties of Straight-Chain Alkanes						
Number of carbons	Molecular formula	Name	Condensed structure	Boiling point (°C)	Melting point (°C)	Density ^a (g/mL)	
1	CH_4	methane	CH ₄	-167.7	-182.5		
2	C_2H_6	ethane	CH ₃ CH ₃	-88.6	-183.3		
3	C_3H_8	propane	CH ₃ CH ₂ CH ₃	-42.1	-187.7		
4	C_4H_{10}	butane	CH ₃ CH ₂ CH ₂ CH ₃	-0.5	-138.3		
5	C_5H_{12}	pentane	CH ₃ (CH ₂) ₃ CH ₃	36.1	-129.8	0.5572	
6	C_6H_{14}	hexane	CH ₃ (CH ₂) ₄ CH ₃	68.7	-95.3	0.6603	
7	C_7H_{16}	heptane	CH ₃ (CH ₂) ₅ CH ₃	98.4	-90.6	0.6837	
8	C_8H_{18}	octane	CH ₃ (CH ₂) ₆ CH ₃	127.7	-56.8	0.7026	
9	$C_{9}H_{20}$	nonane	CH ₃ (CH ₂) ₇ CH ₃	150.8	-53.5	0.7177	
10	$C_{10}H_{22}$	decane	CH ₃ (CH ₂) ₈ CH ₃	174.0	-29.7	0.7299	
11	$C_{11}H_{24}$	undecane	CH ₃ (CH ₂) ₉ CH ₃	195.8	-25.6	0.7402	
12	$C_{12}H_{26}$	dodecane	CH ₃ (CH ₂) ₁₀ CH ₃	216.3	-9.6	0.7487	
13	$C_{13}H_{28}$	tridecane	CH ₃ (CH ₂) ₁₁ CH ₃	235.4	-5.5	0.7546	
÷	:	:	:	:	:	:	
20	$C_{20}H_{42}$	eicosane	$CH_3(CH_2)_{18}CH_3$	343.0	36.8	0.7886	
21	$C_{21}H_{44}$	heneicosane	CH ₃ (CH ₂) ₁₉ CH ₃	356.5	40.5	0.7917	
÷	÷	÷	÷	÷	÷	÷	
30	$C_{30}H_{62}$	triacontane	$CH_3(CH_2)_{28}CH_3$	449.7	65.8	0.8097	
^{<i>a</i>} Density is ten	operature dependent. The de	ensities given are those de	termined at 20 °C (d^{20°).				

T TAT CO L. LOI

Table 2.5 Comparative Boiling Points (°C)							
Alkanes	Ethers	Alcohols	Amines				
CH ₃ CH ₂ CH ₃	CH ₃ OCH ₃	CH ₃ CH ₂ OH	CH ₃ CH ₂ NH ₂				
– 42.1	– 23.7	78	16.6				
CH ₃ CH ₂ CH ₂ CH ₃	CH ₃ OCH ₂ CH ₃	CH ₃ CH ₂ CH ₂ OH	CH ₃ CH ₂ CH ₂ NH ₂				
– 0.5	10.8	97.4	47.8				
CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	CH ₃ CH ₂ OCH ₂ CH ₃	CH ₃ CH ₂ CH ₂ CH ₂ OH	CH ₃ CH ₂ CH ₂ CH ₂ NH ₂				
36.1	34.5	117.3	77.8				

Table 2.6 Comparative Boiling Points of Alkanes and Alkyl Halides (°C)						
			Y			
	Н	F	Cl	Br	Ι	
CH ₃ —Y	-161.7	-78.4	-24.2	3.6	42.4	
CH ₃ CH ₂ —Y	-88.6	-37.7	12.3	38.4	72.3	
CH ₃ CH ₂ CH ₂ —Y	-42.1	-2.5	46.6	71.0	102.5	
CH ₃ CH ₂ CH ₂ CH ₂ -Y	-0.5	32.5	78.4	101.6	130.5	
CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ -Y	36.1	62.8	107.8	129.6	157.0	

Marco L. Lolli

University of Torino (Uni¹O)

Molecular shape

Elaidinic acid (*trans* oleic acid) mp 46

Some examples:

Melting point (mp), Boiling point (bp) Solubility

logP,

р*К*_а,

Density

Viscosity

Chromatografic <u>retention time</u> (Rf) IR Vibration frequency,

NMR chemical shift,

What information can be obtained from Solubility??

- **Solubility** is chemio-physical constants.
- **Solubility** reflect the ways the molecule attract one another, both in the solute and in the solvent.
- it will be effected by which weak **Intermolecular interaction forces** (Ionic, HC,VdW) are involved.
- **Solubility** can be used used to determine:
 - **Identity** of substance
 - **Purity** of substance

The story of the Chemistry: the alchemic times

In <u>absence</u> of science rules, the solubility phenomena was absolutely **amazing**!!!

.....A mineral white powder, formed by evaporating seawater, resist to hot flames but disappear (transform) if water is added.....

- Alkahest

- Similia similibus solvuntur

The Alchemist (N.C.Wyeth – 1937)

Marco L. Lolli

University of Torino (UniTO)

Solubility and European Pharmacopea

Solubility and European Pharmacopea

Descriptive term	Approximate volume of solvent in millilitres for 50 mg of solute				
Very soluble	less than	50 μl	///	///	
Freely soluble	from	50 μl	to	500 μl	
Soluble	from	500 μl	to	1.5 ml	
Sparingly soluble	from	1.5 ml	to	5 ml	
Slightly soluble	from	5 ml	to	50 ml	
Very slightly soluble	from	50 ml	to	500 ml	
Practically insoluble	more than		///	500 ml	

In EP, the solubility is **not** expressed as usual (amount of solute in the solvent) but **use SIX intervals**. This approach reduce the possibility of making mistake and allows a more confortable judgement

Solvation

is an interaction of a **solute** with the **solvent**, which leads to stabilization of the solute species in the solution.

The **solvated state** is the stable state were an ion/molecule in a solution is surrounded or complexed by solvent molecules (*solvation shell*).

Solvation

is sc Tł

Solubility - definition#I:

^{su} Solubility is a phenomena strictly correlate to the intramolecular forces inside this equilibrium:

Pure substance + Solvent-Solvent -> Substance-Solvent

Dielectric constant

Dielectric constant or permittivity (ε) is an index of the ability of a substance to attenuate the transmission of an electrostatic force from one charged body to another. The lower the value, the greater the attenuation. The standard measurement apparatus utilises a vacuum whose dielectric constant is 1.

Fig. 2-7. Solvation of ions in a solvent consisting of dipolar molecules [99]. The charges of the dipolar molecules are in fact partial charges $\delta \oplus$ and $\delta \oplus$.

Solventi ordinati per Costante dielettrica

Solvente	b.p. °C	т.р. °С	Densità	Costante dielettrica	Solubilità in acqua (g / 100 g)	TLV (ppm)
Acqua	100	0	1,00	80,2		
Dimetilsolfossido (DMSO)	189	18	1,10	46,7	25,3	
Acido trifluoroacetico	72	-15	1,49	39,5	8	
Acetonitrile	82	-44	0,78	37,5	∞	40
Dimetilformammide (DMF)	153	-60	0,95	36,7	∞	10
Metanolo	65	-98	0,79	32,7	∞	200
Glicoldietilenico	245	-7	1,11	31,7	00	
Etanolo	78	-114	0,79	24,6	∞	1000
Acetone	56	-95	0,79	20,7	00	1000
1-propanolo	97	-126	0,80	20,3	00	200
2-propanolo	82	-88	0,79	19,9	∞	
Terz-Butanolo	82	26	0,78	12,5	∞	100
Piridina	115	-42	0,98	12,4	∞	5
Diclorometano	40	-95	1,33	8,9	1,30	250
Tetraidrofurano (THF)	66	-109	0,89	7,6	∞	200
Acetato d'etile	77	-84	0,9	6,0	8,1	400
Clorobenzene	132	-46	1.11	5.6	0.05	75
Cloroformio	61	-64	1,49	4,8	0,82	25
Etere	35	-116	0,71	4,3	6,0	400
Etere dibutilico	142	-95	0,77	3,1	0,03	
Solfuro di carbonio	46	-111	1,26	2,6	0,29	20
Benzene	80	5,5	0,88	2,3	0,18	25
CCL ₄	77	-23	1,59	2,2	0,08	10
Cicloesano	81	6,5	0,78	2,0	0,01	300
Esano	69	-95	0,66	1,9	Insolubile	500
Pentano	36	-130	0,63	1,8	Insolubile 🥤	L 500

Fig. 2-1. Two-dimensional schematic diagram of the three-dimensional structure of liquid water

Solventi ordinati per Solubilità Acquosa

Solvente	b.p. °C	<i>m.p.</i> °C	Densità	Costante dielettrica	Solubilità in acqua (g / 100 g)	TLV (ppm)
Асциа	100	0	1.00	80.2		
Acido trifluoroacetico	72	-15	1,00	39.5	00	
Acetonitrile	82	-44	0.78	37.5	00	40
Dimetilformammide (DMF)	153	-60	0,95	36,7	œ	10
Metanolo	65	-98	0,79	32,7	œ	200
Glicoldietilenico	245	-7	1,11	31,7	00	
Etanolo	78	-114	0,79	24,6	00	1000
Acetone	56	-95	0,79	20,7	∞	1000
1-propanolo	97	-126	0,80	20,3	00	200
2-propanolo	82	-88	0,79	19,9	00	
Terz-Butanolo	82	26	0,78	12,5	œ	100
Piridina	115	-42	0,98	12,4	00	5
Tetraidrofurano (THF)	66	-109	0,89	7,6	00	200
Dimetilsolfossido (DMSO)	189	18	1,10	46,7	25,3	
Acetato d'etile	77	-84	0,9	6,0	8,1	400
Etere	35	-116	0,71	4,3	6,0	400
Diclorometano	40	-95	1,33	8,9	1,30	250
Cloroformio	61	-64	1,49	4,8	0,82	25
Solfuro di carbonio	46	-111	1,26	2,6	0,29	20
Benzene	80	5,5	0,88	2,3	0,18	25
CCL ₄	77	-23	1,59	2,2	0,08	10
Clorobenzene	132	-46	1.11	5.6	0.05	75
Etere dibutilico	142	-95	0,77	3,1	0,03	
Cicloesano	81	6,5	0,78	2,0	0,01	300
Esano	69	-95	0,66	1,9	Insolubile 🖌	500
Pentano	36	-130	0,63	1,8	Insolubile	500

Solubility and structural features

• Solubility values will be effected by the Molecular weight.

Solubility and structural features

• Solubility values will be effected by the **mp/bp**

Molecular shape

Stearic acid mp 69 0.00029 g/100 g (20 °C

Elaidinic acid (*trans* oleic acid) mp 46

Solubility and structural features

Solubility values will be effected by the % hydrocarbon present in the structure

Table 2.7	Solubilities of Ethers in Water	
2 C's	CH ₃ OCH ₃	soluble
3 C's	CH ₃ OCH ₂ CH ₃	soluble
4 C's	CH ₃ CH ₂ OCH ₂ CH ₃	slightly soluble (10 g/100 g H_2O)
5 C's	CH ₃ CH ₂ OCH ₂ CH ₂ CH ₃	minimally soluble (1.0 g/100 g H_2O)
6 C's	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	insoluble (0.25 g/100 g H_2O)

Solubility and structural features

• Solubility values will be effected by the HBA/HBD

Solubility and salts

S = 0.2 % p/v

A white, crystalline powder or white or colourless, acicular crystals, <u>slightly soluble in water</u>, freely soluble in alcohol and in ether, sparingly soluble in methylene chloride

S = 125 % p/v

A white, crystalline powder or small, colourless crystals or shiny flakes, <u>freely soluble in water</u>, sparingly soluble in alcohol.

Solubilità acquosa del sale incrementa di almeno di 2 ordini di grandezza

Marco L. Lolli

University of Torino (UniTO)

Solubility and salts

NON tutti i sali sono dotati di elevata solubilità acquosa

Benzilpenicillina: Penicillina G sale sodico o potassico

MOLTO SOLUBILE (> 10 % p/v)

iniettata per via i.m. o e.v. trattamento di infezioni acute (intervallo posologico: 6 h)

Soluzione estemporanea preparata con H₂O per preparazioni iniettabili

Benzilpenicillina Procaina:

forma ritardo della benzilpenicillina somministrata per *via intramuscolare* come **sospensione** (solubilità = 0.4% p/v)

Et

`Et

Forma ritardo ⇒ assorbimento lento e prolungato

trattamento di infezioni croniche (intervalli di somministrazione: da 1 volta alla settimana ad 1 volta al mese)

Marco L. Lolli

University of Torino (UniTO)

Solubility and salts

Il farmaco NON deve precipitare dopo essere stato iniettato in vena o instillato come collirio

