Range Verification in Particle Therapy

goals

methods

POSITRON EMITTERS PET modality Protons ---- Activity ---- Dose e et al., Proceedings IBIBAM, 29.09.2007, Heidelberg Arbitrary units ¹**H**: E = 110 MeV Target: PMMA Penetration depth / mm

experiments

Time of flight of prompt

verification: data analysis

and algorithm development

(cooperation with Univeristy of Lubeck)

Reconstructed stopping power

Development and optimization of original reconstruction algorithm

Goal: R&D of a system for promot photons detection in hadrontherapy.

Measured electromagnetic stopping power

z (cm)

Development of algorithms dedicated to stopping power reconstruction

photons for treatment

- Monte Carlo simulations

Experimental data analysis

PET for hadrontherapy treatment verification: in-vivo Data Analysis

Italian collaboration: INFN Torino, INFN Milano, Università La Sapienza di Roma, Università di Pisa, CNAO

The INSIDE system is installed at CNAO in Pavia. It consists of a planar

Objective: to verify the quality of in-vivo treatments during irradiation and to provide the medical team with reliable information about possible morphological changes in the patient during therapy. The INSIDE system is undergoing a clinical trial at CNAO. The second part of the trial will be in 2024.

Thesis proposals:

- Clinical trial data analysis
- Development of data and image processing algorithms
- Comparison with Monte Carlo simulations

PET scanner and a charged particle tracer.

Thesis:

Experimental setup

Prompt gamma measurement over time

CONTACTS: Elisa Fiorina elisa.fiorina@to.infn.it Francesco Pennazio francesco.pennazio@to.infn.it

Multi Emission Tomography

PET and Prompt Photons detectors development

Goals: Data Acquisition system tests and electronics characterization

SIG (Super Ion Gantry): combined design of beam monitor and treatment monitor for Carbon Ion Therapy

HONEY (Hybrid ONline tEchnologY for particle therapy): detector characterization and data analysis

MET: Innovative PET detector, new chip (ALCOR) from high energy physics

Thesis:

- Detector characterization Electronics and detector characterization
 - Experimental data analysis

0 50 100 150 200 250 300 350 400

