{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Calcolo dell'entropia configurazionale\n",
"\n",
"Fare riferimento alle slide della presentazione powerpoint termodinamica_12 per le spiegazioni sul tipo di calcoli che il programma esegue."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"%run disorder.py"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"La funzione principale da utilizzarsi è *disorder* che accetta come argomenti: il numero totale di atomi e un valore del parametro d'ordine richiesto per considerare *ordinata* la configurazione; la keyword opzionale *prt* permette di stampare valori dettagliati della probabilità di ogni configurazione, dell'entropia corrispondente e del parametro d'ordine"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"nMg = 0, prob: 0.00 %, entropia 0.00, ordinamento 1.00\n",
"nMg = 1, prob: 0.00 %, entropia 4.32, ordinamento 0.90\n",
"nMg = 2, prob: 0.02 %, entropia 7.57, ordinamento 0.80\n",
"nMg = 3, prob: 0.11 %, entropia 10.15, ordinamento 0.70\n",
"nMg = 4, prob: 0.46 %, entropia 12.24, ordinamento 0.60\n",
"nMg = 5, prob: 1.48 %, entropia 13.92, ordinamento 0.50\n",
"nMg = 6, prob: 3.70 %, entropia 15.24, ordinamento 0.40\n",
"nMg = 7, prob: 7.39 %, entropia 16.24, ordinamento 0.30\n",
"nMg = 8, prob: 12.01 %, entropia 16.94, ordinamento 0.20\n",
"nMg = 9, prob: 16.02 %, entropia 17.36, ordinamento 0.10\n",
"nMg = 10, prob: 17.62 %, entropia 17.50, ordinamento 0.00\n",
"nMg = 11, prob: 16.02 %, entropia 17.36, ordinamento 0.10\n",
"nMg = 12, prob: 12.01 %, entropia 16.94, ordinamento 0.20\n",
"nMg = 13, prob: 7.39 %, entropia 16.24, ordinamento 0.30\n",
"nMg = 14, prob: 3.70 %, entropia 15.24, ordinamento 0.40\n",
"nMg = 15, prob: 1.48 %, entropia 13.92, ordinamento 0.50\n",
"nMg = 16, prob: 0.46 %, entropia 12.24, ordinamento 0.60\n",
"nMg = 17, prob: 0.11 %, entropia 10.15, ordinamento 0.70\n",
"nMg = 18, prob: 0.02 %, entropia 7.57, ordinamento 0.80\n",
"nMg = 19, prob: 0.00 %, entropia 4.32, ordinamento 0.90\n",
"nMg = 20, prob: 0.00 %, entropia 0.00, ordinamento 1.00\n",
"\n",
"Soglia per definire una configurazione ordinata 0.50\n",
"Probabilità di avere una configurazione ordinata: 4.14 %\n",
"Probabilità di avere una configurazione disordinata: 95.86 %\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEGCAYAAABYV4NmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deXgUVbr48e+bBTdAVkFAR0DEAUUwUUFBERSQIItCglu46r3ccVyvo+Mymzrjc8UNx0Hx6uhP4kbYl4RVVkVRwiKLyiozMiIoO8iSkPf3R51mmthJOiHV1Unez/PU092nTnW93en023Xq1DmiqhhjjDEVLSHoAIwxxlRNlmCMMcb4whKMMcYYX1iCMcYY4wtLMMYYY3yRFHQA8aJBgwZ6zjnnBB2GMcZUKkuXLv1RVRtGWmcJxjnnnHPIy8sLOgxjjKlUROQfxa2zJjJjjDG+sARjjDHGF5ZgjDHG+MISjDHGGF9YgjHGGOMLSzDGGGN8YQnGGGOMLyzBGBPH9u7dyxtvvMFPP/0UdCjGlJklGGPiVEFBAenp6QwdOpTMzEwKCwuDDsmYMrEEY0yceuCBB5g5cyZ9+vRh/Pjx/P73vw86JGPKxBKMMXFoxIgRvPLKK/zmN79hypQpDB06lP/93/9l1KhRQYdmTNQswRgTZ6ZPn879999P3759GTZsGCLCiBEj6N69O//1X//FwoULgw7RmKhYgjEmjqxevZqMjAzatWvHe++9R2JiIgDJycmMHTuWFi1aMGDAADZs2BBwpMaUzhKMMXFi27Zt9OnTh5o1azJ16lRq1qx53Pq6deuSm5uLiJCWlsauXbsCitSY6FiCMSYOHDx4kP79+7N9+3amTp1Ks2bNItZr2bIlEydO5JtvvmHgwIHk5+fHOFJjomcJxpiAqSp33HEHixcv5t133yUlJaXE+l26dOHvf/87c+fO5e6770ZVYxSpMWXjW4IRkbdEZLuIrA4ryxaRFW7ZLCIrXPk5InIwbN1rYdukiMgqEdkgIi+LiLjyeiIyW0TWu9u6rlxcvQ0islJELvbrNRpTEZ544glGjx7NM888ww033BDVNpmZmTz++OO88cYbvPjiiz5HaEw5qaovC3AlcDGwupj1LwB/dPfPKaHe50AnQIDpwHWu/FngUXf/UWCYu9/b1ROgI/BZNPGmpKSoMbH27rvvKqC33367FhYWlmnbo0eP6sCBA1VEdNKkST5FaEzJgDwt5nvVtyMYVV0I7Iy0zh2FpAMflPQcInImUFtVP3UvJAvo71b3A0IXBYwqUp7lXvtioI57HmPiyqJFi7jjjju46qqreO2113AH51FLSEhg1KhRpKamcvPNN7N8+XKfIjWmfII6B9MF2Kaq68PKmovIchFZICJdXFlTYEtYnS2uDKCRqm4FcLdnhG3zbTHbHEdEhopInojk/fDDDyf2iowpg02bNtG/f39+8YtfMH78eGrUqFGu5zn11FOZMmUK9evX5/rrr+e7776r4EiNKb+gEsxNHH/0shU4W1U7AA8C74tIbbxmrqJKO6MZ9Taq+rqqpqpqasOGDaMI25gTt2fPHq6//nqOHj1KTk4O9evXP6Hna9y4MVOnTmXPnj307duXAwcOVFCkxpyYmCcYEUkCbgCyQ2WqelhVd7j7S4GNwHl4Rx/h/TWbAaGfaNtCTV/udrsr3wKcVcw2xgQqNIDlunXrGD9+POedd16FPO9FF13EBx98wPLly21gTBM3gjiCuQb4WlWPNX2JSEMRSXT3WwCtgE2u6WufiHR0520ygclusynAEHd/SJHyTNebrCOwJ9SUZkyQVJX77ruPWbNm8dprr3H11VdX6PP36dOHF154gQkTJvD4449X6HMbUy7Fnf0/0QWvCWwrkI93VHGnK38b+FWRujcCa4AvgGXA9WHrUoHVeEc1IwBx5fWBOcB6d1vPlQvwiqu/CkiNJl7rRWb89te//lUBffjhh33bR2Fhof73f/+3AvrWW2/5th9jQiihF1noy7raS01N1by8vKDDMFVUbm4uffv2pW/fvowfP56EBP8aD/Lz80lLS2P+/PnMnj2bq666yrd9GSMiS1U1NdI6u5LfGJ+tWbOGwYMH0759e959911fkwt4A2OOGTOGc889lxtuuIGNGzf6uj9jimMJxhifPfPMMyQmJjJlyhROO+20mOyzTp065OTkcPDgQbvS3wTGEowxPjp06BCTJ0/mxhtvpGnTiJdj+aZFixakpaUxbtw4jh49GtN9GwOWYIzx1YwZM9i3bx8ZGRmB7D8jI4Pt27ezYMGCQPZvqjdLMMb4KDs7m/r169OtW7dA9t+7d29OO+00srOzS69sTAWzBGOMT3766SemTp3KjTfeSFJSUiAxnHrqqVx//fWMHz+egoKCQGIw1ZclGGN8Mm3aNA4cOBBY81hIRkYGO3bsYO7cuYHGYaofSzDG+CQ7O5szzjgj8OtQevXqRa1atayZzMScJRhjfLB//35yc3MZOHAgiYmJgcZy8skn069fPyZMmMCRI0cCjcVUL5ZgjPFB6BqUoJvHQjIyMti9ezcffvhh0KGYasQSjDE+yM7OpkmTJnTu3DnoUADo0aMHderUsWYyE1OWYIypYHv37mX69OkMGjTI92FholWjRg0GDBjApEmTOHToUNDhmGoiPj79xlQhU6ZM4fDhw6SnpwcdynHS09PZu3cvs2bNCjoUU01YgjGmgmVnZ3PWWWfRsWPHoEM5Tvfu3alfv741k5mYsQRjTAXatWsXM2fOJD09PW6ax0KSk5O54YYbmDJlCgcPHgw6HFMNxNd/gDGV3KRJk8jPz4+75rGQ9PR09u/fz7Rp04IOxVQDlmCMqUBjxoyhefPmXHLJJUGHElHXrl1p2LAhY8aMCToUUw34lmBE5C0R2S4iq8PKnhCRf4nICrf0Dlv3mIhsEJG1ItIzrLyXK9sgIo+GlTcXkc9EZL2IZItIDVd+knu8wa0/x6/XaEy4HTt28OGHH5Keno6IBB1ORElJSQwcOJCcnBwOHDgQdDimivPzCOZtoFeE8uGq2t4t0wBEpA0wGGjrtnlVRBJFJBF4BbgOaAPc5OoCDHPP1QrYBdzpyu8EdqnqucBwV88Y302YMIGCgoK4ubiyOBkZGfz000/k5OQEHYqp4nxLMKq6ENgZZfV+wGhVPayq3wAbgEvdskFVN6nqEWA00E+8n4fdgHFu+1FA/7DnGuXujwO6S7z+nDRVSmia4vbt2wcdSok6d+5M48aNrZnM+C6IczD3iMhK14RW15U1Bb4Nq7PFlRVXXh/YraoFRcqPey63fo+r/zMiMlRE8kQk74cffjjxV2aqre3btzN37lwyMjLitnksJDExkUGDBjFt2jT27dsXdDimCot1ghkJtATaA1uBF1x5pP9ILUd5Sc/180LV11U1VVVTGzZsWFLcxpRo/PjxFBYWxn3zWEhGRgaHDh1iypQpQYdiqrBiE4yIfOxu94nI3rBln4jsLc/OVHWbqh5V1ULgDbwmMPCOQM4Kq9oM+K6E8h+BOiKSVKT8uOdy608n+qY6Y8olOzub888/nwsuuCDoUKLSqVMnmjZtahddGl8Vm2BUtbO7raWqtcOWWqpauzw7E5Ezwx4OAEI9zKYAg10PsOZAK+BzYAnQyvUYq4HXEWCKqiowDxjoth8CTA57riHu/kBgrqtvjC+2bt3KwoULK0XzWEhCQgLp6enMnDmT3bt3Bx2OqaKiaiJzPbqaiMjZoSWKbT4APgVai8gWEbkTeFZEVonISuBq4H8AVHUNMAb4EpgB3O2OdAqAe4CZwFfAGFcX4BHgQRHZgHeO5U1X/iZQ35U/CBzr2myMH8aNG4eqVprmsZCMjAyOHDnC5MmTS69sTDlIaT/uReRe4E/ANqDQFauqtvM5tphKTU3VvLy8oMMwlVDnzp3Zu3cvK1euDDqUMlFVmjdvTps2bezKflNuIrJUVVMjrYvmCOZ+oLWqtlXVC91SpZKLMeW1ZcsWFi1aFLdDw5REREhPT2f27Nns3GmnKU3FiybBfIvX1dcYU8TYsWMBKl3zWEhGRgYFBQVMnDgx6FBMFRRNE9mbQGsgFzgcKlfVF/0NLbasicyUR8eOHTly5AjLli0LOpRyUVVatWpFixYtbJ4YUy4n2kT2T2A2UAOoFbYYU61t3ryZzz77rFI2j4WEmsnmzp2LXWxsKlqpCUZVn1TVJ4EXgRfCHhtTrYWaxypzggGvmezo0aNMmDAh6FBMFVNqghGRC0RkOd41K2tEZKmItPU/NGPiW3Z2NpdccgktWrQIOpQT0q5dO1q3bm0XXZoKF00T2evAg6r6C1X9BfAbvKvwjam2NmzYwNKlSyvtyf1wIkJGRgYLFizg+++/DzocU4VEk2BOU9V5oQeqOh84zbeIjKkEQs1jgwYNCjiSipGenk5hYSHjx48POhRThUSTYDaJyB9E5By3/B74xu/AjIln2dnZdOrUibPPLnVQi0qhbdu2tG3b1prJTIWKJsHcATQEJgAT3f3b/QzKmHi2du1avvjiiyrRPBYuIyODjz/+mH/9619Bh2KqiGh6ke1S1ftU9WJV7aCq96vqrlgEZ0w8ys7ORkQYOHBg6ZUrkfT0dFT1WPOfMSeq2AstReQlVX1ARKYSYT4VVe3rd3CxZBdammhdcMEF1KtXj4ULFwYdSoVr3749p556Kp988knQoZhKoqQLLZMiFTrvuNvnKz4kYyqnNWvWsGbNGkaMGBF0KL7IyMjg8ccf55///GeVOb9kglPSfDBL3d2zgWWquiC0YFfym2oqOzubhIQEbrzxxqBD8UXootExY8YEHImpCqI5yf834CMR+WVY2VM+xWNM3FJVxowZw1VXXUXjxo2DDscXLVu2JCUlxRKMqRDRJJhv8HqSjRORUKf/yjFtnzEVaOXKlaxdu7bK9R4rKiMjgyVLlrBp06agQzGVXDQJRlV1GXAVMFREngcS/Q3LmPiTnZ1NYmJilW0eC7FmMlNRokkwWwFU9UegJ16Psgv8DMqYeKOqZGdn0717dxo0aBB0OL76xS9+QceOHe2iS3PCorkOJi3sfqGqPqyq0QyS+ZaIbBeR1WFlz4nI1yKyUkQmikgdV36OiBwUkRVueS1smxQRWSUiG0TkZRERV15PRGaLyHp3W9eVi6u3we3n4rK9Jcb83LJly9i0aVOlHzk5Wunp6axYsYJ169YFHYqpxKJJFA1F5HkRmSYic0NLFM/9NtCrSNls4AI35fI64LGwdRtVtb1bfhVWPhIYCrRyS+g5HwXmqGorYI57DHBdWN2hbntjTkh2djZJSUkMGDAg6FBiIjTGmjWTmRMRTRPZe8BXQHPgSWAzsKS0jVR1IbCzSNksVS1wDxcDzUp6DhE5E6itqp+qd0VoFtDfre4HjHL3RxUpz1LPYqCOex5jym3SpEl0796devXqBR1KTDRr1oxOnToxadKkoEMxlVg0Caa+qr4J5LvrYO4AOlbAvu8Apoc9bi4iy0VkgYh0cWVNgS1hdba4MoBGqho6P7QVOCNsm2+L2eY4IjJURPJEJM9m8zPFWb9+PevXr6dPnz5BhxJTffr0YenSpWzdujXoUEwlFU2CyXe3W0UkTUQ6UMqRR2lE5HdAAd7REXgdCc5W1Q7Ag8D7IlKbyN2hI49tE/b00W6jqq+raqqqpjZs2DC64E21k5ubC0BaWlopNauW0OudPn16KTWNiSyaBPMXETkdb6Kxh4C/A/9T3h2KyBCgD3CLa/ZCVQ+r6g53fymwETgP7+gjPJk1A75z97eFmr7c7XZXvgU4q5htjCmz3Nxc2rRpQ/PmzYMOJabatWtHs2bNjiVYY8qqxAQjIolAK1Xdo6qrVfVqVU1R1Snl2ZmI9AIeAfqq6k9h5Q3dvhCRFngn6De5pq99ItLR9R7LBCa7zaYAQ9z9IUXKM11vso7AnlBTmjFltW/fPhYsWFDtjl7Am+kyLS2NWbNmcfjw4aDDMZVQiQlGVY8C5Ro1WUQ+AD4FWovIFhG5ExiBN47Z7CLdka8EVorIF8A44FeqGuogcBfeUdMGvCOb0PH6M8C1IrIeuNY9BpgGbHL13wB+XZ74jQGYPXs2+fn51TLBgNdMtn//fj766KOgQzGVUEmjKYd8IiIjgGzgQKjQXd1fLFW9KULxm8XUHQ9EnKtVVfOIcGGna1LrHqFcgbtLis2YaOXm5nL66adz+eWXBx1KILp168ZJJ51Ebm4u11xzTdDhmEommnMwlwNt8Qa4fMEtNoS/qfIKCwuZNm0aPXv2JDk5OehwAnHaaadx9dVX23kYUy6lHsGo6tWxCMSYeLN8+XK+//77ats8FpKWlsa9997LunXrOO+884IOx1QipSYYEfljpHJVtSH7TZWWm5uLiHDdddcFHUqgQgkmNzfXEowpk2iayA6ELUfxhmI5x8eYjIkLubm5XHbZZVT3a6SaN29OmzZtrJnMlFk0g12+ELY8DXSlmCvjjakqtm3bxueff17tm8dC0tLSWLhwIfv27Qs6FFOJRHMEU9SpQIuKDsSYeBK6et0SjCctLY38/Hxmz54ddCimEolmNOVVbtj7lSKyBlgL/NX/0IwJTm5uLk2aNKF9+/ZBhxIXLr/8ck4//XRrJjNlEs11MOEj/BUA28JGRDamysnPz2fWrFmkp6fjph+q9pKTk+nZsyfTpk2jsLCQhITyNH6Y6iaaT8m+sOUgUFtEqudFAaZa+Pjjj9m7d2+1Gz25NH369OH7779n2bISr7E25phoEswy4Ae8CcLWu/vfiMgyEUnxMzhjgpCbm0uNGjXo3v1nA0VUa7169UJErJnMRC2aBDMD6K2qDVS1Pl435TF4Y3y96mdwxgQhJyeHrl27UrNmzaBDiSsNGzbksssuswRjohZNgklV1ZmhB6o6C7jSzRZ5km+RGROAjRs3snbtWus9Voy0tDSWLFnCtm3bgg7FVALRJJidIvKIiPzCLb8Fdrnh9Qt9js+YmKquk4tFyyYhM2URTYK5GW/Srkl4c66c7coSgXT/QjMm9nJzc2ndujUtW7YMOpS41L59e5o0aWLNZCYq0Qx2+SNwbzGrN1RsOMYEZ//+/cyfP5977y3u425Ck5CNHj2aI0eOUKNGjaBDMnGs2CMYEXnJ3U4VkSlFl9iFaExszJkzhyNHjljzWCnS0tLYt28fH3/8cdChmDhX0hFMlru1uV9MtZCbm0vt2rXp3Llz0KHEte7du1OjRg1yc3Pp1q1b0OGYOFbSOZjn3G1vVV1QdIlFcMbEiqqSm5tLjx49qu3kYtGqWbMmXbt2tfMwplQlJZgzReQqoK+IdBCRi8OXaJ5cRN4Ske0isjqsrJ6IzBaR9e62risXEXlZRDa4cc8uDttmiKu/XkSGhJWnuLHSNrhtpaR9GFOcFStW8N1331nzWJTS0tJYu3YtGzduDDoUE8dKSjB/BB7F60H2Iv+eLrksUya/DfQqUvYoMEdVWwFz3GPwLuBs5ZahwEjwkgXwJ+Ay4FLgT2EJY6SrG9quVyn7MCai0K/x6j65WLRCidiOYkxJik0wqjpOVa8DnlXVq4ssUTW8qupCYGeR4n7AKHd/FNA/rDxLPYuBOiJyJtATmK2qO1V1FzAb6OXW1VbVT1VV8c4Z9S9lH8ZElJuby6WXXkqjRo2CDqVSaNmyJeeffz45OTlBh2LiWDQTjv1ZRJqKyOUicmVoOYF9NlLVre65twJnuPKmwLdh9ba4spLKt0QoL2kfxxGRoSKSJyJ5P/zwwwm8JFOZ/fDDD3z22WfWPFZGaWlpLFiwgP379wcdiolT0cwH8wywCPg98LBbHvIhlkjjoms5yqOmqq+raqqqplb3aXGrsxkzZqCqlmDKKC0tjSNHjvDhhx8GHYqJU9FcyT8AaK2qvVX1erf0PYF9bnPNW7jb7a58C3BWWL1mwHellDeLUF7SPoz5mZycHBo3bkyHDh2CDqVS6dy5M7Vr17bzMKZY0SSYTUBF9tucAoR6gg3BG34mVJ7pepN1BPa45q2ZQA8RqetO7vcAZrp1+0Sko+s9llnkuSLtw5jj5OfnM3PmTHr37m2TaJVRcnIyPXr0YNq0aXinQY05XjQzWv4ErBCROcDhUKGq3lfahiLyAdAVaCAiW/B6gz0DjBGRO4F/AoNc9WlAb7zhZ34Cbnf72SkifwaWuHpPqWqo48BdeD3VTgGmu4US9mHMcT755BP27NljzWPllJaWxrhx41ixYoUdAZqfiSbBTHFLmanqTcWs+tlMTq4n2N3FPM9bwFsRyvOACyKU74i0D2OKys3NJTk5mWuvvTboUCql6667DhEhJyfHEoz5GYnm0FZEagDnuYdrVTXf16gCkJqaqnl5eUGHYWKsbdu2NGnShNmzZwcdSqV12WWXISIsXrw46FBMAERkqaqmRloXTS+yrnhTJb+CN4PluhPspmxMXNi8eTNffvmlNY+doLS0ND7//HOsq78pKpqzmi8APVT1KlW9Eu/Cx+H+hmWM/2xysYqRlpaGqtokZOZnokkwyaq6NvRAVddRsb3KjAlETk4OrVq1olWrVkGHUql16NCBxo0bW3dl8zPRJJg8EXlTRLq65Q1gqd+BGeOnAwcOMG/ePDt6qQAJCQn07t2bmTNnkp9f5U7PmhMQTYK5C1gD3AfcD3wJ/MrPoIzx29y5czl8+DB9+vQJOpQqoU+fPuzZs4dFixYFHYqJI9EkmCTgr6p6g6oOAF4GEv0Nyxh/5ebmUqtWLbp06RJ0KFXCNddcQ3JysjWTmeNEk2Dm4F3IGHIKYIMPmUorNLnYtddea3PKV5BatWpx1VVXWYIxx4kmwZysqseGS3X3T/UvJGP8tWrVKrZs2WLnXypYWloaX331Fd98803QoZg4EU2COVBkdskU4KB/IRnjr9AcJr179w44kqrFJiEzRUWTYB4AxorIRyLyEZAN3ONvWMb4Jzc3l5SUFBo3bhx0KFVKqMu3TUJmQqKZcGwJcD5eb7JfA79UVeumbCqlHTt2sHjxYus95pM+ffowf/58Dhw4EHQoJg5ENT65quar6mpVXVUVxyEz1ceMGTMoLCy08y8+SUtL4/Dhw8yZMyfoUEwcsAkwTLWSm5tLo0aNSElJCTqUKqlLly7UqlXLzsMYwBKMqUYKCgqYMWMG1113nU0u5pMaNWpw7bXX2iRkBighwYjI+e724khL7EI0pmIsXryYXbt2WfOYz9LS0tiyZQsrV64MOhQTsJImHPsN8F94oykXpUA3XyIyxic5OTkkJSXZ5GI+C3X/zsnJ4aKLLgo4GhOkqCYcqw5swrGq78ILL+SMM86wE9AxcMkll5CUlMSnn34adCjGZ+WacExEbihpOYFgWovIirBlr4g8ICJPiMi/wsp7h23zmIhsEJG1ItIzrLyXK9sgIo+GlTcXkc9EZL2IZLsZOU01tmrVKlavXs2AAQOCDqVaGDBgAIsXL7ar+qu5ks50Xu+WO4E3gVvc8nfg1vLuUFXXqmp7VW0PpAA/ARPd6uGhdao6DUBE2gCDgbZAL+BVEUkUkUS8WTavA9oAN7m6AMPcc7UCdrnXYKqxd955h6SkJAYPHhx0KNXCrbd6XxHvvvtuwJGYIBWbYFT1dlW9He98SxtVvVFVb8T7oq8o3YGNqvqPEur0A0ar6mFV/QbYAFzqlg2quklVjwCjgX4iInjnh8a57UcB/SswZlPJHD16lHfffZfevXvToEGDoMOpFs4++2y6du1KVlaW9SarxqLpq3mOqm4Ne7wNOK+C9j8Y+CDs8T0islJE3hKRuq6sKfBtWJ0trqy48vrAblUtKFL+MyIyVETyRCTP5hOvuubMmcPWrVvJzMwMOpRqJTMzkw0bNrB48eKgQzEBiSbBzBeRmSLyHyIyBMgF5p3ojt15kb7AWFc0EmgJtAe28u/eaxJhcy1H+c8LVV9X1VRVTW3YsGEZojeVSVZWFnXq1LHhYWLsxhtv5JRTTuGdd94JOhQTkGjGIrsHeA24CO/L/3VVvbcC9n0dsExVt7n9bFPVo6paCLyB1wQG3hHIWWHbNQO+K6H8R6COiCQVKTfV0L59+5gwYQKDBw/mpJNOCjqcaqV27doMGDCA0aNHc/jw4aDDMQGIdiyyiar6P26ZWPoWUbmJsOYxETkzbN0AYLW7PwUYLCIniUhzoBXwObAEaOV6jNXAa26bol6D7zxgoNt+CDC5gmI2lcyECRM4ePCgNY8FJDMzk127dtnQMdVUIONliMipwLXAhLDiZ0VklYisBK4G/gdAVdcAY4AvgRnA3e5IpwBv2oCZwFfAGFcX4BHgQRHZgHdO5s0YvCwTh7Kysjj33HPp2LFj0KFUS927d+fMM88kKysr6FBMAEq6kt83qvoT3hd/eNltJdR/Gng6Qvk0YFqE8k38u4nNVFP//Oc/mTdvHk8++SRe50ITa0lJSdxyyy289NJL/Pjjj9aLr5qJ6ghGRGqIyAVuSfY7KGMqwnvvvYeqHrsmwwQjMzOTgoICRo8eHXQoJsZKHSpGRLriXUuyGa+H1lnAEFVd6HdwsWRDxVQtqkqbNm0444wzWLBgQdDhVHsdOnQgOTmZzz//POhQTAUr11AxYV4AeqjqVap6JdATGF6RARpT0fLy8vj666/t5H6cyMzMZMmSJXz11VdBh2JiKJoEk6yqa0MPVHUdYM1kJq5lZWVx8sknM3DgwNIrG9/ddNNNJCYm2jUx1Uw0CSZPRN4Uka5ueQNY6ndgxpTXkSNH+OCDD+jfvz+nn3560OEYoHHjxvTs2ZN33nmHwsLCoMMxMRJNgrkLWAPcB9yP1134V34GZcyJmD59Ojt27LDmsTiTmZnJli1bmD9/ftChmBgpsZuyG7H4TVW9FXgxNiEZc2KysrJo1KiRTSwWZ/r27Uvt2rXJysqiWzebr7A6KPEIRlWPAg1tPhVTWezcuZOpU6dyyy23kJQUyGVephinnHIK6enpjBs3jgMHDgQdjomBaJrINgOLROQPIvJgaPE5LmPKJTs7m/z8fGsei1OZmZkcOHCAiRMrasQpE8+iSTDfATmubq2wxZi4k5WVxYUXXmhzwcepK664gnPOOceGjqkmSm1DUDPRd8AAABw0SURBVNUnAUTkNFW141oTt9atW8fixYt57rnngg7FFCMhIYHbbruNv/zlL/zrX/+iadOIUzWZKqLUIxgR6SQiX+INKImIXCQir/oemTFl9M4775CQkMDNN98cdCimBLfddhuqyvvvvx90KMZn0TSRvYR39f4OAFX9ArjSz6CMKavCwkLeeecdrr32Wpo0aRJ0OKYErVq1olOnTowaNcqmU67iop0P5tsiRUd9iMWYcvvoo4/4xz/+YSf3K4nMzEzWrFnDihUrgg7F+CiaBPOtiFwOqBtV+SFcc5kx8SIrK4uaNWvSv3//oEMxUUhPT6dGjRp2sr+KiybB/Aq4G2iKN01xe/fYmLjw008/MXbsWAYNGsSpp54adDgmCvXq1eP666/n/fffJz8/P+hwjE9KTTCq+qOq3qKqjVT1DFW9VVV3xCI4Y6IxefJk9u3bZ81jlUxmZibbt29n1qxZQYdifBJNL7LmIvKiiEwQkSmh5UR3LCKb3RTJK0Qkz5XVE5HZIrLe3dZ15SIiL4vIBhFZKSIXhz3PEFd/vYgMCStPcc+/wW1rUxpWUVlZWZx99tlceaX1PalMevXqRYMGDayZrAqLpolsEt7V/H/DmxsmtFSEq1W1fdhkNY8Cc1S1FTDHPQa4DmjllqHASPASEvAn4DK8KZL/FEpKrs7QsO16VVDMJo5s3bqVWbNmcdttt5GQEFWfFRMnatSowU033cTkyZPZvXt30OEYH0TzH3lIVV9W1XmquiC0+BRPP7zZM3G3/cPKs9SzGKgjImfidZ+erao7VXUXMBvo5dbVVtVP1esHmRX2XKYKef/99yksLOS2224LOhRTDpmZmRw+fJixY8cGHYrxQTQJ5q8i8id3weXFoaUC9q3ALBFZKiJDXVkjVd0K4G7PcOVNgfCu0ltcWUnlWyKUH0dEhopInojk/fDDDxXwkkysZWVlcdlll9G6deugQzHlkJKSwi9/+UtrJquiohlu9kLgNqAbEJopSN3jE3GFqn4nImcAs0Xk6xLqRjp/ouUoP75A9XXgdYDU1FS74quS+eKLL1i5ciWvvPJK0KGYchIRMjMzeeyxx9i4cSMtW7YMOiRTgaI5ghkAtFDVq1T1arec8GQOqvqdu90OTMQ7h7LNNW/hbre76luAs8I2b4Y3CGdJ5c0ilJsqJCsri+TkZDIyMoIOxZyAW265BRHh3XffDToUU8GiSTBfAHUqcqcicpqI1ArdB3oAq4EpQKgn2BBgsrs/Bch0vck6AntcE9pMoIeI1HUn93sAM926fSLS0fUeywx7LlMFFBQU8P7779OnTx/q168fdDjmBJx11ll069aNrKwsGzqmiommiawR8LWILAEOhwpVte8J7LcRMNH1HE4C3lfVGW4fY0TkTuCfwCBXfxrQG9gA/ATc7mLYKSJ/Bpa4ek+p6k53/y7gbeAUYLpbTBXx4Ycf8v3339u1L1VEZmYmQ4YM4ZNPPuGKK64IOhxTQaS0XwwiclWkch97kgUiNTVV8/Lygg7DROnmm29m5syZbN26lRo1bMLVym7//v00atSIW2+9lf/7v/8LOhxTBiKyNOxSk+NEcyX/gkhLxYdpTHT27t3LxIkTGTx4sCWXKqJmzZrccMMNZGdnc+jQoaDDMRUkmiv594nIXrccEpGjIrI3FsEZE8m4ceM4dOiQNY9VMZmZmezZs4ecnJygQzEVJJojmFqqWtstJwM3AiP8D82YyLKysjjvvPO49NJLgw7FVKBu3brRpEkTuyamCinz2BqqOokTvwbGmHLZvHkzCxYsIDMzExtermpJTEzk1ltvZfr06Wzfvr30DUzci6aJ7IawZaCIPEOEixaNiYXQtRK33nprwJEYP9x2220UFBQwevTooEMxFSCaXmT/L+xhAd7Al2+4CySrDOtFFv9UldatW9O0aVPmzZsXdDjGJykpKYgI9v9YOZxoL7Lbw5b/UtWnq1pyMZXD5MmTWb9+PUOGDCm9sqm0hgwZwtKlS5kzZ07QoZgTVOwRjIj8sYTtVFX/7E9IwbAjmPi2f/9+2rRpQ506dVi6dCnJyclBh2R8cvDgQS688EISExNZuXIlJ510UtAhmRKU9wjmQIQF4E7gkQqN0JhS/PnPf+bbb79l5MiRllyquFNOOYURI0awbt06nn/++aDDMSeg1HMwAG7csPvxkssY4IWq1kxmRzDxa/Xq1XTo0IHMzEzefPPNoMMxMTJo0CBycnJYs2YNLVq0CDocU4xyn4NxUxj/BViJN2bYxar6SFVLLiZ+qSq//vWvqV27NsOGDQs6HBNDw4cPJykpiXvvvdcGwaykik0wIvIc3iCS+4ALVfUJN2ukMTGTlZXFRx99xLBhw2jQoEHQ4ZgYatasGU8++STTpk1j0qRJQYdjyqGkk/yFeKMnF3D8dS+Cd5K/tv/hxY41kcWfnTt3cv7553Puuefy8ccfk5BQ5uuCTSWXn59PSkoKu3fv5ssvv6RmzZpBh2SKKFcTmaomqOopRYaKqR167F+4xngef/xxdu7cyciRIy25VFPJycmMHDmSb7/9lqeeeirocEwZ2X+tiUufffYZr7/+Ovfddx8XXXRR0OGYAF1xxRXceeedDB8+nNWrVwcdjimDqHqRVQfWRBY/CgoKuPTSS9m2bRtff/01tWrVCjokE7Aff/yR1q1b07ZtWxYsWGDj0MWRE7qS35hYe/XVV1m+fDkvvfSSJRcDQIMGDXj22Wf56KOPGDVqVNDhmCjZEYxjRzDxYevWrbRu3ZpOnToxY8YM+6VqjiksLKRz586sX7+etWvXUq9evaBDMsTZEYyInCUi80TkKxFZIyL3u/InRORfIrLCLb3DtnlMRDaIyFoR6RlW3suVbRCRR8PKm4vIZyKyXkSyRcSmPawkHnzwQY4cOcIrr7xiycUcJyEhgddee41du3bx2GOPBR2OiUIQTWQFwG9U9ZdAR+BuEWnj1g1X1fZumQbg1g0G2gK9gFdFJFFEEoFXgOuANsBNYc8zzD1XK2AX3ggEJs59+OGHjB49mkcffZRzzz036HBMHGrXrh333Xcfb7zxBosXLw46HFOKmCcYVd2qqsvc/X3AV0DTEjbpB4xW1cOq+g2wAbjULRtUdZOqHgFGA/3E+9nbDRjnth8F9Pfn1ZiKcvjwYe6++27OPfdcHn300dI3MNXWk08+SZMmTbjrrrsoKCgIOhxTgkBP8ovIOUAH4DNXdI+IrBSRt0SkritrCnwbttkWV1ZceX1gt6oWFCmPtP+hIpInInk//PBDBbwiU17PPfcc69at45VXXuHkk08OOhwTx2rVqsVLL73EihUrePXVV4MOx5QgsAQjIjWB8cADqroXGAm0BNoDW4EXQlUjbK7lKP95oerrqpqqqqkNGzYs4yswFWXTpk08/fTTDBo0iB49egQdjqkEbrzxRnr27Mnvf/97vvvuu6DDMcUIJMGISDJecnlPVScAqOo2VT2qqoXAG3hNYOAdgZwVtnkz4LsSyn8E6ohIUpFyE4dUlXvvvZekpCSGDx8edDimkhARRowYwZEjR/jNb34TdDimGEH0IhPgTeArVX0xrPzMsGoDgNAlu1OAwSJykog0B1oBn+MNxNnK9RirgdcRYIp6/a7nAQPd9kOAyX6+JlN+EydOZNq0aTz11FM0bVrSqThjjnfuuefy2GOPMXr0aGbPnh10OCaCmF8HIyKdgY+AVUChK34cuAmveUyBzcB/q+pWt83vgDvweqA9oKrTXXlv4CUgEXhLVZ925S3wTvrXA5YDt6rq4ZLisutgYm///v388pe/pF69eixdupSkpKTSNzImzKFDh7jwwgsREVauXGnn7wJQ0nUwdqGlYwkm9h5++GGef/55Fi1axOWXXx50OKaSmjVrFj179uSpp57iD3/4Q9DhVDtxdaGlMQCrVq1i+PDh/Od//qclF3NCevToQXp6Ok8//TQbN24MOhwTxhKMibnCwkLuuusu6tSpwzPPPBN0OKYKGD58ODVq1OCee+6x2S/jiCUYE3OjRo1i0aJFPPvss9SvXz/ocEwV0KRJE5566ilmzJjBhAkTgg7HOHYOxrFzMLGxfft22rZtS+vWrVm4cKFNJGYqTEFBAampqfz444+sXr2aOnXqBB1StWDnYExcWLx4MZdccgl79+7l1VdfteRiKlRSUhKvvfYa33//PZdccgnLly8POqRqz/7Dje9UlRdeeIEuXbqQmJjIokWLaNeuXdBhmSqoY8eOzJ8/n4MHD9KpUydGjhxp52QCZAnG+Grnzp3069ePhx56iL59+7Js2TJSUyMeTRtTITp37syKFSvo1q0bv/71rxk8eDB79+4NOqxqyRKM8c3ixYvp0KEDM2bM4G9/+xvjxo2zdnETEw0aNCAnJ4dnnnmG8ePHk5KSYk1mAbAEYypc0SaxTz75hHvuuccmEDMxlZCQwCOPPMKCBQs4ePAgHTt2tCazGLMEYyrUjh076Nu3Lw899BD9+vWzJjETuCuuuIIVK1ZwzTXXWJNZjFmCMRXm008/pUOHDsyaNYu//e1vjB071prETFxo0KABU6dOZdiwYYwfP56LL77YmsxiwBKMOWGFhYU8//zzXHnllSQnJ1uTmIlLCQkJ/Pa3v2XBggUcPnyYjh078uqrr1qTmY8swZgTsmPHDvr168fDDz98rEksJSUl6LCMKdYVV1zB8uXLueaaa7j77rvJyMhgz549QYdVJVmCMeUW3iQ2YsQIxo4dy+mnnx50WMaUKtRk9uyzzzJhwgRSUlJYtmxZ0GFVOZZgTJlFahK7++67rUnMVCoJCQk8/PDDLFy4kMOHD9OpUydrMqtgNhaZY2ORlez7779n3rx5zJkzhzlz5rB582YGDhzI3//+dztqMZXejh07GDJkCLm5ubRs2ZLu3bvTvXt3rr76aho2bBh0eHHNJhyLgiWY4+3evZsFCxYwd+5c5syZw5o1awCoU6cOXbt2ZeDAgdx888121GKqjMLCQt5++20mTZrE/Pnz2bdvHwDt2rU7lnCuvPJKatWqFXCk8cUSTBSqe4I5ePAgixYtYs6cOcydO5e8vDwKCws55ZRT6NKlC926daN79+506NCBxMTEoMM1xlcFBQXk5eUd+4G1aNEiDh8+TGJiIpdeeindu3enW7dudOrUqdpP01wtE4yI9AL+CiQCf1fVEme2qm4J5tChQyxbtuzYP9Ann3zCkSNHSEpK4rLLLjv2D9SxY0dOOumkoMM1JlAHDx7k008/PfYDbMmSJRw9epSTTz6Zzp07H/sBdtFFF1W7/5dql2BEJBFYB1wLbAGWADep6pfFbVNZEoyqUlhYyNGjRykoKGDv3r3s2rUr4rJz585i1x08eBAAEaF9+/bH/kG6dOlCzZo1A36VxsS3PXv2sHDhwmM/0FatWnVs3amnnkrdunUjLvXq1St2Xe3atUlMTCQxMZGEhIRK0/xcHRNMJ+AJVe3pHj8GoKr/W9w25U0wb731Fs8//zzu+Y+7Le5+0bKjR49GvRQWFkYdW61atYr9MNetW5fWrVtz9dVX26ySxpyg7du3M2/ePDZs2FDij7v9+/dH/ZwJCQnHEk40S3hCCt2PVBZp/Z/+9CcyMjLK9dpLSjBJ5XrG+NcU+Dbs8RbgsqKVRGQoMBTg7LPPLteOGjRowAUXXBD+nMfdFnc/vKwsH6KiS+3atSMmjzp16pCcnFyu12SMKZszzjgjqi/o/Px8du/eHTEB7du3r0w/NosuIeX5oVu3bt0Tfg8iqapHMIOAnqr6n+7xbcClqnpvcdtUliYyY4yJJ9VxyuQtwFlhj5sB3wUUizHGVEtVNcEsAVqJSHMRqQEMBqYEHJMxxlQrVfIcjKoWiMg9wEy8bspvqeqagMMyxphqpUomGABVnQZMCzoOY4yprqpqE5kxxpiAWYIxxhjjC0swxhhjfGEJxhhjjC+q5IWW5SEiPwD/KOfmDYAfKzCcimJxlY3FVXbxGpvFVTYnEtcvVDXipDmWYCqAiOQVdyVrkCyusrG4yi5eY7O4ysavuKyJzBhjjC8swRhjjPGFJZiK8XrQARTD4iobi6vs4jU2i6tsfInLzsEYY4zxhR3BGGOM8YUlGGOMMb6wBFMGItJLRNaKyAYReTTC+pNEJNut/0xEzolBTGeJyDwR+UpE1ojI/RHqdBWRPSKywi1/9Dsut9/NIrLK7fNns7mJ52X3fq0UkYtjEFPrsPdhhYjsFZEHitSJ2fslIm+JyHYRWR1WVk9EZovIencbcbpBERni6qwXkSE+x/SciHzt/k4TRaROMduW+Df3KbYnRORfYX+v3sVsW+L/rw9xZYfFtFlEVhSzrS/vWXHfDTH9fKmqLVEseMP+bwRaADWAL4A2Rer8GnjN3R8MZMcgrjOBi939WsC6CHF1BXICeM82Aw1KWN8bmA4I0BH4LIC/6fd4F4oF8n4BVwIXA6vDyp4FHnX3HwWGRdiuHrDJ3dZ19+v6GFMPIMndHxYppmj+5j7F9gTwUBR/6xL/fys6riLrXwD+GMv3rLjvhlh+vuwIJnqXAhtUdZOqHgFGA/2K1OkHjHL3xwHdRUT8DEpVt6rqMnd/H/AV0NTPfVagfkCWehYDdUTkzBjuvzuwUVXLO4LDCVPVhcDOIsXhn6NRQP8Im/YEZqvqTlXdBcwGevkVk6rOUtUC93Ax3iyxMVfM+xWNaP5/fYnLfQekAx9U1P6ijKm474aYfb4swUSvKfBt2OMt/PyL/Fgd98+4B6gfk+gA1yTXAfgswupOIvKFiEwXkbYxCkmBWSKyVESGRlgfzXvqp8EU/08fxPsV0khVt4L3JQGcEaFOkO/dHXhHnpGU9jf3yz2u+e6tYpp8gny/ugDbVHV9Met9f8+KfDfE7PNlCSZ6kY5EivbxjqaOL0SkJjAeeEBV9xZZvQyvGegi4G/ApFjEBFyhqhcD1wF3i8iVRdYH+X7VAPoCYyOsDur9KotA3jsR+R1QALxXTJXS/uZ+GAm0BNoDW/Gao4oK7LMG3ETJRy++vmelfDcUu1mEsjK/X5ZgorcFOCvscTPgu+LqiEgScDrlO5wvExFJxvsAvaeqE4quV9W9qrrf3Z8GJItIA7/jUtXv3O12YCJeM0W4aN5Tv1wHLFPVbUVXBPV+hdkWaip0t9sj1In5e+dO9PYBblHXUF9UFH/zCqeq21T1qKoWAm8Us89APmvue+AGILu4On6+Z8V8N8Ts82UJJnpLgFYi0tz9+h0MTClSZwoQ6m0xEJhb3D9iRXHtu28CX6nqi8XUaRw6FyQil+L93Xf4HNdpIlIrdB/vJPHqItWmAJni6QjsCR26x0CxvyqDeL+KCP8cDQEmR6gzE+ghInVdk1APV+YLEekFPAL0VdWfiqkTzd/cj9jCz9sNKGaf0fz/+uEa4GtV3RJppZ/vWQnfDbH7fFV0z4WqvOD1elqH1xvld67sKbx/OoCT8ZpcNgCfAy1iEFNnvEPXlcAKt/QGfgX8ytW5B1iD13NmMXB5DOJq4fb3hdt36P0Kj0uAV9z7uQpIjdHf8VS8hHF6WFkg7xdektsK5OP9arwT77zdHGC9u63n6qYCfw/b9g73WdsA3O5zTBvw2uRDn7FQb8kmwLSS/uYxeL/ecZ+flXhfnmcWjc09/tn/r59xufK3Q5+rsLoxec9K+G6I2efLhooxxhjjC2siM8YY4wtLMMYYY3xhCcYYY4wvLMEYY4zxhSUYY4wxvrAEY0wpRGS+iKS6+9OKG0m4mG0fEJFTKyiOVBF5OUJ5VxFREbkzrKyDK3uoIvZdQkxvi8jAKOv2DY1iLCL9RaRNGff1soj8Iezx70TkFXd/kBsxuDD0tzLBswRjqg13VfUJUdXeqrq7DJs8gHfdzQlT1TxVva+Y1auAjLDHg/GurYgbqjpFVZ9xD/vjjexbFr8HbheRFiLSHPhP4Hdu3Wq8K+YXVkiwpkJYgjExIyLnuLkp3nC/NmeJyCluXfhRQgMR2ezu/4eITBKRqSLyjYjcIyIPishyEVksIvVcvZYiMsMNGPiRiJzvyt8WkRdFZB4wTLy5MCa5gREXi0i7CHGeIiKjXZ1s4JSwdZsjDRsjIiNFJM+9ridd2X14F9XNc/tHRG4Sb+6P1SIyLGz7/SIyzMX/oYhc6t6TTSLS19XpKiI5xby9/wROFpFG7gruXoQNSCkil7jX86l4c7v87Gpx9/zzRWSceHO/vBc2okGKiCxw8c2UUka9FpH7RORLt8/RYX/LESJyOd44cM+JNwdKSxFp7/4eoflmfjZgpXrjaP0OGIF3ge4fQ8leVb9S1bUlxWRizxKMibVWwCuq2hbYDdwYxTYXADfjjdH0NPCTqnYAPgUyXZ3XgXtVNQV4CHg1bPvzgGtU9TfAk8ByVW0HPA5kRdjfXW4f7dz+UqKI8Xeqmgq0A64SkXaq+jLe+E1Xq+rVItIEby6VbngDM14iIqGh0k8D5rv49wF/Aa7FG/rkqSj2D94UEYOAy/EG7Dwctu7/4V1R3gk4WsJzdMA76mqDd5X5FeKNZ/U3YKCL7y2896UkjwId3Hv4q/AVqvoJ3hX3D6tqe1XdiPd3eMTVXwX8KdKTquoHePOT1FbVd0qJwQTshJsMjCmjb1Q1NLPfUuCcKLaZp958FvtEZA8w1ZWvAtqJN1rs5cBY+ff0OyeFbT9WVUNfqp1xSU1V54pIfRE5XVX3hNW/EnjZ1VkpIiujiDFdvKHWk/AmemqDN0RHuEvwksgPACLyntvXJOAIMCPsdR1W1XwRWUV07xHAGLxBFc/HG7rkcrefOkAt98UO8D7eoJWRfK5u3CzxZmA8B++HwAXAbPf+JuINi1KSlcB7IjKJUkajFpHTgTqqusAVjSLyKNeISDOgMaAiUlPdoKQmPlmCMbEW/qv6KP9ufirg30fUJ5ewTWHY40K8z3ACsFtV2xezzwNh96MdhjzqMZTc+YCHgEtUdZeIvM3PX0Nx+w7J13+P23TsNapqYbTnjlT1exHJxzvyuR+XYErZb1FF/z5Jbvs17ugnWml4ybMv8AepuDl1/oo3g+Uv8Y5yHq6g5zU+sCYyEy828++mqKh6JYW4tvlvRGQQeKPIishFxVRfCNzi6nUFftSfz5ERXucCvGavktTGS2J7RKQR3lQAIfvwpqsFb7Knq9w5pkS8EZ0XULH+iNfUdKwZTL0ZCfeJN2I1eB0AymIt0FBEOoE3BHxJCUNEEoCzVHUe8FugDlCzSLVj74s7etwlIl3cutuI8L6IyHV4k2NlAX8GBkgZe6KZ2LIEY+LF88BdIvIJUJ65V24B7hSR0Ki0xU2H+wSQ6pq9nuHfw5aHGwnUdHV+izcydrFU9QtgudvvW8CisNWvA9NFZJ56UxE8BszD6+G1TFUjDZVebqr6iapGapK6E3hdRD7FOyLZE6FOcc95BC/pD3Pv7wr+fXQUSSLwrmveWw4Mj9DzbjTwsHidNVri/R2ec+95e4qcdxKRk4GXgF+r5wDe32aEWz9ARLYAnYBcEfFt6gITPRtN2ZhqIPx8hXjXopypqvcHHJap4uwcjDHVQ5qIPIb3P/8P4D+CDcdUB3YEY4wxxhd2DsYYY4wvLMEYY4zxhSUYY4wxvrAEY4wxxheWYIwxxvji/wO3bZkSqtIAowAAAABJRU5ErkJggg==\n",
"text/plain": [
"