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Abstract. lon mobility spectrometry (IMS) is a
rapid separation technique that has experienced
exponential growth as a field of study. Interfacing
IMS with mass spectrometry (IMS-MS) provides
additional analytical power as complementary
Ny separations from each technique enable multidi-
mensional characterization of detected analytes.

Rp [ lon Mobility Spectrometry ]
IMS separations occur on a millisecond time-
CS ( 2 scale, and therefore can be readily nested into

C i
) traditional GC and LC/MS workflows. However,

the continual development of novel IMS methods has generated some level of confusion regarding the advan-
tages and disadvantages of each. In this critical insight, we aim to clarify some common misconceptions for new
users in the community pertaining to the fundamental concepts of the various IMS instrumental platforms (i.e.,
DTIMS, TWIMS, TIMS, FAIMS, and DMA), while addressing the strengths and shortcomings associated with
each. Common IMS-MS applications are also discussed in this review, such as separating isomeric species,
performing signal filtering for MS, and incorporating collision cross-section (CCS) values into both targeted and
untargeted omics-based workflows as additional ion descriptors for chemical annotation. Although many chal-
lenges must be addressed by the IMS community before mobility information is collected in a routine fashion, the
future is bright with possibilities.
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Introduction

on mobility spectrometry (IMS) is the study of how ions

move in gases under the influence of an electric field, or in
other words, the electrophoretic mobility of ions in buffer
gases. Interestingly, while some may view IMS as a newer
technique, its historical origins date back to 1896 in Thomson
and Rutherford’s seminal work investigating the relationship
between electrical conductivity and gaseous media [1]. Due to
its fast screening capabilities and high sensitivity, IMS experi-
enced rapid growth during the 1960s and into the subsequent
decades as an atmospheric pressure device which could rapidly
screen chemical vapors for trace quantities of hazardous mate-
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rial [2, 3]. Over the past century, advances in instrumental
design further pushed the popularity of IMS forward by en-
hancing its sensitivity and selectivity. The resulting portable
IMS devices continue to be utilized for routine detection of
explosives and chemical warfare agents in military operations,
sporting events, and airports [2, 4].

While standalone IMS devices are very powerful, in-
terfacing IMS with mass spectrometry (IMS-MS) has pro-
vided even more resolution of chemical space as the
complementary separations in both the mobility and mass
dimensions enable exceptional levels of selectivity and
sensitivity [5—7]. Early IMS-MS instrumentation was gen-
erally associated with home-built instruments housed in
academic settings [8, 9]. Routine adoption of IMS-MS as
an analytical tool began in 2006 with the commercial
introduction of the Waters Synapt HDMS, the first widely
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marketed IMS-MS platform [10-12]. After generating
considerable interest in both academic and industrial per-
spectives with the Synapt HDMS, many instrument devel-
opers quickly followed suit and developed their own IMS-
MS platforms based on unique mobility separations, there-
by adding IMS selectivity to MS for challenging systems
in complex mixtures. While the flourishing growth of the
IMS-MS field is exciting, a significant amount of confu-
sion has developed among scientists new to the field in
terms of understanding the subtle differences between
different methods. Since each IMS technique possesses
pros and cons in terms of specific applications, knowledge
of the underlying fundamentals for each is helpful for
designing experiments. In this critical insight, we aim to
succinctly describe the fundamentals of each IMS tech-
nique and their respective advantages and disadvantages.
For further readings on each technique, we direct the
readers to more extensive review articles which describe
each method in greater detail [5, 13-16].

Core Principles of IMS Devices

The core principle of IMS instrumentation is to separate ions in
an inert gas (commonly termed “buffer gas™) under the influ-
ence of an electric field [17]. The applied electric field (E)
forces ions to migrate through the buffer gas with a velocity
(vg) correlated to the specific analyte’s mobility (K), measured
by Eq. 1.

Vd

K=+ (1)

In a given IMS experiment, the ions are separated by
their differences in mobility through either space or time
based on the particular IMS method used [13]. Smaller,
more mobile ions travel faster (higher v,;) in a specific
electric field strength than larger, less mobile ions
(smaller K). Mobility for each ion, K, is measured as a
function of the experimental parameters (i.e., temperature
and pressure), which are often normalized to standard
conditions in order to calculate the reduced mobility,
Ky. For simplicity, we use K to denote the mobility,
which is interchangeable with K, as shown below:

T
Ko=kKZ2° 2)
P T

While the primary measurement in IMS analyses is the
mobility [16], for many analytical applications, it has be-
come routine to convert the measured mobility into the
calculated collision cross-section value (CCS or Q). The
Mason-Schamp equation (Eq. 3) is often used to calculate
the analyte’s CCS from the measured mobility, where Q is
the momentum transfer collision integral which describes
the collision between the ion and the buffer gas and gives
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direct information about the conformation of the ion travel-
ing through the drift region [18, 19].
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The parameters of this equation are as follows: e, charge of
an electron; z, ion charge; N,, buffer gas density; u, reduced
mass of the collision partners; k;, Boltzmann’s constant; and 7,
the drift region temperature. The specifics of gas composition,
operational pressure, temperature in the mobility region, ana-
lyte migration path, and applied field strength vary for each
respective IMS platform (and depend heavily on experimental
objectives). These parameters are represented graphically in
Figure 1 [7]. From a simplified perspective, the CCS is a
normalized measure of gas phase size, typically denoted in
units of square Angstroms (A?) [19, 20]. While the Mason-
Schamp equation is not universally accepted, currently it is the
central equation used to calculate CCS in the community, and
is utilized here accordingly. Although there are several IMS
methods to conduct mobility separations, each unique instru-
ment platform has distinct advantages and disadvantages.
These differences are of importance when considering specific
applications for each method (e.g., isomer separation, signal
filtering and deconvolution, or CCS fingerprinting). In the
following section, we describe the specific attributes for each
IMS method in order to clarify common misconceptions and
highlight the strengths and shortcomings of each technique.

Differences Between IMS
Instrumentation

DTIMS

Drift tube ion mobility spectrometry (DTIMS) is often de-
scribed as the classic IMS model and provides simplicity,
relative ease of operation, and the ability to measure mobility
(and calculate CCS) as a primary method [19, 21]. These
attributes have enabled the DTIMS platform to be readily
adopted by many commercial vendors for IMS-MS research
(e.g., Agilent, TofWerk, and Excellims) [22, 23]. The key
component of DTIMS is the uniform electric field that propa-
gates through the drift region. The drift region is a defined
separation space in which the buffer gas has no directional
flow, and the analytes traverse this pressurized region under
the influence of a uniformly applied weak electric field (typi-
cally tens of V/cm). This uniform field enables DTIMS to
measure K as a primary method, and hence calculate the
corresponding CCS values for analytes from the Mason-
Schamp equation. The ability to calculate CCS from first
principles is perhaps the most significant advantage of DTIMS.
Other IMS platforms (i.e., TWIMS) require calibrant ions with
well-characterized CCS values previously obtained on DTIMS
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Figure 1. Variations of IMS technology with representative descriptions of applied field and gas dynamics. Bullet points describe
the relative parameters of each IMS platform with key attributes reflecting the ability to measure CCS information, ion packet
distribution, instrument footprint, and modularity among other relevant descriptors. Also included are the main instrument manu-
facturers which currently market each IMS method. Instrument diagrams have been adapted/reprinted from Ref. 7 “Lipid analysis
and lipidomics by structurally selective ion mobility-mass spectrometry” 1811, Kliman, M. et. al. 935-945. 2011, with permission

from Elsevier

instruments to create a calibration curve for calculating CCS of
unknown analytes [24]. It also should be noted that many
DTIMS experiments are also performed in a CCS-calibrated
mode (often referred to as the single-field method) in order to
maintain an analytical timescale which can be incorporated into
the chromatographic timescale. The single-field method has
been shown to provide highly reproducible CCS values, and
further detail on it and other modes of acquisition for DTIMS
are provided in the recent work by Stow et al. [25]
Additionally, many commercial DTIMS instruments do
not require RF confinement to contain ion diffusion in the
IMS experiment, though recent findings from Allen and
Bush suggest ion heating effects noted from RF confine-
ment are minor [26]. An additional advantage of DTIMS
includes comprehensive ion collection, wherein all analyte
mobilities are collected in a single pulsed experiment (as
opposed to scanning instruments, e.g., FAIMS and DMA).
However, because DTIMS analyzes ion pulses, its duty
cycle is decreased in comparison to continuous IMS
methods. For example, many experiments only trap the
ions for 4 ms and then allow them to be separated in the
drift region for 60 ms. This results in a duty cycle of 6.7 %
(4 ms/60 ms), and all other ion signal is lost during the
54 ms waiting for the previous ion packet to hit the
detector. In an effort to address this loss, many instrument
vendors are utilizing multiplexing strategies in the pulsing
sequence, wherein multiple packets are pulsed into the drift
region at defined times as the first packet travels.

Knowledge of the pulsing times allows the subsequent
signals to be deconvoluted to their correct arrival times
using schemes such as the Hadamard Transformation [27,
28]. Recent studies have even shown that this approach can
provide up to 50 % duty cycle, which is a great increase
over the standard 6.7 % [29, 30].

An additional challenge of DTIMS systems is how to in-
crease the resolving power of these devices. This is accom-
plished by increasing the voltage drop across the drift cell and
decreasing temperature [31-33]. For precise DTIMS measure-
ment, it is essential to keep the ions in the low field limit,
therefore to increase the voltage drop either the length of the
drift cell or pressure is increased [34, 35]. However, without
careful focusing, an increase in both of these parameters in-
creases ion diffusion and can cause extensive peak broadening
and ion losses. There are both commercial low- and high-
pressure DTIMS platforms, typically operated at ca. 4 Torr
and 760 Torr [19, 23]. Low pressure systems are often used
because ion focusing and obtaining higher sensitivity is easier
at lower pressures, however, fewer collisions with the buffer
gas decrease separation capacity. High-pressure systems often
suffer from ion losses at the higher pressures due to difficulties
in ion focusing, so they may not possess the sensitivity of lower
pressure systems. However, continual advancements in
DTIMS design and further increasing the pressure of the mo-
bility region (e.g., atmospheric pressure and greater) and the
resolving power for some platforms to between 100 and 250
(#/4¢) or even greater [23, 36].
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TWIMS

Traveling wave ion mobility spectrometry (TWIMS) led to the
widespread popularity of IMS-MS when it was first commer-
cialized in 2006 with the Synapt HDMS and its successors
(Synapt G2 in 2011 and Synapt G2-Si in 2013) by Waters
Corporation. [10, 37-39] The drift region of TWIMS is very
similar schematically to the DTIMS platform, where a stacked
set of ring electrodes provides an applied voltage, driving ion
motion through the drift region at reduced pressure (ca. 2—
4 Torr). However, while DTIMS applies a uniform electric
field to induce analyte migration, TWIMS utilizes an oscillat-
ing electric field to produce a set of voltage waves that push the
ions through the drift gas towards the mass analyzer. A de-
scription of this oscillating electric field has been explained in
detail in several publications [37, 40]. Also, TWIMS utilizes
RF confinement to focus the ion packet while it migrates
through the drift region, which provides increased analyte
signal resulting from decreased ion diffusion [41]. Again, the
ion heating resulting from RF confinement is thought to be a
minor contributor, as work from Morsa and coworkers has
noted that other ion heating in TWIMS resulting from varia-
tions in wave height, wave speed, and changes in pressure may
be of more importance [42, 43]. A caveat of TWIMS devices is
that each instrument must be calibrated with ions of known
mobility prior to calculating CCS values of unknowns
(analogous to the single-field method in DTIMS). Histori-
cally, polyalanine has been utilized for CCS calibration in
TWIMS, although the specific compounds best suited for
this purpose are still heavily debated in the field. For exam-
ple, instrument calibration to obtain CCS values using pep-
tide ions in lipid analyses have been shown to introduce
significant error [44—46].

Many advantages and disadvantages of TWIMS are also
shared with DTIMS, such as the pulsed ion packet delivery by
ion gating and comprehensive analyte detection. Two key
advantages of TWIMS are (1) low voltage requirements due
to constant wave heights and (2) the ability to manipulate ion
motion into long path length separations without significant ion
loss. These long path length structures effectively enhance
mobility separation by increasing the number of interactions
between the analyte and drift gas [47]. The low voltage re-
quirement for TWIMS has been essential in the design of two
extremely long path length platforms (e.g., tens to hundreds of
meters in length): the circular IMS device recently released by
Waters Corporation [48] and the Structures for Lossless Ion
Manipulations (SLIM) platform currently undergoing develop-
ment in the Smith group at Pacific Northwest National Labo-
ratory (PNNL, Richland, WA) [49, 50]. In a recent publication,
the SLIM device used a path length of ca. 1 km to perform ion
separations [51]. In this case, if a DTIMS platform was utilized
that required a uniform voltage drop of approximately 12 V/
cm, a power supply of > 120,000 V would be needed to supply
the voltage at the beginning of the drift region. Due to safety
concerns, this is impractical. However, TWIMS enables these
long path length analyses with power supplies providing wave
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height around 30 V. Furthermore, these long path length de-
vices are showing enormous possibilities as demonstrated by
their extremely high IMS resolving power (i.e., >400 R,,) and
separation of ions that have previously not been possible with
the lower resolving power of DTIMS [48, 51].

TIMS

Trapped ion mobility spectrometry (TIMS) is one of the newest
IMS methods and was recently commercialized by Bruker
Daltonics. The TIMS analyzer is comprised of a set of elec-
trodes that form three regions: the entrance funnel, TIMS
mobility region (ion mobility analyzer), and exit funnel. Both
the entrance and exit control ion deflection and focusing, while
the TIMS mobility region is utilized to accumulate, trap, and
elute ions of interest as a result of the interplay between a
parallel gas flow and an opposing electric field [52, 53]. In
the previously described DTIMS and TWIMS methods, the gas
flow is essentially stationary, but TIMS differs as it has a
unidirectional buffer gas flow towards the MS detector. In
effect, TIMS operates similar to DTIMS in reverse, wherein
ion motion is directed towards the MS by gas flow in opposi-
tion to the applied electric field strength (ca. 70 V/cm) [53, 54].
The field strength in a TIMS experiment is slowly decreased to
eject ions of specific mobilities from the mobility region for
structural analysis. One main difference between TIMS and the
previously described DTIMS and TWIMS techniques is its
scanning operation. In DTIMS and TWIMS, all ions can be
observed utilizing the same experimental conditions. TIMS
requires changes to the experimental parameters to see all ions.
Thus, it is only able to analyze each molecule as ejected. This
property can be beneficial though causing TIMS to be highly
selective in terms of separation efficiency (resolving power, ca.
200400 K/4K) [54, 55]. Selectivity is coupled with the instru-
ment duty cycle and can be tuned based on experimental needs.
For example, the rate at which the electric field is scanned
determines the selectivity of an experiment. Slower scans are
more selective and are more capable of separating analytes with
similar mobilities than faster scans, yet faster scanning may be
necessary when TIMS is coupled with LC [56]. Thus, the duty
cycle of TIMS dictates the level of resolving power possible for
each experiment and enables tunable levels of selectivity which
can be modulated based on the application (i.c., selective vs.
untargeted modes). As with DTIMS and TWIMS, TIMS uti-
lizes a pulse of ions for separation, and also experiences some
losses in duty cycle due to this pulsing. In addition, while TIMS
utilizes RF confinement in the mobility region, there is no axial
component to this applied frequency and the application of RF
is not thought to affect ion structure or mobility [54]. Although
recent literature suggests that TIMS devices can also measure K
as a primary method (and hence CCS values), most publica-
tions calibrate TIMS with analytes of known mobility prior to
analysis (in a similar fashion to TWIMS) [54, 57]. Another
distinct advantage of TIMS is its compactness, ca. 5-10 cm.
This small size is extremely advantageous in creating smaller
instrument footprints or easily modifying standalone MS
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platforms to gain TIMS capabilities. As a final note, recently,
the ability of chaining multiple TIMS analyzers (TIMS-TIMS)
has been described. These linkages enable versatile experimen-
tal design where different components can be placed between
the multiple TIMS separations for more specific characteriza-
tion of each ion detected (e.g., IMS-CID-IMS-MS) [58].

FAIMS/DMS/DIMS

Field asymmetric waveform ion mobility spectrometry
(FAIMS), differential mobility spectrometry (DMS), and
differential ion mobility spectrometry (DIMS) are atmo-
spheric pressure IMS techniques typically interfaced di-
rectly behind the ion source and prior to entering the
vacuum region of the mass spectrometer. These devices
are extremely small, usually just a few square centimeters
in surface area, and can be fabricated in different geome-
tries such as cylindrical, planar, and chips. They are easily
implemented on existing MS platforms and have a small
aperture to maintain the vacuum of the MS system they are
coupled to. FAIMS, DMS, and DIMS all operate under the
same mechanism from an electronics perspective and only
differ in the geometry of their respective electrodes; hence,
these techniques are grouped in this manuscript [59, 60].
FAIMS/DMS/DIMS operate as mobility filters, wherein a
periodic waveform is applied to separate ions under a
parallel gas flow [61]. The voltage application alternates
between high and low electric field strengths (ca. alternat-
ing polarity, with field strength often several kV/cm) [62],
a process that filters for a particular analyte’s change in
mobility with field strength as opposed to absolute mobil-
ity. In effect, due to the application of this asymmetric
waveform, FAIMS/DMS/DIMS devices cannot provide
CCS values. In addition, the ion structure itself may
change during the oscillation from low to high field
strengths. Varying mobility behavior in FAIMS may result
from dipole alignment and the clustering and declustering
of the ions, and is described in greater detail in the litera-
ture [61, 63, 64]. However, due to the differences in
separation characteristics, FAIMS/DMS/DIMS devices are
able to provide a high degree of selectivity that may not be
possible in other low field-only methods (i.e., <100 V/
cm). Additionally, FAIMS/DMS/DIMS are filtering de-
vices which can be scanned, wherein only analytes with a
specific response to the changing electric field and those
that match the applied compensation voltage (CV) are able
to traverse the drift region and exit through the aperture. In
this manner, FAIMS/DMS/DIMS operate in an analogous
fashion to quadrupole mass analyzers, utilizing CV scans
to transmit ions with various responses to change in mo-
bility over a set period. Furthermore, these devices do not
pulse ions into the mobility region like DTIMS, TWIMS,
and TIMS; yet, they acquire continuous mobility data
without loss in duty cycle for molecules capable of exiting
the device under the specific parameters applied. This
continuous collection of targeted spectra enables FAIMS/
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DMS/DIMS devices to increase the signal-to-noise ratio
for the ion(s) of interest by greatly removing unwanted
chemical noise in MS spectra [65]. FAIMS/DMS/DIMS
separations can also be enhanced by changing the gas
composition in the mobility region [66, 67]. Currently,
FAIMS/DMS/DIMS devices are marketed from Thermo
Fisher Scientific, Owlstone Medical, Sciex, and Heartland
MS.

DMA

Differential mobility analyzers (DMA) operate in a similar
fashion to DTIMS in that both systems utilize a constant
electric field and are able to measure K as a primary method.
Three of the main differences are that DMA devices operate
at ambient pressure, have a well-characterized unidirectional
gas flow, and are scanned for the detection of the molecule of
choice. DMA is capable of performing measurements not
possible with DTIMS as it is typically utilized to detect very
large analytes, such as aerosol particles [68], antibodies [69],
viruses, and other macromolecules (ca. tens to hundreds of
nm?) [70], and is not heavily applied in small molecule
screening applications (e.g., lipids, metabolites). Recently,
Fernandez-Garcia and coworkers have measured the mobil-
ities of liquid nanodrops in air with DMA [71]. In a similar
fashion, Ouyang and coworkers utilized DMA to calculate
CCS of large metal iodide clusters for comparison with
computational modeling approaches [72]. DMA therefore
provides an important mobility device for measuring ex-
tremely large molecules not possible with other IMS-based
methods. Because DMA is typically used to analyze macro-
molecules and not peptides, lipids, or metabolites, most CCS
values for calibration of other IMS techniques are first col-
lected on DTIMS, as opposed to DMA. DMA devices are
currently marketed by SEADM and TSI.

Applications of IMS-MS

IMS methods are typically conducted in three principle appli-
cation settings: isomer separations, signal filtering, and anno-
tation of untargeted features via CCS database matching. In this
section, we describe each of these applications of IMS and
highlight specific examples in recent literature.

Isomer Separations

First and foremost, while mass spectrometers are very se-
lective in terms of separating and identifying analytes with
different chemical formulas, distinction of isomeric species
in complex samples requires fragmentation methods, or
chromatographic techniques in addition to the MS measure-
ments. For structurally similar isomers such as lipids [73],
carbohydrates [74], or amino acids [75], fragmentation
spectra are often very similar and may fail to provide diag-
nostic ions of each species; hence, alternative methods of
separation for these analytes prior to MS analysis is
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required. IMS provides complementary separation of iso-
mers by utilizing structural differences in mobility to resolve
these analytes. Isomeric compounds have been separated by
various IMS methods across a wide scope of biological
classes including nucleic acids [76], carbohydrates [77,
78], lipids [79], and peptides [10, 37]. For example,
Figure 2a, b describe a recent separation of diglyceride
(DG) isomers from Bowman and coworkers who utilized
FAIMS to separate isomeric lipids which differed in their
double bond orientation (cis/trans isomers, Figure 2a) and
chain length (Figure 2b) [80]. Another recent study from
Hofmann and coworkers demonstrated the ability of TWIMS
to separate linkage and stereoisomers in simple carbohy-
drates resulting in baseline resolution [77]. Prototype IMS
devices such as the SLIM platform at Pacific Northwest
National Lab (PNNL) have demonstrated that even enantio-
mers can be separated by IMS when complexed with other
selective ions such as various cyclodextrins [81]. Enantio-
meric mixtures have also been separated in IMS using
copper-complexation strategies and diastereomeric adduc-
tion [82, 83]. Protein conformers have been recently studied
by both TIMS and DTIMS [55, 84]. Thus, while isomeric
separations still remain very challenging in the analytical
community, recent advances in chromatography and IMS
are beginning to provide the necessary selectivity to separate
and characterize these compounds, which can then in turn
aid in elucidating the role of isomers in biological systems.

Signal Filtering by IMS-MS

Another application of IMS focuses on reducing the com-
plexity of mass spectra, particularly in situations where
background ions are in high relative abundance compared
to the ion of interest. Though all IMS methods which can
significantly increase the signal-to-noise ratio for specific
ions and decrease background noise, such as DMS,
FAIMS, DIMS, or DMA, are well suited for this purpose
because they can operate as intrinsic mobility filters. For
example, Levin and coworkers utilized DMS to simplify
complex spectra of oligosaccharides (Figure 2c) [85].
Using the mobility filtering characteristics of DMS, the
MS signal of the target pentasaccharide dramatically in-
creased in comparison to the abundant background ions
noted in full scan without IMS (Figure 2d). Mobility filter-
ing is also particularly advantageous in standalone IMS
systems deployed in the field for vapor analysis [86].
Although not described in detail in this review, overtone
mobility spectrometry (OMS) also acts as a mobility filter,
wherein only analytes with an intrinsic mobility matching
the resonate frequency applied in OMS are transmitted
towards the mass analyzer [87]. The fundamentals of
OMS and potential applications have been thoroughly ex-
plored in previous publications [87—89]. IMS methods have
also been used to separate contaminant ions from signals of
interest in order to acquire higher quality spectra. FAIMS
devices have shown utility in separating 1" contaminant
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Figure 2. lllustrations of common applications of IMS-MS
from recent publications. (a) Separation of lipid isomers with
variations in cis/trans double bonds and variations in chain
length adapted/reprinted from reference [80] with permission
from Springer, Journal of the American Society for Mass Spec-
trometry. Bowman, A. P. et. al. Copyright, 2017. (b) lllustration
of signal filtering by IMS for simplification of MS signals in
targeted workflows. Adapted/reprinted from reference [85] with
permission from Springer, Journal of the American Society for
Mass Spectrometry. Levin, D. S. et. al. Copyright, 2007

ions from higher charge state proteins and peptides of
interest [90]. This capability has been extremely important
in avoiding biases in trap-based mass analyzers, which
require automated gain control (AGC) [91]. It should be
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Untargeted Annotations by IMS-MS
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subsequent chemical information acquired from each analytical technique

noted that while FAIMS and DMA are physical mobility
filters, the mobility dimension of other instruments can be
used to provide post-acquisition filtering in data processing
for specific analytes of interest. For example, DTIMS and
TWIMS have also been extremely important in the proteo-
mic and metabolomic analyses of complex samples such as
water, soil, and plant material samples, all of which possess
a diverse range of molecular contaminants [92]. By sepa-
rating peptides of interest to different mobility regions
away from the high concentrations of organic material
(e.g., humic acid substances in soil and polyphenols in
plants), natural contaminants (e.g., abundant salts or poly-
mers), and detergents [92, 93], the proteome coverage of
environmental samples can be greatly improved.

Untargeted Annotations by IMS-MS

The last major application of IMS discussed in this insight
focuses on incorporating mobility information into both
targeted and untargeted MS workflows [20]. Because IMS
separates ions on a millisecond timescale, these separations
can be easily nested into pre-existing LC/GC-MS ap-
proaches. In global analyses, spectral features are prioritized
by statistical analysis (e.g., volcano plots, PCA) and are

Collison Cross Section Values in lon Mobility Libraries
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subsequently annotated through a combination of analytical
descriptors, including (but not limited to) retention time
alignment, accurate mass measurement, isotope ratio anal-
ysis, and fragmentation pattern matching [94, 95]. For iso-
meric compounds, these molecular descriptors are often
shared between species, specific isomer identification re-
mains challenging. Incorporating mobility information
(more specifically, K, or CCS values) as additional ion
descriptors can alleviate some of these challenges in
untargeted approaches and provide additional confidence
that the molecule is accurately annotated, Figure 3 illus-
trates the untargeted annotation process, wherein a priori-
tized feature is noted at m/z 175.0238. Given a mass error
tolerance of 10 ppm for this singly charged m/z, there are 73
possible entries noted in METLIN which are comprised of 9
unique molecular formulae. To obtain further structural
specificity, additional methods such as isotope ratio analy-
sis, fragmentation data, retention time separation, and CCS
database matching (provided a certain tolerance in CCS
value) can be used to increase structural confidence in
annotation of the prioritized feature. We should note that
incorporating CCS values for untargeted methods in this
manner would currently be called “known-unknowns” anal-
ysis, wherein the analyte being annotated would have been
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Figure 4. Workflows for generation and interpretation of CCS values in IMS-MS experiments
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characterized by a previous mobility experiment on a stan-
dard and the subsequent data uploaded into a CCS database.
Characterization of “unknown-unknowns” is much more
challenging, wherein no database match for the CCS and
m/z exists. In this scenario, using the ratio of mass to
mobility (often termed “mass-mobility trendlines™) can also
be useful for characterizing unknowns into a potential bio-
logical class (e.g., peptides, carbohydrates, lipids) [19, 96].
These trendlines are established by previously calculated
CCS values, and pre-existing relationships are extrapolated
to characterize unknown-unknowns. Computational ap-
proaches may also be utilized in these analyses, but current-
ly, there is no centrally accepted workflow for in silico
approaches (e.g., projection super-approximation, trajectory
method, or exact hard-spheres scattering), and a great
amount of research is being dedicated to using molecular
dynamics and machine learning to reduce the error between
experimental and theoretical CCS values [97—-100].

From a small molecule perspective, a generation of high
confidence mobility measurements for library inclusion re-
mains a key challenge in the IMS community [101]. The
schematic workflow for developing unified workflows and
interpreting the corresponding data is represented in Figure 4.
In order to generate highly reproducible CCS values (ca. <
0.5 % RSD) for database matching, many standardization
challenges persist in the IMS community, such as unified
protocols for instrument calibration, preferred calibrant ions,
and many more. A recent work by Gabelica et. al. has demon-
strated that addressing many of these challenging questions
requires communal consensus between both academic and
industrial investigators to advance the study and application
of IMS-MS technology [16]. To generate highly reproducible
mobility data (and corresponding CCS values), we direct our
readers further towards the communal knowledge developed in
that publication for detailed information regarding specific
IMS platform guidelines (e.g., calibration protocols, instrument
settings, and data reporting).

Future Directions and Conclusions

IMS is experiencing continual innovation through novel instru-
ment developments, new methods of acquiring and filtering
data, and continually developing computational strategies, all
of which provide increasing confidence in mobility informa-
tion acquired both experimentally and in silico [98]. The re-
solving power of IMS has increased by an order of magnitude
in less than a decade [102], opening up new research opportu-
nities to separate and identify previously indistinguishable
chemical isomers and isobars (see, Figure 3). Recent develop-
ments have even interfaced IMS to ultra-high resolution mass
analyzers such as the Orbitrap MS through modulation of ion
pulsing [103, 104]. As a research tool in both academia and
industry, continual advances in IMS-MS technology are
attracting new scientists to the community daily, and the po-
tential applications of these analytical strategies are still being

J. N. Dodds, E. S. Baker: lon Mobility Spectrometry: A Critical Insight

discovered. While many challenges remain for routine incor-
poration of mobility analysis and CCS information into
untargeted workflows, the future of IMS is bright and its role
in separation science is only expected to keep climbing.
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