
lable at ScienceDirect

Analytica Chimica Acta 893 (2015) 14e24
Contents lists avai
Analytica Chimica Acta

journal homepage: www.elsevier .com/locate/aca
Tutorial
Validation of chemometric models e A tutorial

Frank Westad a, *, Federico Marini b

a CAMO Software AS, Nedre Vollgate 8, N-0158 Oslo, Norway
b Dept. of Chemistry, University of Rome “La Sapienza”, I-00185 Rome, Italy
h i g h l i g h t s
* Corresponding author.
E-mail address: fw@camo.com (F. Westad).

http://dx.doi.org/10.1016/j.aca.2015.06.056
0003-2670/© 2015 Elsevier B.V. All rights reserved.
g r a p h i c a l a b s t r a c t
� The different approaches to valida-
tion are presented and discussed.

� Data-driven vs hypothesis-oriented.
� Illustration of the effects of adopting
different strategies.
a r t i c l e i n f o

Article history:
Received 2 February 2015
Received in revised form
29 May 2015
Accepted 29 June 2015
Available online 10 August 2015

Keywords:
Validation
Chemometrics
Resampling
Test set
Cross-validation
a b s t r a c t

In this tutorial, we focus on validation both from a numerical and conceptual point of view. The often
applied reported procedure in the literature of (repeatedly) dividing a dataset randomly into a calibration
and test set must be applied with care. It can only be justified when there is no systematic stratification
of the objects that will affect the validated estimates or figures of merits such as RMSE or R2. The various
levels of validation may, typically, be repeatability, reproducibility, and instrument and raw material
variation. Examples of how one data set can be validated across this background information illustrate
that it will affect the figures of merits as well as the dimensionality of the models. Even more important
is the robustness of the models for predicting future samples. Another aspect that is brought to attention
is validation in terms of the overall conclusions when observing a specific system. One example is to
apply several methods for finding the significant variables and see if there is a consensus subset that also
matches what is reported in the literature or based on the underlying chemistry.
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1. Introduction

It is fair to say that validation, as a concept, is one of the most
important aspects in science. In this tutorial, wewill e unlike many
other papers on validation in quantitative sciences, like analytical
chemistry e not solely put emphasis on the numerical aspects. We
feel that validation must be presented at a more conceptual level,
and be driven by an underlying hypothesis given the actual appli-
cation [1]. The tradition we see in other sciences, such as medicine,
is to more formally set up a research hypothesis, which may be
confirmed or rejected. From the authors' experience, this is not so
prominent in analytical chemistry. One reason may be that the
analytical chemists' role in research project is as a “source“ of
analytical results in a larger picture. However, as the scientist
closest to the aspects of sampling, measurement procedure, in-
strument suitability etc., the analytical chemist must convey the
importance of validated findings as the basis for the conclusions of
the particular study, being it medicine, biology, forensics and so on.

When this is said, there exists in analytical chemistry and che-
mometrics a strong awareness of the importance of validation, and
the necessity of validating models with unknown samples is often
highlighted.

This tutorial aims at presenting validation in a wide context,
with examples taken from analytical chemistry to illustrate how
the level of validation and the choice of methods for analyzing data
may impact the conclusions and chemical insight gained.

2. Theory

2.1. Data-driven vs. hypothesis-driven validation

As stated above a large portion of the scientific publications on
validation concerns aspects of numerical nature, such as repeat-
ability of measurements and prediction error in quantitative
models. This may be looked upon as internal, or data-driven, vali-
dation (induction, empirical), where the analytical result is dis-
cussed within the scope of the project. One may also look at
validation in an external or hypothesis-driven context, where the
results are confirmed by theory (deduction, first principles) or
existing knowledge. The distinction between empirical and first
principle models may not be so obvious, as in the scientific-
philosophical context of deduction and induction. In fact, most
formulas in physics and chemistry are based on experiments. Text-
book formulas are often approximations, although often conveyed
to the reader in the basic courses of the curriculum as the true
relation. One example is the ideal gas law PV¼ nRT, which for gases
at high pressure is extended to PV ¼ zmRT/Mw. z is here the
compressibility factor and Mw the molecular weight. Numerous
other examples exist in chemical engineering in fields like flow
theory, drying and distillation. Another aspect of this is if the sen-
sors we use measure “das Ding an sich”, as the German philosopher
Kant expressed it. Temperature has been measured for centuries by
thermometers that are all based on indirect correlations (quick-
silver, ethanol, thermocouple). Thus, one may look at a spectrom-
eter applied for multivariate calibration as just as fundamental as
many other (univariate) sensors applied in chemistry. Also, it must
be stressed that the principle for all these sensors is based on in-
verse causality; it is the concentration of a chemical compound that
gives an absorbance value. In general, it is not advised to extrapo-
late empirical models, but it is not given that first-principle models
are universally valid. One example is BeereLambert's law, which is
often extrapolated beyond the suggested range, where linearity
holds. This more generic discussion is not pursued further in this
tutorial but it is the authors' view that this topic deserves more
attention in the scientific community.

2.1.1. Data driven validation
2.1.1.1. Analysis of variance (ANOVA). One way to validate a system/
process based on hypotheses is to setup an experimental design,
where the sources of variations are systematically varied to
generate a structured data table and partition the overall variance
into the various sources of error by use of ANOVA [2e4]. Thus, such
designs may help in understanding the causality of our system
since one can for the basic factorial designs estimate the effect of
Factor A independently of Factor B. This is a valid approach for
investigating known variables that may influence the results, which
can be set to specific quantitative values or categorical levels.
ANOVAmay also be used for analyzing empirical data in general but
once the variables are not orthogonal there is no “truth” as such
regarding which way to estimate the sum of squares [5e9].
Without going into details, this is one reason why latent variables
methods are widely used in chemistry because many variables may
have the same information content in a specific application.
Applying ANOVA in these situations leaves us with two choices: a)
remove some of the model variables to avoid collinearity (inde-
terminacy) b) keep them but knowing that the order in which they
are listed in the data table may affect the p-values and size and
signs of the effects estimated.

2.1.1.2. Test-set versus cross-validation. When the objective is to
establish a calibration model for predicting quantities such as
concentration, the most conservative validation is to test the model
on a representative independent test-set of sufficient size. This has
been discussed in length in Ref. [10]. Then, it may be debated, given
the specific application, what is meant by such a test-set; should it
allow for extrapolation of the calibration space?; is the assumption
that the model shall be robust towards change in sample matrix,
raw materials, chemical reagents, etc.? For general comments
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about extrapolation of empirical models see Section 2.1 above.
These sources of variation, that are in principle unknown for future
objects, can be to some extent quantified by several approaches.
This is where an application-specific level of validation, in terms of
cross-validation (CV) of the calibration objects, may be applied. In
Ref. [11] the authors make a general comment that, for sample sets
>50, test set validation is preferred, whereas cross-validation is
best for small to medium datasets. In situations with small data
sets, aggregationmay improvemodel stability [12]. Even though CV
is generally regarded as the second best validation method, in this
context it is useful for several purposes:

1. The number of objects is limited: In situations where one can
not readily “ask” for more objects but must rely on the first set of
objects, because the underlying conditions in the objects' uni-
verse have changed. Typical examples can be found in biology,
environmental research, aquaculture etc. In this situation, one
will need all objects to build the bestmodel for interpretation, to
include the underlying phenomena in the model, and to ensure
high stability; one can thus not afford to put aside 30e40% of the
objects as a test set. A test-set of insufficient size or sample
variation may give a worse estimate of future prediction error
than cross-validation. One rule of thumb is to apply cross vali-
dation if the number of samples is smaller than 40.

2. Themain purpose of establishing amodel may not in itself be for
predicting or classifying new objects, but to understand the
inherent structure in the system under observation. In chemo-
metrics, this relates to so-called latent variables, thatmayconvey
the basic chemical or biological phenomena. The interpretation
of such models is highly dependent on the number of latent
variables, and, therefore, it is vital to assess the correct dimen-
sionality of the model, i.e., in more mathematical terms, the
model rank. In this context, it is of uttermost importance to
distinguish between numerical rank, statistical rank and the
domain-specific rank. In particular, numerical rank indicates the
dimensionality of the largest subspace spanned by the samples,
i.e., the number of components needed to exactly reconstruct the
data matrix(-es) with zero error. On the other hand, the term
statistical (chemical) rank is used to denote the number of latent
variables needed to approximate only the systematic (informa-
tive) variation present in the data, assuming that the remaining
components (not included in themodel) account for irrelevant or
spurious variation and, in general, error contributions. This rank
may be estimated by one of many statistical procedures. Lastly,
the term domain-specific (or application-specific) rank is
sometimes used to indicate that number of components which
reflects particular background hypotheses or background
knowledge. Note that, even though a representative test-set is
present, it is nevertheless important to find the correct model
rank for predicting the test set; if themodel rank is incorrect, the
figure ofmerit (R2, RMSEP, false classification rate…) may not be
a good estimate of future objects (for which therewill not be any
reference values).

3. The objects in a data table can be stratified into groups based on
background information about the origin of the objects. Such
groups are a consequence of the experimental set-up of the
study. Typical stratifications are:
- Across instrumental replicates (repeatability)
- Reproducibility (analyst, instrument, reagent…)
- Sampling site and time
- Across treatment/origin (year, raw material, batch…)

Cross-validation performed at the various grouping level will
give important information about the stability of the model and
which sources of variation that need special attention. Thus, even if
a test set has been defined as the proper way of validating the
model (or process or system in a wider context), the calibration set
must be validated with CV at the appropriate level. If not, the model
dimensionality may not be conservative enough and the test set is
predicted with a suboptimal number of variables or components. It
is also important that the test set consists of samples from other
levels of the underlying data structure. Assume data for determi-
nation of total organic carbon (TOC) in soils have been sampled at
10 geographical sites, for analysis with a chemical reference
method and spectroscopic measurements. Without thinking of the
underlying structure, one may be tempted to divide the samples
randomly into a calibration set (70%) and test set (30%) as the
validation scheme. Then, if the test set prediction error is close to
the calibration error one concludes proof of concept. However, for a
model to be applied in practice, which involves predicting TOC at
other sampling sites, a suggested validation scheme is: 1. Model
seven of the ten samples sets and cross-validate across the sam-
pling sites to give a conservative number of latent variables or
subset of variables. 2. Predict the three other sampling sites with
this model. This validation scheme reflects the prediction error at
new unknown sampling sites, although no guarantee can be given
that this first set of ten sample origins spans all other sites. Onemay
also repeat this procedure.

In Ref. [13] it is pointed out that “cross-validation demonstrates
prediction, but is an unlikely scenario in industrial applications,
where concomitant data acquisition for model development and
test materials would be unwieldy”. In this context, the same applies
to random splits into calibration and test sets. Hawkins, Douglas
and Kraker [14] comments: “A further technical issue is a common
misapplication of cross-validation, in which it is applied only
partially, leading to incorrect results. Statistical theory and empir-
ical investigation verify the efficacy of cross-validation when it is
applied correctly“. Quantitative Structure-Activity Relationships
(QSAR) is a field where a number of variable selection procedures
have been used (and sometimes misused). In these applications,
there is no apparent grouping of the molecules that would serve as
a basis for systematic cross-validation except to group into various
classes of compounds which of course is a very conservative
approach. Golbraikh and Tropsha [15] concluded that the validated
R2 from leave-one-out CV is necessary but not a sufficient condition
for themodel to have a high predictive power. Baumann, Albert and
Von Koorff [16] conclude that, given no stratification of the sam-
ples, leave-multiple-out CV is preferred. In the field of forensics,
O'Connell, Ryder, Leger and Howley [17] report the use of a “robust
segmented cross-validation”. A variant of CV, the so-called Monte-
Carlo CV (MCCV) has been presented [18,19], but these studies are
not discussing the concept of CV in a broader scientific context.

It must be mentioned that cross-validation cannot serve as a
criterion to decide on the best model out of many when variable
selection is performed. The more conservative Cross Model Vali-
dation (CMV) is a useful alternative in such situations [20e23]. The
expected estimate of future prediction error, however, is the same
for CMV as for CV, if the samples are homogeneously distributed.
Another way to overcome the problem of using the same criterion
to select a subset of variables and the error is to divide the objects
into a calibration, a validation and a verification set, where the
verification set is the “proof of the pudding”.

The aspects above will be exemplified in the Results section.

2.1.1.3. Resampling methods: bootstrap, jack-knifing and cross-vali-
dation. Resampling methods are widely used to estimate parame-
ters and/or their uncertainty in a model [24,25]. The simplest case
is the estimation of the mean of a population. In a multivariate
context, resampling methods are applied to estimate the parame-
ters and their uncertainty with two objectives: a) To estimate the
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dimensionality of the model in terms of latent variables; b) To es-
timate the uncertainty of individual variables, in order to find the
relevant ones (out of many).

The main difference between Jack-knifing and bootstrapping is
that bootstrapping is resampling with replacement; thus, in, e.g.,
one bootstrap sample-subset of size 100, one particular sample
may appear more than once. There is also a distinction between
conditional and unconditional bootstrapping. In the unconditional
approach, bootstrap is carried out on the original data, so that e at
the mth iteration e matrix(�es) Xm (and ym) are built by sampling
with replacement from the complete set of objects available and,
each time, the model is calculated using the selected subset of
samples. On the other hand, conditional approach operates by
samplingwith replacement from the residuals obtained after fitting
themodel on the complete (non-stochastic) data set. For instance, if
one assumes the model to be

y ¼ Xbþ f ¼ by þ f (1)

i.e., a multivariate calibration situation, where b is the vector of
regression coefficients and f that of residuals, while by denotes the
vector of model estimates, then, at the mth iteration, the boot-
strapped version of the vector y (ym) is built according to:

ym ¼ by þ f*m (2)

where f*m is a vector obtained by sampling with replacement from
the residuals of the full model. Accordingly, themodel estimates are
obtained by fitting the vector ym to the original X matrix. Here it
must be stressed that, since in the multivariate (bilinear modeling)
context it may be difficult to decide on the dimensionality of the
data a priori, bootstrap on the original data (unconditional) is the
approach more frequently used.

The original Jack-knifing procedure used the mean of the sub-
models as the reference in estimating the variance, whereas in
cross-validation the model on all object is used as the reference.
The difference between the two approaches is, according to Efron
[26], of order 1/(number of objects). Intuitively, it is more relevant
to use the model on all objects as the reference in our opinion.
Cross-validation gives, in general, slightly higher uncertainty esti-
mates for the parameters than bootstrapping, and the estimates
reflect how the validation was done: across, e.g., replicate, sample,
rawmaterials, year or production site as mentioned in the previous
section. The data analyst must therefore have access to all quali-
tative information about the samples to perform the model vali-
dation given the underlying stratification of the objects.

A recent comparison of re-sampling techniques to determine
the optimal number of components in PLS regression was reported
in Ref. [27].
2.1.1.4. How to select subsets of samples for calibration and valida-
tion. When a single training/test split is performed on the data set,
an intelligent choice of the samples to be put in each set is needed
in order to be able to produce reliable considerations based on the
obtained results. Different criteria have been proposed in the
literature to operate an intelligent splitting of the available samples
among the sets and they all share the same concept, i.e., to try to
span the sample space as uniformly as possible.

Historically, the first algorithm to select a representative subset
of the available samples so that they span as uniformly as possible
the design spacewas proposed by Kennard and Stone [28]. In detail,
given a set of candidate samples, Kennard and Stone algorithm aims
at selecting the most diverse among them to be included in the
training set, according to a maximin criterion. Indeed, at first the
distances among all pairs of samples are computed and the two
most distant samples are selected to be included in the training set.
Successively, for each of the remaining candidate samples, the
minimum distance to all the already selected samples is computed,
so that the one showing the maximum value of this minimum
distance is in turn selected to be included in the training set. The
whole procedure is then repeated until the desired number of
training samples is selected.

As the Kennard-Stone approach tries to concentrate as much of
the diversity in the original data set in the training sample,
depending on the data configurations it could lead to overoptimistic
results. Based on these considerations, a modification of the algo-
rithm aimed atmaintaining a comparable diversity between the two
sets was proposed by Kennard himself (even though it was left
unpublished until it was discussed by Snee [29]). The corresponding
algorithm, named Duplex, starts as the original Kennard-Stone, by
computing all the distances among samples and selecting the two
most distant samples to be included in the training set; however, it
continues by putting the second two most distant samples in the
test set. Successively, the most diverse samples according to the
already mentioned maximin criterion (maximum minimum dis-
tance) are in turn added to one or another set, until the desired
splitting ratio and the requested number of samples are obtained.

Another way of achieving an intelligent splitting of the data set
so that the training samples span as uniformly as possible the
design space is to select the samples according to a D-optimality
criterion [30]. The principle of D-optimal designs is to select a
subset among the candidate samples so to maximize the determi-
nant of the information matrix (X0X): this determinant is maxi-
mized when the selected samples span as much as possible of the
space of the whole data. With respect to Kennard-Stone algorithm,
in selecting the samples D-optimal approach privileges more high
leverage and peripheral points.

Lastly, another possibility of selecting training samples among a
setof candidate object is touse clustering techniques, like k-means or
Kohonenmapping. Inparticular, the latter techniquehasproved very
effective in several occasions in producing a representative data
splitting [31,32]. A Kohonen neural network operates by mapping
samples from anN-dimensional space onto a discrete 2-dimensional
grid of neurons, so that objects that have similar properties in the
original space will map to the same or to neighboring nodes.
Accordingly, by selecting a proper dimensionality of the 2D neural
network, one canmake so thatmore objectsmap to the sameneuron.
Then, for each position of the 2D grid a certain fraction (in general,
from 2/3 to ¾, depending on the numerosity of the data set and the
densityof themapping)of theobjects is selected tobe included in the
training set, and the remaining are used for validation.

2.2. Hypothesis driven validation

This section presents some aspects regarding validation in terms
of confirming hypotheses, theoretical or first-principle models and
the “true model”. Some points to consider in this context are.

- Confirm existing knowledge, e.g., from literature and other
sources

- The true underlying model is found, maybe with small adapta-
tions, if the system under observation is not exactly identical
(other chemicals within the same group of compounds)

- Recognize the underlying profiles or inherent latent variables in
chemistry or biology
2.2.1. Confirmation of theory/application specific knowledge
A level of validation that is of special interest to the analytical

chemist is the method's ability to find the true signal of the
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chemical compounds in a system. Assuming that the total signal
acquired with a suitable instrument is free from unknown in-
terferences, then the observed signal should be the sum of the true
signal of individual compounds times the concentration:

X ¼ CST (3)

Multivariate methods that may be suited to find the true signals
and the corresponding concentrations are e.g., Multivariate Curve
Resolution (MCR) [33], Independent Component Analysis (ICA)
[34], SIMPLISMA [35]. It should also be mentioned that the true
signals of unknown interferences can also be estimated using the
appropriatemethod for the given data. Constraintsmay be imposed
to improve the chance of success: non-negativity, unimodality,
closure and some type of equality constraints based on local rank
and on selectivity from previously known information are those,
which are most commonly adopted. In the context of mixture
analysis, the use of constraints represents one of the simplest yet
most effective tools to deal with the problem of rotational ambi-
guity, i.e., the fact thate given the model in Eq. (3) e one could find
a set of transformation matrices T, so that the decomposition:

X ¼ ðCTÞ
�
T�1ST

�
(4)

would give the same fit of the data. In this context, constraints are
needed to get narrower and narrower band solution, because of the
lack of unique solution for bilinear data in general. However, as
pointed out by Rajko [36], particular care in the use of the proper
constraints and conditions and in the interpretation of the results
as, despite the reduction in the rotational ambiguity, the obtained
solution(s) may not only not be equal to the true one, but even not
lie in the feasible region.

These methods will generally give the relative concentrations of
the objects, thus the true concentration for one sample may be
needed for the estimation of the actual concentration for the
compound of interest. Parallel Factor Analysis (PARAFAC) [37] can
be used for 3 and higher dimensional data, and a unique solution
can exist when some mild conditions are fulfilled, e.g., according to
Kruskal ranks. Examples of such data are hyphenated analytical
techniques: Excitation-emission fluorescence, LCeUV, LCeMS,
GCeMS. PARAFAC may also apply to NMR (COSY, NOSY), LC-MS-MS
and other combination of techniques, but the basic assumption is
that the data have a tri-linear structure. In this context, multi-
channel imagery does not fall into the same category, as there is
usually no linearity assumption on the information in the 2-
dimensional image space that will fit into the PARAFAC frame-
work, and unfolding images for analyzing the data pixel-wise fol-
lowed by re-mapping information to the image domain is the most
common approach.

2.2.2. Scientific significance, induction vs. deduction
Although this is not the main focus of this tutorial, a brief

paragraph on the more deeply scientific view on the difference
between induction and deduction is included.

Munck et al. [38] present a holistic view on the scientific process
and howmultivariate methods in food science can play the role as a
basis for hypothesis generation and confirm theory. In science,
deduction is the scientific method of starting with theory, gener-
ating hypotheses and performing experiments to verify or falsify
the theory, i.e., going from the general to the specific. For many
chemical and biological systems, it is difficult to use basic physical
formulas for modeling the system to the required level in terms of
explained variance or prediction ability. When this is said, ab initio
methods play an important role in fields such as QSAR and spec-
troscopy. Induction, on the other hand, starts with analysis of
experimental data (empiric) and, from there, one may generate
hypotheses that can lead to general theory (first principle models)
and new insight. Many of the early physicists and chemists started
with experimental work that led to basic theory. There should be no
conflict of interest towards either one approach; it is when our
empirical findings confirm our theory and background knowledge
that the causal effects and true underlying relationships in a system
are validated.

3. Data

3.1. Oat flour

The first data set used to show the outcomes of different single
splitting techniques, and to show the effects of validating across
different factors, is made of the NIR spectra within the range
800e2498 nm recorded in reflectance mode on 166 naked oat flour
samples; each sample was analyzed in replicate. The samples come
from 12 different varieties and from 3 different harvesting years
(2006, 2007, and 2008). A more detailed description of the data set
can be found in Ref. [39].

3.2. Tablets

The second data set used to show the outcomes of different
splitting techniques was the basis of the ShootOut at the 2002
Chambersburg meeting [40]. It includes the NIR spectra of 654
pharmaceutical tablets recorded in transmission mode in the in-
terval 600e1898 nm with two different spectrometers.

3.3. Beer

The data were taken from Ref. [41]: 60 beer samples were
measured with a dispersive near infrared spectra NIRSystems Inc.
(model 6500) spectrophotometer at 20 �C in the VIS/NIR region
(400e2500 nm). Transmission spectra were recorded using a
10 mm quartz cell directly on the undiluted fresh beer, and spectral
data collected at 2 nm intervals in the range from 400 nm to
2250 nm were converted to absorbance units, giving a total of 926
variables. The dependent variable was Extract, which was analyzed
by Carlsberg A/S, and the range of extract concentrations was
4.23e18.76 mg/L.

3.4. QTL genetic marker data

249 samples of the plant species Phytolacca dodecandra from
different locations in Ethiopia were subject to RAPD genetic marker
analysis. The independent variables (X) were 70 binary variables
(RAPD markers) and the dependent variable (y) was the altitude at
where the plants had grown [42].

4. Results

The sections below present various aspects of validation:

� Optimal selection of samples
� Correct and wrong validation across test set evaluation given
stratification of the objects

� Two methods for variable selection giving the same subset of
variables

� Methods giving the same estimate of the significance for a
Design of Experiment application where ANOVA is the
benchmark

� Comparison of uncertainty estimates for variable selection and
the impact on prediction
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4.1. Example of sample selection

As already discussed in Section 2.1.1.4, different algorithms can
be used for the intelligent splitting of the available data into a single
training/test pair. In this paragraph, the results of the application of
Kennard-Stone, Duplex, D-optimal and Kohonen-based sample
selection schemes on the two data set described in Section 3.1 and
3.2 will be presented. In particular, the results obtained in the case
of the oat data set, where a 2:1 splitting ratio was adopted, are
reported in Fig. 1. It is apparent from the figure that, accordingly to
what could be expected based on the theoretical considerations
reported in Section 2.1.1.4, both Kennard-Stone and D-optimal
based approaches tend to capture asmuch as possible of the sample
diversity in the training set, so that practically none of the samples
which are relatively far from the bulk of objects in the plot is
included in the test set. On the other hand, Kohonen, and to a
greater extent, Duplex, provide a more representative selection,
maintaining the same diversity among the sets. This situation is
evenmore evident in Fig. 2, where the outcomes for the tablets data
set (a training/test splitting ratio of 3:2 was used) are reported.
Indeed, in this case when Kennard-Stone or D-optimal algorithms
are applied, none of the samples in the second cluster is included in
the validation set.

In general, from the results reported above it is possible to
conclude that the use of an intelligent splitting criterion allows
governing with a reasonable confidence, to what extent the di-
versity originally present in the data set will be preserved in the
training and test subsets and, as a consequence, to direct the choice
about which strategy to use, depending on the specific modeling to
be carried out. For instance, if there is the suspect of possible out-
liers or extreme points in the data set, one could choose to use a
robust calibration approach to build the models and, and so one
would like to have all the most diverse samples in the training set.
With such an approach, strategies like Kennard-Stone or D-Optimal
would be recommended. On the other hand, in almost all the other
situations, where one aims at capturing the same diversity in both
Fig. 1. Effect of the algorithm used for training/test splitting (with a 2:1 ratio) on the distribu
flour samples. (a) Kennard-Stone; (b) duplex; (c) D-optimal; (d) Kohonen. Legend: training s
this figure legend, the reader is referred to the web version of this article.)
sets, duplex (or Kohonen-based selection) should be preferred.
In general, the possibility of controlling or tuning the desired

outcome by selecting a specific strategy makes the use of “intelli-
gent” splitting algorithms to be preferred over random selection.
Indeed, especially for small sample sets, random splitting leads to a
high variance of the model estimates, if the selection is not
repeated a sufficient number of times (in our experience, for most
data sets, at least 30 iterations are needed to have an acceptable
stability the solutions). Moreover, in most of the cases, the mean
outcomes over the different random training/test splits are com-
parable or even worse to those obtained by duplex or Kohonen
(and, depending on the data, also Kennard-Stone or D-optimal).

Here it must be stressed that, although in this section attention
was focused mainly on discussing how the way of selecting the
training samples influences the final model, also choosing the
proper number of samples plays a key role. Indeed, the choice of the
splitting ratio to be adopted must reflect two concurrent issues to
be compromised: the number of training samples must be enough
to build a stable and reliable model and the number of test set
samples should allow a representative generalization of the ob-
tained results. With moderately numerous data set (50e100 sam-
ples) training/test splitting ratios of 3:1 to 2:1 normally work well
and the fraction of test set objects may be increased even further in
the case of larger data set, where more samples are available.
Moreover, it is worth noticing that, with medium-small data sets,
the choice of the selection strategy becomes even more important
and duplex outperforms random selection, which gives comparable
predictions only when a high number of repetitions is adopted.

4.2. Example of validating model performance across replicates etc.

As mentioned above, the level of which the validation is per-
formed is important for a liable estimation of future prediction
error (RMSEP). As an illustration, we will use the data set made up
of the NIR spectra of oat flour samples described above. The 332
objects are divided into various subsets pertaining to the level of
tion of samples as evaluated on a data set made of NIR measurements on 166 naked oat
et ¼ red circles; test set ¼ black squares. (For interpretation of the references to color in



Fig. 2. Effect of the algorithm used for training/test splitting (with a 3:2 ratio) on the distribution of samples as evaluated on a data set made of NIR measurements on 654
pharmaceutical tablets (IDRC shootout 2002). (a) Kennard-Stone; (b) duplex; (c) D-optimal; (d) Kohonen. Legend: training set ¼ red circles; test set ¼ black squares. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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validation: (across replicate, sample, cultivar and year). The data
were averaged over the two replicates to give 166 samples with
unique reference values as basis for the cases D and E below.

Case A: Random test-set validation.
A common procedure for a given data set is to randomly divide

the objects into a calibration and test set. This means that many
physical samples will be represented by one replicate in the cali-
bration set and one in the test set, but some samples will have both
replicates in either calibration or test set. This scheme does not give
specific information with respect to any stratification of the objects
due to the level of validation. The RMSEC of this model after the
optimal number of factors may serve as a baseline as this error
represents the sample and measurement error, to what extent the
instrument is suited for modeling the dependent variable and the
uncertainty of the reference method.

Case B: Random cross validation.
A common validation scheme is to cross validate randomly. In

this case a 20 segments validation was chosen, giving an RMSEC of
0.35 and RMSECV 0.40 of after 10 factors.

Case C: Cross validation across replicates.
This validation schemes takes systematically all replicates for

the same physical sample out during cross validation. In this case
with two replicates it means that replicate 1 objects are taken out
and a model is established for replicate 2 and vice versa. Thus, the
validation is a test of how precise one can re-measure the same
physical sample.

Case D: Cross validation across physical samples.
The next level in validation if replicates are present is to keep

systematically replicates for the same physical samples out during
cross-validation. An alternative is to take the average over repli-
cates and predict the individual replicates with the model. The
average over replicates was the basis for the following cases.

Cases E & F: Validation across type of cultivar and year.
A more conservative approach than validating with leave-one-

out or randomly with 10 segments is to validate across the type of
cultivar. From the 12 types of cultivars three of themwere assigned
to a test set (47) and nine kept as a calibration set (119). Samples for
most of the cultivars were measured for all three years. PLS
regression with cross-validation over cultivar for the calibration
samples gave an RMSEC of 0.39 and an RMSECV of 0.54 after seven
factors. As a comparison leave-one-out CV gave an RMSECV of 0.44.
Prediction of the three cultivars not included in the calibration set
gave an RMSEP of 0.58 indicating that CV across cultivar gives a
better estimate of RMSEP of samples for unknown cultivars. When
looking at the Hotelling's T2 statistic, one of the new cultivars was
found to be outside of the critical limit which may induce a higher
residual for these samples; 0.58 is slightly higher than 0.54. For the
model based on years 2006 and 2007 the validation scheme is
important for the prediction of the test set from year 2008. The two
alternatives were: 1. random 10-segment CV, 2. validate across year,
i.e. two segments. Thefirst scheme indicates 7 factors and an RMSEC
of 0.35 and anRMSECVof 0.40, the 2008 test samples gave anRMSEP
of 0.78. The conservative validation across year indicated 5 factors,
an RMSEC of 0.46 and RMSECV of 0.60 and an RMSEP of 0.63 when
predicting year 2008. Leave-one-out CV gives an RMSECV of 0.44. As
canbe visualized in this case for theHotelling's T2 statistic all but one
sample lie outside the critical limits, thus the model is extrapolated
when predicting year 2008. Nevertheless, the RMSEP is not signifi-
cantly different for the RMSECVwhen validating across year. Table 1
shows a comparison of the validation and test set schemes pre-
sented above for the PLS regression models.

As can be seen in Table 1 the RMSE values are much higher for
cases D and E; the cases that are close to a realistic situation for an
industrial application. Thus, case A which is a common way to
divide samples into calibration and test-set may lead to over-fitting.
The reason for this is that, e.g., in the case of replicated measure-
ment for the same physical sample, the replicates might be split
into the calibration and test set respectively. The validation is not
performed by keeping a physical sample out, which is the opera-
tional use of the model for future samples.

Another important aspect is also how the validation scheme af-
fects the estimation of the stability of the model parameters. Figs. 3



Table 1
Comparison of the validation and test set schemes presented above for the PLS regression models for oat flour samples.

Validation scheme No. of objects No. of factors RMSEC RMSECV RMSEP

A: Random calibration and test 210/122 8 0.37 e 0.44
B: Random cross validation, 20 segments 332 10 0.35 0.41 e

C: Keeping replicates out 332 8 0.35 0.37 e

D: Keeping sample out 166 8 0.37 0.44 e

E: Model based on 9 cultivars; test set 3 cultivars 118/47 7 0.39 0.44 0.58
F: Model validated randomly year 2006e2007; test 2008 113/53 7 0.35 0.40 0.78
F2: Model validated across year 2006e2007; test 2008 113/53 5 0.46 0.63 0.60

Fig. 3. Oat flour data set: significant variables from uncertainty test when validating
across replicates.

Fig. 4. Oat flour data set: significant variables from uncertainty test when validating
across years.
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and 4 show the parts of the spectral range that are found to be
significant for Cases C and F. As expected the more conservative
validation scheme (F) yields fewer significant spectral ranges since
the stability of themodel ismore susceptible to variations over year.
4.3. Confirmation of findings across data-analytical methods

Another important aspect of science, which is often neglected, is
the validation related to investigating if several methods give the
same result. As scientists tend to focus more or less narrow-
mindedly on their own field of interest, already published results
related to a manuscript under submission are not known or this
information is not proactively pursued. In the chemometric com-
munity, it is fair to say that the focus has mostly been on the
quantitative aspects, such as showing that one's own method is
superior to existing ones. In this context, the grounds of which the
various results are compared are also related to the level of vali-
dation. In Ref. [43] the authors report that equivalent results were
obtained for various multivariate methods for spectroscopic
determination of metal ions. Greensill andWalsh [44] compared 10
methods for calibration transfer of models on NIR instruments, and
in Ref. [45] the results for classificationmodels for a pharmaceutical
product were investigated across three instrument vendors. Several
other papers, where various methods have been compared, have
been published the past years [46,47]. In Ref. [48] it is highlighted
that comparison of methods with extensive search for the “best
model”will also lead to optimistic results and that the division into
calibration and test set must be considered carefully.

It is common in scientific publications to read how the authors
claim that their method is “the best” in terms of model perfor-
mance, exemplified by prediction error or classification rate. Arti-
cles concerning variable selection are no exception in this case.
However, in many cases, there is no statistical inference whether
one (novel) method is significantly better than another (existing)
method. One may say that publishing a paper where e.g. a 5%
reduction in prediction error is more of an academic drill than a
practical aspect for an on-line method. Furthermore, the evaluation
of if models are significantly different is often based on ad-hoc
interpretation, e.g., claiming that an error of 0.45 is lower than
0.49, which is hardly the case.

From a scientific viewpoint, it may be of more interest to eval-
uate if various methods with variable selection as the objective give
the same subset of variables that are regarded as being relevant.
Also important is if these variables confirm existing knowledge
about the system/process, and if they can explain causality and are
not just due to indirect correlation that have predictive power for
the empirical domain studied. If several methods have the same
objective, they should give similar results if they are suited for the
purpose. One example is given in Fig. 5, which shows results from
two methods for variable selection. The data can be found in
Ref. [42] and represent genetic analysis (Quantitative Trait Loci) of
various samples of an Ethiopic plant. The dataset consisted of 234
samples and 70 genetic markers. One objective in the study was to
find the genetic markers for which the concentration changes as
the plant adapts to the altitude. In this case both Partial Least
Squares Regression (PLSR) with jack-knifing [41,49] and an imple-
mentation of genetic algorithms [50] were applied to find the best
subset of variables. The figure shows that the important variables
presented as regression coefficients from jack-knifing (b) match the
most frequently found variables in 100 runs of the genetic algo-
rithm (a), where a subset of five variables was the modeling cri-
terion. For visual convenience the jack-knife based p-values are
represented as �log(p) rather than the p-value itself.



Fig. 6. Beer data set: significant variables from jack-knife uncertainty estimates.

Fig. 5. QTL genetic marker data set: a comparison of two methods for variable se-
lection, genetic algorithm and uncertainty estimates from jack-knifing.
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4.4. Confirmation when the “truth” is known

Estimation of model parameters, both their value and their
uncertainty, is essential in all empirical models. In this context one
should ideally compare to the “true” values if such exist. As
multivariate models with many variables do not fulfill, in general,
the requirement of ANOVA that the variables should not be corre-
lated, we have chosen a structured data table generated by the
design of experiment (DoE) for comparison. The well-known
chemist and statistician George Box came up with a nice educa-
tional example to show the principles of DoE by letting the par-
ticipants in a workshop make “paper helicopters” to investigate the
impact of a number of variables describing dimensions etc. [51].
The data that were the basis for the results in Table 2 were taken
from the second part of the experiment with a subset of the vari-
ables as input to a reduced design after the first screening. The two
last columns are from a PLS regression model with bootstrapping
and jack-knifing respectively [41]. The jack-knife procedure esti-
mates the uncertainty of the model parameters by calculating the
difference between the model with all samples and the individual
models, i.e. when some samples were kept out. These differences
are squared and summed for all the cross-validation segments as
the basis for the standard deviation of each model parameter. The
bootstrap method is similar except that the mean of all models is
used as the referencemodel in estimating the uncertainties. A t-test
is then applied to give a p-value for each parameter, in this case
individual variables in the regression coefficient vector. For an
orthogonal design and one response variable the PLS regression
Table 2
p-values for various estimation methods e helicopter data.

Variable ANOVA JK PC1 BS PC 1

Block 0.613 0.671 0.583
Wing area 0.961 0.970 0.962
Wing ratio 0.005 0.024 0.004
Body width 0.882 0.913 0.888
Body length 0.001 0.008 0.001
captures all eigenvalues in X in the first factor.

4.5. Validation of two methods for variable selection and
subsequent prediction

In the example above, the ANOVA results from the experimental
design can be regarded as the reference. However, in empirical data
collected from a process, it is not to be expected that the samples
are suited for ANOVA as ANOVA only gives an unambiguous results
in the case of orthogonal and mixture designs. One may use the
data on NIR spectroscopy on beer samples in Ref. [41] for illustra-
tion. The data consist of 950 variables inwhich around 400 of them
are hampered by noise because of detector saturation. The 40
calibration samples were cross-validated with 5 segments (vene-
tian blinds) in a PLS regression model. A cross-validation/jack-knife
estimation of the uncertainties for each regression coefficient for a
5 factor model was employed (Fig. 6). A similar model was per-
formed by unconditional bootstrap. The bootstrap procedure was
repeated 1000 times and 1,00,000 times respectively and yielded
many noisy variables to be significant (Fig. 7 shows for the 1000
repeated bootstrap estimates). The significant variables were
selected for predicting the 20 test samples. Applying these subsets
of variables gave a prediction error for the 20 test samples of 0.22
(jack-knife) and 0.39 (bootstrap, 1000) respectively, This indicates
that the bootstrap procedure admits too many noisy variables
through the “noise filter”, and thus prediction of new samples
suffers from higher error. Moreover, no significant improvement,
neither in terms of prediction error nor of selected variables, was
observed by increasing the number of bootstrap repetitions from
1000 to 1,00,000. It is not only the numerical aspect that is of
importance in this example but also the interpretation of the
Fig. 7. Beer data set: significant variables from 1000 bootstrap repetitions.



Table 3
Results from modeling and prediction of the beer data.

Model Variables applied RMSEC RMSEa RMSEP

First model All variables 0.18 1.09 0.73
Jack-knife Selected variables 0.14 0.27 0.20
Bootstrap All variables 0.18 1.30 0.73
Bootstrap Selected variables 0.05 0.42 0.39

a RMSECV for cross-validation, RMSEBS for bootstrap.
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significance variables found by the twomethods. This is in linewith
the results in Table 3: the jack-knife estimates are more
conservative.

The results from cross-validation and test-set validation are
given in Table 3.

It should be mentioned that although the examples above are
from models where Partial Least Squares Regression was chosen as
the method for multivariate regression, the conclusions and prin-
ciples are valid for any regression method.

5. Conclusions

Validation of chemical systems and processes in general has
many facets. The examples shown in this tutorial illustrate that, for
numerical validation, the automatic splitting in a calibration and
test set can only be justified when there is no stratification of the
objects that may influence the model results. This can affect the
interpretation with respect to either model dimensionality, or
identifying which variables that are important, and what is the true
relationships between variables in the system. Proper validation is
also imperative to not give unrealistic (i.e., optimistic) estimates of
the ability to classify new samples or quantitative prediction of the
dependent variable(s) of interest in a regression model. Although
the mantra in validation is that a pure independent test set is al-
ways required, the validation of the calibration set must never-
theless reflect any subgroups of objects that describe uncontrolled
variation which will be unknown for future samples. In all cases,
validation is a procedure that aims at providing an answer to a
question that has always to be kept in mind: the nature of the
question to be answered or of the hypotheses to be verified must
always guide the choice of the proper validation strategy to be
followed. Accordingly, in this tutorial, we hope to have sketched
some of the possible lines along which, depending on the cases, a
proper validation can be carried out, both from quantitative and
qualitative points of view, and which questions one should always
ask oneself in order to design the correct strategies.
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