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� Class-modelling performs verifica-
tion of compliance by defining
multivariate spaces.

� Models built in such a way are free
from the distribution of non-target
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� Discriminant approaches for one-
class problems usually lead to
biased solutions.

� Several graphical tools may aid
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� Rigorous class-modelling should be
optimised by considering only
sensitivity.
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Qualitative data modelling is a fundamental branch of pattern recognition, with many applications in
analytical chemistry, and embraces two main families: discriminant and class-modelling methods. The
first strategy is appropriate when at least two classes are meaningfully defined in the problem under
study, while the second strategy is the right choice when the focus is on a single class. For this reason,
class-modelling methods are also referred to as one-class classifiers.

Although, in the food analytical field, most of the issues would be properly addressed by class-
modelling strategies, the use of such techniques is rather limited and, in many cases, discriminant
methods are forcedly used for one-class problems, introducing a bias in the outcomes.

Key aspects related to the development, optimisation and validation of suitable class models for the
characterisation of food products are critically analysed and discussed.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

A considerable number of practical cases that require an
analytical solution within the food sciences necessitate qualitative
answers [1,2]. Typical examples are represented by controls on
identity and quality of ingredients or finished products, which may
include the verification of fault presence/absence and of agreement
with particular claims. These may concern the presence of a
particular ingredient, geographical origin, compliance with specific
manufacturing rules stated in the product specification, and so on
[3,4].

Considering the complexity of such issues and the fact that
analytical controls usually provide the assessment of multiple
quantities for each of the samples under study, application of
multivariate data processing methods is highly profitable [5,6].

In particular, methods that build mathematical rules or models
able to characterise a sample with respect to a qualitative property
ewhich can be regarded as the membership to a particular class to
be properly defined e are the most appropriate. Two families of
multivariate pattern recognition methods satisfy such re-
quirements: discriminant classification and class-modelling [7].

The discriminant approach assigns samples to one among a
number of predefined classes (at least two). Instead, class-
modelling e also referred to as one-class classification [8] e ver-
ifies whether a sample is compatible or not with the characteristics
of a single class of interest (or to one single class at a time, in the
case of more than one relevant class). These fundamental differ-
ences have very important practical implications. For instance, in
the discriminant approach, it is fundamental that all of the classes
are not only meaningfully defined but also sampled in a fully
representative way e a requirement that is hardly fulfilled in many
real situations. The typical case is that of verification of compliance
with a given specification (e.g., protected designations of origin,
geographical indications, quality of ingredients and manufacturing
process), which is often addressed as a two-class problem, the two
classes being defined as those including compliant and non-
compliant samples, respectively. In such cases, while the target
class (of compliant samples) can be relevantly defined and
sampled, the non-target class (of non-compliant samples) is very
often unsuitably defined and poorly sampled [9]. Application of
discriminant classification on such malformed data sets is delete-
rious since it leads to biased classification rules and to similarly
biased predictions on new samples. On the contrary, situations like
this can be properly addressed by the class-modelling approach,
which just needs a representative sample set for the target class to
build unbiased verification models.

While one-class classification approaches are commonly used in
many fields, from fault detection in industries [10,11] to clinical
diagnosis [12,13] and to computer sciences [14,15], their use in
chemometrics applied to food sciences is still limited and, in some
cases, supplanted by a biased use of discriminant methods [16]. A
reason for this is the scarce availability of options for class-
modelling e with some exceptions for the SIMCA method e in
dedicated chemometric software, which is, in turn, partially as-
cribable to its scarce usage in the field e a negative chain of factors,
indeed.

In the present tutorial, the basic principles of class-modelling
are illustrated and critically commented, with a special attention
to key aspects of model optimisation and evaluation of the results.
2. Definition of class

A class (or category) is defined as a group of individuals that
have one or more properties in common. Usually, these properties
can be described by mathematical variables and, therefore, it is
possible to state that individuals constituting a class are charac-
terised by the same value of discrete variables, or by similar values
(within a defined range) of continuous or pseudo-continuous var-
iables. If such variables that define class membership are easily
measurable for every individual, assignation of new individuals to a
class is a direct and automatic task. Conversely, if such variables
cannot be measured in an easy way, class membership cannot be
determined directly. To address this situation, classification
methods establish and use mathematical relationships between
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other variables e which can be easily measured e and class
membership. This is e of course e possible if those variables
contain useful information and if a number of samples of certain
class membership are available to build the classification rule/
model.

3. The importance of classification methods in food analytical
chemistry

In spite of the widespread tendency to consider any analytical
problem as quantitative, analysis on food is often performed to
address qualitative issues, the most common of which are identity
and quality control tasks.

Typical cases concern identification of raw materials and in-
gredients, monitoring of ripening [17], investigations on evolution
during storage/shelf life [18], verification of authenticity of finished
products [19,20], and assessments on the quality [21].

In all of these cases, the answer to the problem of interest can be
provided by application of appropriate classification strategies e

usually, multivariate e on the analytical data. In particular, when it
is possible to define meaningfully and to sample suitably two or
more classes, discriminant classification methods may represent a
proper solution. The most widespread discriminant methods in
chemometric applications are linear discriminant analysis (LDA)
[22], quadratic discriminant analysis (QDA) [23], partial least
squares discriminant analysis (PLS-DA) [24], and k-nearest neigh-
bours (k-NN) [25].

Conversely, when the interest is focused on a single target class
and the aim is to verify compliance of samples with the features of
that class, a class-modelling approach should be adopted. Such
methods build an enclosed class space around the class samples.
The shape of the class space depends on the particular method
applied, while its size is a function of the confidence level that is
selected a-priori by the user for the specific case. The principal
class-modelling methods used in chemometrics will be described
in detail in Section 6.

A key aspect concerns the sampling stage. In fact, functionality
of any model, reliability of its validation and its actual applicability
strictly depend on the representativeness of the sample setse a key
point whose implications are often underestimated.

4. Differences between class-modelling and discriminant
analysis

4.1. One-class and multi-class classification

The first important point to be evaluated when a classification
strategy has to be defined is whether the problem under study
permits a multi-class or just a one-class choice. In fact, discriminant
methods allow to properly address only multi-class situations,
while class-modelling can be suitably used to study both one-class
and multi-class problems.

Multi-class problems are those in which at least two classes are
meaningfully defined e according to the definition given in Section
2 e and can be sampled in a representative way. Examples may
include the differentiation between different manufacturing
methods (e.g., mechanical vs. chemical extraction for vegetable oils
[26]), as well as the differentiation between different levels in a
process (e.g., different roasting degrees in coffee samples [27]).

One-class problems are instead focused on a single class of in-
terest (the target class), which can be properly defined and
sampled, while non-target samples do not constitute a meaningful
class and cannot be sampled in a thorough and comprehensiveway.
A typical example is represented the quality control e where in-
specification products define the target class and out-of-
specification products constitute a heterogeneous group, which
cannot be regarded as an actual class. A very similar situation is that
of verification of particular claims (e.g., compliance with the re-
quirements of a protected designation of origine PDO [28]); in fact,
also in this case, the target class can be defined and sampled as
required to obtain suitable models, while non-compliant samples
usually do not meet the requirements to be considered as a class
and cannot be sampled in a representative way [9].

4.2. Ambiguous assignments

When class-modelling methods are applied to multi-class
problems, since models for each class are built individually and
independently, class spaces may overlap, in the case of classes not
completely resolved in the space of the descriptors, as illustrated in
Fig. 1 a. Overlapping areas correspond to indecision regions, in
which samples are recognised as compatible with models of two or
more classes.

Instead, when a pure discriminant method is applied, samples
are always unambiguously assigned to a single class, also in the case
they are encountered very close to the delimiter (see Fig.1b), except
in the very unlikely case they lie exactly on the delimiter.

Assurance of a null (or quasi-null) rate of ambiguous assigna-
tions is one of the reasons for which many users prefer the
discriminant strategy instead of the class-modelling one e often
perceived as an imperfect strategy, for the same reason.

This represents one of the biggest and most widespread pitfalls
in the field of qualitative modelling. In fact, ambiguous assignations
potentially represent a very useful outcome, valuable as a diag-
nostic tool, to indicate that classes are not completely resolved on
the basis of the descriptors. Furthermore, indecision regions allow
to prevent from wrong (although unambiguous) classifications of
samples encountered within overlapping regions.

Considering these actual advantages, discriminant methods can
be properly modified to define an indecision region about the
delimiter [29], as exemplified in Fig. 1 c.

Unfortunately, these options are rarely implemented in com-
mercial software and, therefore, their applications are quite rarely
encountered.

4.3. Outlier detection

In the class-modelling approach, samples that fall outsidemodel
boundaries are considered as non-compatible with the class of
interest. Also in the case of a multi-class class-modelling, samples
may fall outside every class space e a common occurrence for
samples pertaining to classes not considered in the study and for
anomalous or atypical samples. In other words, capability for
outlier detection is an intrinsic feature of class-modelling methods,
as it is evident in Fig. 1 a.

On the contrary, the standard discriminant approach always
assign a sample to one of the classes pre-defined in the study, ac-
cording to the assignation rule based on the delimiter (Fig. 1b).

Actually, modified discriminant strategies have been proposed,
which define a maximum permitted distance from the delimiter
and, on this basis, exclude samples very far from class centroids (i.e.,
potential outliers, as exemplified in Fig. 1c) [29]. Regrettably,
implementations and applications of such criteria, although prof-
itable, are quite limited, similarly to modifications concerning
indecision regions about the delimiter, described in the previous
section.

4.4. Influence of non-target samples

One of the core features of the class-modelling approach is the



Fig. 1. Bivariate data set: samples belonging to two classes (red and blue circles) plus two outliers (green circles). (a) Class-modelling approach; ellipses ¼ class spaces; white
intersection area ¼ indecision region. (b) Pure discriminant approach; black line ¼ delimiter. (c) Modified discriminant approach; black solid line ¼ delimiter; dotted
lines ¼ acceptance limits. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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focus on a single class, or on a single class at a time, in the case of
multi-class problems. This means that each model is built using
solely and exclusively data from the related class, without any in-
fluence from other classes. A very important practical consequence
of this feature is that a model for a given class can be built also in
the case in which no samples from alternative classes have been
collected and analysed and, therefore, only data from the target
class are available. The same possibility is not allowed by discrim-
inant methods that require, by definition, data from at least two
classes to define a delimiter ewhich is, by definition, influenced by
data of both of the classes.

Exclusive availability of data from the sole target class repre-
sents, of course, a limit situation. The problem much more
frequently concerns representativeness of samples within alter-
native classes e and the consequences are much more deceitful.

In fact, when a target class (e.g., a food product labelled with a
given authenticity claim) has to be characterised, a common situ-
ation is the disposal of a representative sample set for the target
class, plus a number of incomplete and poorly representative
sample sets for a number of alternative classes. In such a practical
occurrence, the modelling approach would provide an unbiased
characterisation of the target class, while the discriminant
approach would lead to a biased classification rule, due to the
incorporation of incomplete information from the alternative
classes.

To better illustrate this key issue, the effect of slight variations in
the sample set composition of a non-target class is graphically
exemplified in Fig. 2, with bivariate data. As it can be noticed, such
variations do not affect at all the shape and the size of the class
boundary (class-modelling approach), while a considerable influ-
ence is observable on the inter-class delimiter (discriminant
approach).
4.5. The misuse of class-modelling methods as discriminant tools

From examination of one hundred representative original
research papers published in scientific journals over the last ten
years in the field of food authentication (Fig. 3), it emerges that in
more than one half of the studies, discriminant methods are used,
while the class-modelling approach is followed only in a reduced
fraction of researches.

An in-depth analysis of the papers that claim application of
class-modelling methods reveals, in a relevant number of cases, an
anomaly that can be quite easily detected examining the results:
the class-modelling method has been modified and forced to
perform a discriminant classification.

The most common way to accomplish such an unnatural action
consists in building classmodels for all of the classes of interest and,
subsequently, using distances from a given sample to each class
model as a criterion to perform a discriminant classification: the
sample is assigned to the class for which such a distance is mini-
mum. All of the points equally distant from two class models in the
space of the descriptors define the delimiter between this pair of
classes, as in the example of Fig. 2.

The main reason that may lead to prefer such a modification is
conceivably the apparent advantage of minimising ambiguous as-
signments, which are a typical occurrence for class-modelling. This
actually means the loss of a core feature of the modelling approach
(see Section 4.2).

Furthermore, the final classification outcomes are influenced by
information from all of the classes, like in any discriminant strategy.
Consequently, the main advantage of class-modelling, described in
the previous section, is definitely lost.
5. Authenticity verification as a two-class problem: a
widespread biased approach

In most of the cases, verification of authenticity of a food
product consists in assessing the truth of a given claim (e.g., a
specific geographical provenance). If the claim is positively verified,
the product is considered as authentic. Conversely, a fraud can be
suspected.

In such situations, the focus is on a single target class. For this
reason, performing one-class classification by class-modelling
methods represents the most appropriate strategy, as already
stated. Following this approach, a class model is built using infor-
mation from the target class, while data from non-target samples
may be used, in case, for evaluating model performances.

An alternative e and biased e strategy, which is encountered
frequently in published research studies, consists in converting the
one-class problem into a two-class problem. In more detail, a sec-
ond class is defined, besides the target class, as the class of all the
samples that do not comply with the authenticity claim to be
verified.

To take a practical example, if the classification study was aimed
at verifying authenticity of a PDO olive oil produced within a
particular geographical region, the discriminant approach would
require the collection of training samples for two classes: the target



Fig. 2. Bivariate data set: target samples (blue circles) and non-target samples (red circles). Black lines ¼ delimiters (discriminant approach); ellipses ¼ class spaces of the target
class (modelling approach). It can be noticed that small differences in the composition of the non-target sample set may determine considerable variations in the features of the
discriminant delimiter, while shape and size of the class space are unaltered. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 3. Pattern recognition tools applied in one hundred representative original
research papers in the field of food authenticity verification over the last ten years.
Data obtained from a literature search using Scopus, with keywords: “food authen-
ticity” and “chemometrics”.
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class, including samples of the PDO oil to be studied, and the non-
target, including samples of all of the olive oils producedworldwide
outside the geographical region under study. It is quite obvious that
collecting a representative set of non-target samples is a rarely
realisable task. Indeed, non-target samples do not meet any
requirement to be considered as a class, considering the definition
of class given in Section 2. As a result, sets of non-target samples are
often under-representative, leading inevitably to biased decision
rules (as it has been demonstrated in Section 4.4).
6. Main class-modelling methods in chemometrics

6.1. UNEQ

The unequal class models e also referred to as unequal
dispersed classes e (UNEQ) modelling method is a based on a
parametric probabilistic strategy introduced by Derde and Massart
in 1986 [30,31], and closely related to Harold Hotelling's multi-
variate approaches for quality control [32]. The class of interest is
described by an elliptical space built around the barycentre of
training data points of the class, namely the centroid vector. In
more detail, the UNEQ space for a given class c is defined by
Hotelling's T2 multivariate probability distribution (with v vari-
ables), in which location and dispersion are respectively estimated
by the centroid vector (xc) and by the variance-covariance matrix
(V) derived from the frequency distribution of training samples
within class c:
f ðxjcÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞvjVcj

p e�
1
2 ðx�xcÞ0V�1

c ðx�xcÞ (1)

The exponential operator in Eq. (1) (a squared Mahalanobis
distance) defines boundaries of the class space as an iso-probability
contour ellipse (bivariate case), ellipsoid (trivariate case) or hyper-
ellipsoid (multivariate case) [33]. Orientation and eccentricity of
the elliptical class space respectively derive from correlation be-
tween the variables and their dispersion, accounted for by V. The
width of the class space is determined according to the critical
value of Hotelling's T2 statistics at a pre-determined confidence
level.

An improved version of UNEQ makes use of T2 statistics for
modelling the class space boundaries only of the evaluation sample
set, while Beta statistics is used for the training samples [34]. Beta
statistics generate a tighter class space. The difference between the
width of the two boundaries increases when the number of sam-
ples decreases.
6.2. SIMCA

Soft independent modelling of class analogy (SIMCA) is a non-
probabilistic distance-based modelling method introduced by
Svante Wold [35]. SIMCA models are based on principal compo-
nents (PCs), which are, by definition, the directions of maximum
variance (and, therefore, of maximum information) in a multivar-
iate data space [36]. As indicated by the acronym, PCs are computed
independently for each of the classes of interest. To this aim, data
are initially transformed by a class-based column autoscaling or
column mean centring, either of which shifts the origin of the
reference axes to coincide with the class centroid. Then, PCA is
performed, with a rotation about the class centroid, and the
number of significant PCs is evaluated, usually bymeans of a double
cross-validation procedure [37]. The significant PCs define the so-
called SIMCA inner space.

Training samples of the class to be modelled are therefore
projected on the significant inner-space PCs, obtaining score values
for each samples on each PC. In the original version of SIMCA, the
ranges of such PC scores define the class model (normal range
model). Such amodel has the shape of a segment (one-dimensional
inner space), a rectangle (bidimensional inner space), a parallele-
piped or hyper-parallelepiped (three or multidimensional inner
space), given that PCs are orthogonal by definition [36].
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Residuals (namely, the distances between each sample and the
model the space defined by the non-significant PCs, called SIMCA
outer space) are then computed and used to define a distance from
class model (OD), in combination with the distance in the score
inner space (ID), to define the so-called SIMCA augmented distance
from sample s to class C (ds,C):

ds;C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ID2

s;C þ OD2
s;C

q
(2)

The critical value of this distance, which determine acceptation/
rejection of a new sample by the model, is defined by the critical
value of Fisher statistics at a pre-determined confidence level, given
that residuals are assumed to follow a multivariate normal
distribution.

Also in this case, it is possible to define two different metrics, for
the training and the test samples respectively.

Many versions of the SIMCA algorithm have been proposed,
making it a very flexible method. Themost importantmodifications
concern the definition of the PC-score based model. For instance,
the normal range model can be enlarged so as to avoid the possi-
bility of an under-estimation of the true variability (if few training
samples are available), or reduced, to avoid the possibility of an
over-estimation (if many training samples are available) [38].
Furthermore, several modifications can be introduced in the
computation of SIMCA distance, the most common of which in-
volves calculation of the contribution in the score inner space as a
Mahalanobis distance [39].

Data driven SIMCA (DD-SIMCA) [40,41] approximates distribu-
tion of both ID and OD by a scaled chi-squared distribution, whose
parameters (scaling factors and degrees of freedom) are estimated
using a data-driven method [42]. DD-SIMCA is able to calculate
misclassification errors theoretically.

A fuzzy version of SIMCA e referred to as fuzzy grid encoded
independent modelling for class analogies (FIMCA) e has been also
recently presented [43].

Residuals for a given sample i (ei) e namely, the vector con-
taining the fraction of information not explained by the compo-
nents retained in the model e can be studied by Q statistics:

Qi ¼ eie
T
i (3)

whose confidence limit, Qa, is computed according to Jackson [44]:

Qa ¼ q1

2
4za

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2q2h

2
0

q
q1

þ 1þ q2h0ð1� h0Þ
q21

3
5

1
h0

(4)

where za is the value of the standard normal deviate corresponding
to the upper (1-a) percentile, and qj terms and h0 are defined as:

qj ¼
XminðI;VÞ

l¼Lþ1

ljlfor j ¼ 1;2;3 (5)

and

h0 ¼ 1� 2q1q3
3q22

(6)

The qj terms are the sums of the eigenvalues (l) raised to the jth
power for the components that have not been retained in the
model. It has to be remarked that Eq. (4) assumes the residuals to be
normally distributed, a condition that is generally verified [44].
6.3. PFM

Potential function methods (PFM) constitute a family of non-
parametric probabilistic techniques derived from the work of
Coomans and Broeckaert [45]. The first class-modelling version is
due to Forina and co-workers [46].

PFM estimate a probability density distribution of a class of in-
terest as a sum of contributions from each single sample of the class
in a training set. A variety of functions can be used to define these
individual contributions. The name of the techniques reflects the
fact that, in the original implementations, functions analogous to
the electric potential were used. In the most recent implementa-
tions, functions most commonly used are Gaussian-like with a
smoothing coefficient that is formally analogous to the standard
deviation of the Gaussian probability function and, therefore,
concurs in determining the shape of the distribution. Such a coef-
ficient can be the same for all the samples of a given class (fixed
potential strategy) or it may be varied as a function of the local
density of samples (variable potential strategy). This latter
approach is useful especially when the underlying multivariate
distribution is very irregular, with regions characterised by non-
uniform density of samples. The value of the smoothing coeffi-
cient can be optimised by means of a leave-one-out cycle on an
optimisation sample set. The resulting estimated overall probability
distribution can be sectioned at different confidence levels, with
iso-probability contours representing the boundaries of the class
space at each confidence level. Two strategies have been proposed
for determination of the space boundaries corresponding to a given
probability level: the p% sample percentile and the equivalent
determinant. It has been demonstrated that the latter method is
less sensitive to the presence of outliers [46]. Boundaries of the
class spaces can be very complex, capable of effectively describing
non-normal and non-uniform sample distributions.

6.4. SVM

Support vector machines (SVM) are a family of pattern-
recognition methods conceived for efficiently dealing with non-
linear data distributions.

The basic feature of SVM is the projection of data points into a
space with augmented dimensions, functional to individuate sim-
ple (possibly linear) functions able to model the data. Such
modelling functions can be projected back into the space of the
original predictors, resulting in lower-dimensional but with higher
complexity (usually non-linear) functions.

SVM are traditionally used for discriminant classification [47].
Nevertheless, some Authors presented modifications functional to
class-modelling. Among the most common approaches, it is worth
mentioning the support vector domain description (SVDD) method
by Tax and Duin [48], which makes use of hyperspheres to define
the class spaces. An alternative approach, proposed by Sch€olkopf
and co-workers [49] and claimed to provide one-class models,
makes use of hyperplanes.

6.5. PLS-based methods

One of the discriminant techniques most widely applied is the
so-called partial least squares discriminant analysis (PLS-DA) or
discriminant partial least squares (D-PLS). The method, introduced
by Barker and Rayens [24], provides a linear delimiter applying
partial least squares (PLS) regression [50] using binary class
membership indices (e.g., 0 and 1) for each class as the response
variables. When more than two classes are involved, the PLS-2 al-
gorithm is applied which allows the prediction of a matrix of
response variables, that is, one for each class. PLS-DA is often used
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as an alternative to LDA for data sets in which the number of var-
iables is larger than the number of samples. Nonetheless, it can be
demonstrated that, when the number of variables considerably
exceeds the number of objects, PLS-DA is generally able to find a
delimiter that discriminates between two classes, even though
such classes are not separated in reality [51]. Therefore, in these
cases, a thorough model validation becomes fundamental.

In the recent years, a number of attempts have been addressed
to develop class-modelling techniques exploiting the advantages
offered by the PLS method.

In particular, a method called one-class PLS (OC-PLS) has been
recently presented, in which a PLS model is built using a constant
response (y ¼ 1), i.e., identical values for all of the training samples
belonging to the class of interest [52]. Hotelling's T2 and Q statistics
are used to verify compliance of test samples with the class model,
providing a solution that is, in many cases, analogues to that of the
SIMCA method.

An alternative method, called PLS density modelling (PLS-DM)
[53], develops a PLS model using a density vector as the y response
vector, computede for each sample of the training set e as the sum
of the k smallest inter-sample Euclidean distances in the multi-
variate space. Parameter k influences the smoothness of density
function, which evolves from a sharper to a smoother shape while
increasing k. The PLS scores on the first L latent variables selected
are used as an input to estimate probability density of the class by a
potential function method (PFM). Class boundaries are defined
according to the critical value (fa) obtained from the critical value of
the chi-squared distribution by the so-called equivalent determi-
nant method [46]. In addition, PLS residuals are used to compute
the critical value of Q statistics (Qa) at the same level of a according
to the Jackson-Mudholkar approximation [44]. In this way,
compliance of each object with the class model is granted when it
complies with both the fa and Qa criteria.

7. Evaluation of class-modelling performances

7.1. Validation strategies and model interpretation

Practical usefulness of a class model is strictly related to its
reliability in prediction. Model validation, namely the estimation of
predictive ability on new samplese not used for building themodel
e is therefore a key point. Usually, validation strategies divide the
available samples into two subsets: a training (or calibration) set
used for building the model and a test (or evaluation) set used to
assess its validity. Both of the sets must contain samples of known
class membership. Furthermore, a reliable validation requires that
no information from samples in the test set is used for building the
model, so as to avoid overestimations of the prediction ability.

Evaluation of the predictive ability of a model can be performed
onto either a single test set e one-step procedure e or different
evaluation sets, following an iterative procedure.When a single test
set is used, a fraction e usually between 50% and 10% e of the
available samples is selected to constitute the test set, with the
remaining objects forming the training set. The subdivision may be
arbitrary, based on a random choice, or even performed by way
uniform sampling designs, such as the Kennard and Stone algo-
rithm and its modifications [54,55], which generate two sample
subsets that explore the whole variability domain and are uni-
formly distributed within it. Cross-validation (CV) is one of the
most common choices among the iterative validation procedures. It
splits the N rows of the data matrix (samples) into C cancellation
groups, following a predetermined scheme (the most common of
which are contiguous blocks and Venetian blinds). The model is
computed C times, each time using one of the cancellation groups
as the test set, and the remaining samples as the training set. C
usually ranges from 3 to N e an extreme and, usually, over-
optimistic case generally known as the leave-one-out procedure
(LOO).

Bootstrap validation is an extensive iterative strategy, inwhich a
high number of models (oftenmore than 1000) are computed, each
time randomly extracting (with repetition) different test sets of
variable size.

The possibility of interpreting the outcomes of a class-modelling
procedure e in terms of assessment of the role of the original
variables in class assignment e is fundamental, as it provides the
basis for support and endorse the results, and it can be therefore
considered as a further implicit validation of the model. Model
interpretation is a simple task for the simplest methods (e.g., in the
case of UNEQ models on the original variables) and becomes more
difficult for more complex methods. More complex methods are
often used as black boxes, which do not provide any direct inter-
pretation of the predictions. In such cases, a thorough validation of
the results is a key step to avoid overfitting and blunders in pre-
dictions on real samples.
7.2. Evaluation parameters

When evaluating the outcomes of class-modelling bymeans of a
sample test set, samples belonging to the class of interest are
designated as true positive (TP) if they are correctly recognised as
compliant by the model, and false negative (FN) if they are erro-
neously rejected. Correspondingly, samples not belonging to the
class of interest are labelled as false positive (FP) if they are erro-
neously assigned to the class, and true negative (TN) if they are
correctly refused.

Fractions of true positive and true negative assignations define
two important evaluation parameters: sensitivity and specificity,
respectively.

Sensitivity is defined as the fraction of samples of the class of
interest which resulted in a true positive assignation:

sensitivity ¼ TP
TP þ FN

(7)

It represents an experimental measure of the confidence level of
the class space.

Conversely, specificity is that fraction of samples extraneous to
the modelled class which is correctly refused by the model:

specificity ¼ TN
TN þ FP

(8)

Sensitivity can be evaluated both in fitting (on the samples of
the training set of the class of interest) and in prediction (on new
samples belonging to the class of interest, but not used in model
building). Conversely, specificity cannot be assessed in fitting, since
samples not belonging to the class of interest (necessary to evaluate
such a parameter) are never used in model definition in none of the
class-modelling strategies.

A comprehensive parameter, referred to as efficiency, is defined
as the geometric mean of sensitivity and specificity values:

efficiency ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP,TN
ðTP þ FNÞ,ðTN þ FPÞ

s
(9)

It may vary between 0, when either sensitivity or specificity are
null, and 1 (the ideal case), when both parameters have the
maximum value of 1.

In some applications (mainly in the field of botanical authenti-
cations) probability of identification (POI) curves are used e a
graphical tool that reports the probability of true positives (a



Fig. 4. Example of ROC curves (solid lines) for the evaluation of different class-
modelling outcomes. Efficiency of models associated to the curves decreases from
blue to orange to red to green. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 5. Example of Coomans' plot for the table olive data set (red squares ¼ Taggiasca
olives; blue squares ¼ Leccino olives; green squares ¼ Coquillo olives). (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

P. Oliveri / Analytica Chimica Acta 982 (2017) 9e1916
measure of sensitivity) as a function of the value of a given
parameter (typically, a concentration) [56,57].

7.3. ROC curves

Receiver operating characteristic (ROC) curves are a graphical
tool classically used for evaluating the performances of a given
discriminant classifier (generally univariate) in a two-class
problem.

The name is related with their first application, which was
evaluation of the ability of radar operators in identifying hostile
aircrafts, during World War II. Afterwards, ROC curves became
popular especially in the biomedical field, both in clinical and
forensic investigations [58,59] e one of their principal applications
being the evaluation of efficiency of a given parameter (or
biomarker) to differentiate between healthy and ill individuals.

ROC curves are built varying the position of the delimiter, which
corresponds to the decisional threshold of the measured parameter
in the univariate case. True positive rate (TPR) and false positive
rate (FPR) are computed at each step and graphically represented in
a two-axis Cartesian plot, in which the horizontal axis usually re-
ports FPR, while the vertical axis reports TPR. Experimental out-
comes are connected by a line that constitutes the ROC curve.

A detailed analysis of ROC curves provides not only the choice of
the most appropriate threshold value, as the best compromise
between FPR and TPR (whose evaluation obviously depends on the
specific case), but also important information about the system
under study.

In particular, curves that tend to the diagonal bisector of the plot
indicate very poor classifiers, which basically perform like a
random class assignation. Conversely, curves that tend to detach
from the diagonal bisector towards the upper left corner of the plot
are associated to efficient classifiers. A measure of this is often
evaluated by quantifying the area under the curve (AOC), which
increases (up to the maximum of 1) while increasing the perfor-
mance of the classifier under evaluation.

A modified version of ROC curves was proposed for evaluating
the performance of class-modelling approaches [60]. In this case,
curves are built varying the confidence level at which class-
modelling is performed, resulting in a variation of the size of the
class space. Sensitivity and specificity values, computed at each
step, are reported in the plot (100 %-specificity % on the abscissa,
and sensitivity % on the ordinate). The way of interpreting such a
plot is analogous to that obtained for the discriminant case.

The best compromising between sensitivity and specificity is
usually chosen taking into account the final purpose of the specific
investigation, as well as costs and risks associated to an incorrect
identification of positive and negative events.

Fig. 4 reports an example of comparison between different
models, suggesting how ROC curves can be used as a powerful tool
for comparing the performances of models obtained either with
different parameter settings, or by application of different model-
ling methods.

A video illustrating the building stages of a classical ROC curvee
for the univariate two-class case e and an extended version for
class-modelling is available in the Electronic Supporting Material
(S1).

7.4. Distance diagrams

A useful tool for a graphical evaluation of class-modelling re-
sults, when at least two classes are modelled, is represented by the
so-called Coomans' plots [61], which will be illustrated with a
practical example e a data set contains FT-NIR spectra recorded
(over the spectral range 9000e4200 cm�1, at 4 cm�1 resolution) on
ground table olives belonging to three different cultivars: Taggiasca,
Leccino and Coquillo [62]. Spectral data have been previously sub-
mitted to SNV transform and column autoscaled, in order to elim-
inate unwanted signal variations and, subsequently, submitted to
class-modelling with the SIMCAmethod (5 PCs for the inner space).

In the Coomans' plot represented in Fig. 5 a, the two axes



Fig. 6. Example of Pareto diagram. Solid black line ¼ Pareto front connecting optimal
solutions. Each point represents a model obtained under different settings of relevant
parameters. Colours can be used to code the different levels of a given parameter.
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correspond to the distances of samples from the models of the
classes Taggiasca and Leccino, respectively. Samples of the three
classes are represented as scatter points, whose coordinates indi-
cate the relative similarity with the two class models.

The two straight lines parallel to the axes correspond to the
critical acceptance/rejection levels for Taggiasca and Leccino class
models, respectively, at the pre-selected confidence level (95%).

The plot area is therefore divided into four sectors, which
contain respectively:

� samples accepted by the class Taggiasca model (upper left
rectangle);

� samples accepted by the class Leccino model (lower right
rectangle);

� samples accepted by both of the models (lower left square);
� samples rejected by both of the models (upper right square).

For methods whose assignation rule is based on both T2 and Q
values, an informative plot is often obtained by representing T2 and
Q distances from the model of a class. Such a plot is helpful in
understanding the nature of outliers, similarly to what is done in
the fields of multivariate quality control and multivariate process
monitoring.

8. Optimisation of class models

8.1. Validation issues

A class model is useful when it is able to provide reliable pre-
dictions on new samples. Predictive ability should be estimated on
a set of samples not used for building the models. To this aim,
several procedures have been proposed, the most common of
which divide the whole set of samples of certain class membership
into two subsets: a training (or calibration) set, used for developing
the model, and an evaluation (or test) set, used to assess its reli-
ability. Model validation is consistent if samples in the evaluation
set have not influenced the model neither in the building nor in the
optimisation steps; if such requirements are notmet, the prediction
ability may be overestimated.

In particular, when some factors (including pre-processing,
feature selection and parameters specific of a given modelling
method) are optimised in the search for a setting that provides the
maximum modelling performance, the risk of overfitting is
considerable. Overfitting means that the model fits excessively a
given sample subset, using also a considerable fraction of the
irrelevant information embodied in the analytical data (e.g.,
random noise and unwanted sources of variations). This usually
leads to poor performances in the prediction in real applications on
new samples.

When an optimisation of parameters is performed, a recom-
mendable strategy is to use three sample subsets: a training set, an
optimisation set and an evaluation set. The optimisation set is used
to find the optimal settings of the relevant parameters, while the
actual reliability of the final model is estimated by way of predic-
tion on the third subset, formed by objects that have never influ-
enced either the model or its optimisation.

8.2. Pareto charts

Pareto charts [63] are a graphical tool that can be effectively
applied to compare sensitivities and specificities of class models
obtained under different conditions, allowing to identify optimal
models evaluating the most profitable balance e which, of course,
depends on the particular problem under study e between the
evaluation parameters. In fact, being a multicriteria decision
strategy, Pareto optimisation considers more than one objective
simultaneously, looking for the optimal compromise.

In more detail, Pareto charts for evaluation of class-modelling
outcomes are bidimensional Cartesian diagrams, whose axes
represent sensitivity and specificity, respectively. Each class model
to be compared is therefore represented by a scatter point within
the graph. Points are considered Pareto efficient (non-dominated
point) if none of the other solutions is better both for sensitivity and
specificity simultaneously. The non-dominated points can be con-
nected by a piece-wise line, called Pareto front (or Pareto frontier).
The ideal solution can be identified, among the potentially optimal
solutions constituting the Pareto front, thoroughly considering the
practical implications related to the case studied: in fact, in some
situations, it might be preferable just to maximise efficiency while,
in other cases, it might be profitable to choose slightly unbalanced
solutions that favour a higher sensitivity (or specificity). For
instance, a protection consortium of a given food product, might
prefer to have models that exclude the lowest number of affiliated
producers, that means to select models with the highest sensitivity.

Fig. 6 shows an illustrative Pareto diagram. The black line that
connects the set of non-dominated points is the Pareto front. Each
point corresponds to a model obtained under a particular setting of
the tuneable parameters and can be coded by a colour scale that
indicates the levels of a given parameter. In such away, it is possible
to understand the effect of relevant parameters (which can be
varied in the optimisation stages according, for instance, to a full
factorial design) on the outcomes.
8.3. Compliant and rigorous approaches

A fundamental aspect to suitably implement a class-modelling
strategy concerns the evaluation parameters considered in the
model optimisation stages.

In many cases, the optimal conditions for a given method/model
are looked for by considering both sensitivity and specificity values,
like in the Pareto approach described in Section 8.1, or evaluating
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efficiency as a comprehensive parameter. In all of these cases e

which probably represent the most common situation e it should
be considered that information from non-target samples is influ-
encing the choice of some features of the class model. Such an
optimisation strategy e which has been recently defined as
compliant approach [64] e may, of course, lead to models charac-
terised by higher efficiency, but at the cost of introducing a po-
tential bias on the model.

The alternative way to optimise a model without introducing
such a biase defined as rigorous approach [64] e is to consider just
sensitivity, a parameter that only depends on samples from the
target class. In more detail, considering that sensitivity is an
experimental estimate of the confidence level that has been set for
a given model, following the rigorous approach, models whose
sensitivity is closest to the confidence level should be considered as
optimal.

9. Conclusions

Class-modelling performs verification of compliance with a
specification by defining a multivariate enclosed class space, at a
predetermined confidence level, for authentic samples of the class
under investigation. Models built in such a way has the advantages
of describing the target samples being free from the distribution of
non-target samples in the training set.

Conversely, discriminant methods look for a delimiter between
twoe or more e classes, using a contribution from all of the classes
considered. This means that all of the classes must be correctly
defined and that samples included must be thoroughly represen-
tative of each class since they have a crucial influence on the de-
cision rule to be derived. This is extremely important when the
focus is on a single class like, for example, cases involving verifi-
cation of a food authenticity claim. Several graphical tools may aid
model optimisation and validation stages. Nevertheless, it should
be reminded that a rigorous class-modelling approach should
evaluate only sensitivity when making decisions about the optimal
conditions of relevant parameters.
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