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A B S T R A C T

Practical guidelines for reporting analytical calibration results are provided. General topics, such as the
number of reported significant figures and the optimization of analytical procedures, affect all calibration
scenarios. In the specific case of single-component or univariate calibration, relevant issues discussed in
the present Tutorial include: (1) how linearity can be assessed, (2) how to correctly estimate the limits of
detection and quantitation, (2) when and how standard addition should be employed, (3) how to apply
recovery studies for evaluating accuracy and precision, and (4) how average prediction errors can be
compared for different analytical methodologies. For multi-component calibration procedures based on
multivariate data, pertinent subjects here included are the choice of algorithms, the estimation of
analytical figures of merit (detection capabilities, sensitivity, selectivity), the use of non-linear models,
the consideration of the model regression coefficients for variable selection, and the application of
certain mathematical pre-processing procedures such as smoothing.
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1. Introduction

Univariate calibration is synonymous of single-component
calibration, and is well-known as the cornerstone of many
analytical chemistry procedures. The latter calibration protocol
can be safely employed when the instrumental signal is selective
enough, or the interferents have been separated from the analyte
in the test sample. The separation can be physical (e.g.,
chromatography) or chemical (e.g., complexation to mask a
species) [1]. When this is not the case, alternatives are based on
multivariate calibration procedures, which are now firmly
established. They can compensate for the presence of interferents
by including them in the calibrationphase, aswhen first-order data
are measured (e.g., spectra) [2], or simply by purely mathematical
means, as when achieving the second-order advantage frommulti-
way data [3].

In this context, it is rather paradoxical that analytical chemists
regularly apply official regulations as regards analytical protocols,
but they do not follow the same recommendationswhen reporting
their results. After many years of reviewing manuscripts for
mainstream analytical journals, including Analytica Chimica Acta, a
list has been compiled of common mistakes and misconceptions
which should be avoided when processing and reporting calibra-
tion data. This applies to both uni- and multivariate data, in the
latter casewith particular focus on first-order data, and specifically
using the most popular partial least-squares (PLS) regression
model [2].

The present report intends to provide a practical guide for
improving the presentation of calibration results. It has been
divided, for clarity, in three main sections: the first one contains
general recommendations, applicable to all forms of calibration
procedures, the second one specifically applies to univariate
calibration, and the final one to first-ordermultivariate calibration.
Although the latter is by far the most popular form of calibration
with multiple data per sample, some advice will occasionally be
directed to multi-way calibration. The sections devoted to general
aspects and to univariate calibration are perhaps more elaborated
than the one for multivariate calibration, in part because the
former scenarios are more popular and also to keep a reasonable
length of the tutorial.

2. General

2.1. Significant figures

An analytically oriented paper should pay proper attention to
the significant figures employed in reporting results, i.e., unrea-
sonably large numbers of significant figures should be avoided [4].
This is not purely cosmetic; authors should pay attention to this
important fact, otherwise, a wrong impressionwould be produced
in readers. It is also the recommended action by international
convention, and should be honored by all chemists alike.

In general, all results should be reported with a number of
significantfigures compatiblewith the standard error associated to
the result. Uncertainties should be reported with one or at most
two significant figures. A good rule of thumb is to use two
significant figures when the first one is 1, or when the first is 2 and
the second is smaller than 5; in the remaining cases a single
significant figure should be reported. For example, a predicted
concentration should not be reported as 13.89mgL�1 with a
standard deviation of 2.85mgL�1, but as 14mgL�1 with a standard
error of 3mgL�1. A concentration value reported as 13.89mgL�1

would give the reader the wrong impression that the uncertainty
in the prediction of this concentration is on the order of
0.01mgL�1, while in fact it is two orders of magnitude larger!
Even if the standard error is not provided, reporting the
concentration as 14mgL�1 conveys the implicit message that
the uncertainty in such determination is on the order of themgL�1,
which is correct.

Likewise, if the slope of a calibration graph is 2158.2AULmg�1

(AU=arbitrary signal units), with a standard error of 32AULmg�1,
the sensitivity for the analyte determination, which is equal to the
slope, should not be reported as 2158.2AULmg�1. The correct
report should be 2.16�103AULmg�1, because the uncertainty
affects the third significant digit.

Additional parameters derived from uncertainties should be
reportedwith one or atmost two significant figures. For example, a
limit of detection (a figure of merit which depends on the
uncertainties in signals and concentrations, see below) should not
be reported as 0.1187mgL�1, but as 0.12mgL�1.
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Suppose the sensitivity of a method has been found to be
6.48�102AULmg�1, and the instrumental noise level is 1.5AU.
Then the analytical sensitivity, which is the ratio of sensitivity to
noise [5], should be reported as 4.3�102 Lmg�1, and not as
432 Lmg�1. This is because the number of significant figures for the
noise (two in this case) controls the number of significantfigures of
the analytical sensitivity.

Other figures of merit to be reported with at most two
significant figures are the limit of decision (LD), the limit of
quantitation (LOQ), the average prediction error or the root mean
square error (RMSE) and the relative error of prediction (REP). The
latter two parameters can be estimated according to:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
n¼1

cnom;n � cpred;n
� �2

N

vuuuut
(1)

REP ¼ 100
RMSE
ccal

(2)

where cnom,n and cpred,n are the nominal and predicted concen-
trations for the test sample n,N is the number of test samples, and
ccal is the mean calibration concentration.

Finally, recoveries expressed in % should be provided with a
number of significant figures compatible with those for the
reported analyte concentrations.

2.2. Optimization of analytical methods

Usually the optimization of analytical methods is conducted by
changing one variable at a time. This is not the recommended
optimization procedure in analytical chemistry and other chemis-
try fields, since: (1) it requires considerably more experimental
points than other rational surface response optimization (SRO)
procedures, (2) it only provides local optima, in comparison with
global optima furnished by SRO, (3) it does not take into
consideration possible interactions among affecting factors, and,
perhaps more importantly, (4) it leads to sub-optimal results, and
hence the final result may not be the best one for the purpose the
authors are pursuing [6].

It is worth repeating the following rather sad excerpt from the
conclusion of a tutorial on multivariate design and optimization of
experiments [7]: “ . . . When browsing through the papers published
in Analytica Chimica Acta in 2009 (from volume 631 to volume 645,
plus the papers available in the “Articles in Press” section on June 3,
2009), I found 165 of them having the general title or a section title
containing the words “optimization” or “development”, or “improve-
ment”, or “effect of”. Only in 11 papers (i.e., one out of 15 . . . ) a
multivariate approach has been followed, while in the great majority
of them the “optimization” was performed one variable at a time,
sometimes with the titles of the subsections proudly remarking it (“3.1.
Effect of pH”, “3.2. Effect of temperature”, “3.3. Effect of flow”, and so
on.) . . . " An inspection of the analytical literature from 2009 to
date reveals that the approach of changing one variable at a time
for attempting optimization is still in use.

Authors are encouraged to follow the well-established and
reliable multivariate optimization procedures described in Refs.
[6,7] and references therein. As an appropriate example, consider a
typical optimization procedure employed in the determination of
the anti-allergic epinastine in human sera by capillary electropho-
resis [8]. It was apparent that two important analytical parameters
(the time of analysis and the resolution between the peaks for the
analyte and an internal standard) depended on various experi-
mental factors. The aim was to minimize the time and to reach a
target value of 2 for the resolution. The factors were the
concentration and pH of the buffer, the injection time, the
injection voltage and the separation voltage. When the number
of factors to be optimized is rather large, such as in the present
example, it is advisable to first conduct a screening phase of
experiments. The analytical responses are measured for a small
number of runs, designed to explore the relative significance of the
various factors. This calls for an experimental design of many
factors at a small number of levels, such as the Plackett–Burman
design [6,7], which only requires twelve experiments. As a result of
the statistical analysis of the responses for the screening experi-
ments, four factors were found to be important: the concentration
and pH of the buffer, the injection voltage and the separation
voltage [8]. In the next optimization phase, a designwas employed
with more levels per factor, in order to be able to explore the
(possibly non-linear) surface response. In this case a central
composite design [6,7] (30 experiments with 5 levels per factor)
was used. The responses were modeled as a function of the factors
using cubic polynomials. When two responses are simultaneously
studied, full optimization is not generally possible, but desirable
results can be obtained by combining the responses into a
desirability function to be optimized [9]. The approach allowed
to estimate the desirable analytical responses and the correspond-
ing factor values [8]. This illustrates the complete screening and
optimization process which is advisable when designing complex
analytical experiments, instead of modifying variables one at a
time.

3. Single-component calibration

3.1. Analyte determination

The set of concentrations designed for calibration should
include the blank. The sample with zero analyte concentration
allows one to gain better insight into the region of low analyte
concentrations and detection capabilities [1].

The mathematical expression employed to fit the data to a
linear model should include an intercept. The latter accounts for
the blank signal, even if the blank signal is suspected to be zero. In
fact it is never exactly zero, because of either the existence of a
small blank signal, or because of the universal presence of
instrumental noise.

Analyte concentrations in the calibration set should be included
as replicate samples, and not as single samples. This allows to
obtain more robust regression results, and to assess the linearity of
the calibration graph (see below), as well as other statistical
parameters [1].

3.2. Linearity

The correlation coefficient (R) of a calibration graph is usually
employed forassessing its linearity, regularlybyvisual inspectionof
its closeness to 1. However, the International Union of Pure and
Applied Chemistry (IUPAC) discourages the correlation coefficient
as an indicator of linearity in the relationship between concentra-
tion and signal. This is literally expressed in Ref. [1]: " . . . the
correlation coefficient, which is a measure of relationship of two
randomvariables, hasnomeaning in calibration . . . ".A less stringent
view is offered in Ref. [10], where the correlation coefficient is said
to provide a measure of the degree of linear association between
concentration and signal. However, the linearity is suggested to be
checked using the test to be discussed below.

To test for linearity, authors should report the experimental F
value corresponding to the ratio of residual variance to squared
pure error, and the tabulated critical F for comparison. Specifically,
the experimental F ratio is given by:
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Fexp ¼ sy=x
sy

� �2

(3)

where sy/x is the residual standard deviation and sy is the so-called
pure error (ameasure of the instrumental noise). These parameters
can be estimated from the calibration data as:

sy=x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXI
i¼1

yi � ŷlð Þ2

I � 2

vuuuut
(4)

sy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL
l¼1

XQ
q¼1

ylq � y l
2

I � Q

vuuuut
(5)

In the latter expressions, yi and ŷi are the experimental and
estimated response values for sample i, ylq is the calibration
response for replicate q at level l, yl is the mean response at level l,
and I, L and Q are the total number of calibration samples, levels
and replicates at each level, respectively.

The statistical hypotheses are thus H0 (the data are linear) and
the alternative Ha (the data are non-linear), and the null hypothesis
would be rejected at significance level a if Fexp exceeds the critical
value at level a, F(a,I�2,I� L) (I is the number of calibration
samples and L the number of concentration levels). This test is the
best linearity indicator, as recommended by IUPAC [1], and
amounts to statistically check whether the residual variance is
Table 1
A calibration data set for which the linearity test is not fulfilled but the correlation co

Calibration sample Concentration

1 64
2 128
3 192
4 256
5 320
6 384

Calibration parametersb

Slope (standard deviation)
Intercept (standard deviation)

2.286 (0.014)
�11 (3)

Linearity assessment

Calibration sample/replicate Estimated concentration

1/1 134.9
2/1 281.3
3/1 427.6
4/1 573.9
5/1 720.2
6/1 866.6
1/2 134.9
2/2 281.3
3/2 427.6
4/2 573.9
5/2 720.2
6/2 866.6
Sum of squared errors
Residual standard deviation (sy/x)
Residual variance [(sy/x)2]
Pure error (sy)
Squared pure error [(sy)2]
Fexp
Critical F(0.05,10,6)
R

a Concentrations and signals are given in arbitrary signal units; the data have been a
b Standard deviation in parenthesis. Fexp is the ratio of residual variance to squared p

degrees of freedom at 95% confidence level, where I is the number of calibration samples
larger than the squared pure error derived from the study of
replicate samples.

It may be noticed that an alternative assessment of the linearity
has also been discussed by resorting to the analysis of variance
(ANOVA) of the calibration data [10]. In this latter methodology,
comparison is made of the so-called lack-of-fit variance to the
squared pure error through an F test. While the pure error is
defined as in Eq. (5) above, the lack-of-fit differs from sy/x and leads
to different experimental and critical values of F [10].

It would be advisable to read the excellent brief reports by the
Analytical Methods Committee of the Royal Society of Chemistry
[11]. Can a calibration data set be fitted to a linear regression
analysis, giving a correlation coefficient close to unity and still be
non-linear? Table 1 provides an example, where it is easy to grasp
the hazards of employing correlation coefficients for assessing
linearity.

3.3. Limit of detection

The univariate limit of detection (LODu) is usually estimated
using the old definition, now abandoned by IUPAC, based on the
analyte concentration which gives a signal at least three times
larger than the standard deviation of the blank signal. This LODu

value is usually an underestimation [12,13].
The modern IUPAC recommendation first requires to define a

level for the detection decision (LD), involving a certain risk of false
detects (also called false positives, a-errors or Type I errors). As
illustrated in Fig. 1, the green-shaded area represents a portion of
efficient is close to unity.a

Signal

Replicate 1 Replicate 2

138 142
280 282
423 425
565 567
720 725
870 872

Residual error Squared residual error

�3.1 9.4
1.3 1.6
4.6 21.0
8.9 79.5
0.2 0.1
�3.4 11.8
�7.1 50.0
�0.7 0.6
2.6 6.7
6.9 47.8
�4.8 22.6
�5.4 29.5
280.5
5.3
28
2.2
4.8
5.9
4.1
0.9998

dapted from Ref. [11].
ure error, critical F(0.05,10,6) is the critical value of F with (I�2) =10 and (I� L) = 6
(12) and L the number of concentration levels (6) and R is the correlation coefficient.



Table 2
Calibration results for typical univariate data.

Concentration Signal

Replicate 1 Replicate 2

0.00 0.06 0.08
1.00 1.44 1.6
3.00 4.15 4.2
5.00 6.61 6.54

Calibration parameters
Slope (A) 1.30
Residual standard deviation (sy/x) 0.12
Blank leverage (h0) 0.17
Number of samples (I) 8
LODu (old IUPAC definition) 0.2
LODu (new IUPAC definition) 0.4
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the Gaussian distribution of concentration values having a
probability a of declaring ‘analyte absent’ while in fact it is
present. This is the meaning of false detect or false positive. The
limit of detection is then defined as a concentration level for which
the risk of false non-detects (false negatives, b-errors or Type II
errors) has a probabilityb. This corresponds to the red-shaded area
in Fig. 1, where the analyte may be declared present while it is in
fact absent. Both a and b are usually assigned reasonably small
values, depending on the specific analytical application. Fig. 1
allows to understand the expression for the univariate LODu:

LODu ¼ tða; vÞsc;0 þ tðb; vÞsc;LOD ¼ 3:3sy=x
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h0 þ 1

I

r
(6)

where t(a,n) and t(b,n) are Student coefficients with n degrees of
freedom and a and b probabilities, respectively, sc,0 and sc,LOD are
the concentration standard errors for the blank and LODu levels, A
is the slope of the univariate calibration graph, I is the number of
calibration samples and sy/x is the residual standard deviation.
Assuming sc,0 =sc,LOD, 95% confidence level (a =b =0.05) and a
large number of degrees of freedom, the right-hand side of Eq. (6)
is obtained, where h0 is the leverage for the blank sample:

h0 ¼ c2cal

S
I

i¼1
ðci � ccalÞ2

(7)

where ccal is the mean calibration concentration and ci is each of
the calibration concentration values. Similar concepts apply to the
limit of quantitation (LOQu):

LOQu ¼ 10sy=x
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h0 þ 1

I

r
(8)

where the factor 10 ensures a maximum relative prediction
uncertainty of 10%.

Table 2 shows typical results for a calibration graph constructed
with four duplicate concentration levels. In this particular
example, the LODu computed with the old IUPAC definition is
almost half the value estimated with the modern approach.
Usually, the old definition significantly underestimates the
detection limit.

A freely downloadable software written in MATLAB [14] is
available at www.iquir-conicet.gov.ar/descargas/univar.rar, which
[(Fig._1)TD$FIG]

Fig. 1. Illustration of fhe official (IUPAC) definition of the univariate decision limit
(LD) and limit of detection (LODu). Two Gaussian bands are centered at the blank
and at the LODu, respectively. The LD helps to decidewhether the analyte is detected
or not with a rate a of false detects, whereas the LODu implies detectionwith a rate
a of false detects and a rate b of false non-detects. The shaded areas correspond to
the rate of false detects (green) and false non-detects (red). (For interpretation of
the references to color in this figure legend, the reader is referred to theweb version
of this article.)
performs univariate calibration, applies the linearity F test and
provides various analytical figures of merit according to the above
commented criteria.

It may be noticed that the European Commission has adopted
similar recommendations [15], including the capability of detec-
tion (CCb), which is the smallest concentration of the substance
that may be detected, identified and/or quantified in a samplewith
an error probability of b� This can be interpreted as the minimum
analyte concentration that can be discriminated from the blank,
controlling the risks of false positives and false negatives. The
definition of CCb is analogous to the LODu above.

3.4. Standard addition

When standard addition is employed for analyzing samples, an
appropriate justification should be supplied. It is not enough to say
that the samples are complex, or that they come from a biological
origin, because this does not mean, per se, that standard addition is
required for analyte quantitation [16].

Univariate standard addition should be employed only when:
(1) the slope of the response-concentration relationship differs
from the pure analyte to the analyte embedded in a certain
background, and (2) the background is not responsive. This can be
checked by statistically comparing the slopes with a certain
confidence level and number of degrees of freedom [10,17], and not
by visual comparison. Then, only in the case the slopes significantly
differ (see Refs. [10,17]), standard addition should be employed,
because the latter analytical mode is highly time consuming and
expensive in comparison with classical calibration.

The comparison of two slopes A1 and A2 is based on the
hypotheses H0 (A1 =A2) and the alternative Ha (A1 6¼A2), rejecting
the null hypothesis at significance levela if texp exceeds the critical
value at level a, t(a,N1 +N2�4) (N1 and N2 are the number of
concentration values used to estimate each slope). The experi-
mental t value is estimated as [10,17]:

texp ¼ A1 � A2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2p

1XN1
n1¼1

ðcn1�c1Þ2
þ 1XN2

n2¼1

ðcn2�c2Þ2

2
66664

3
77775

vuuuuuuut

(9)

where each method is evaluated using N1 and N2 concentration
values cn1 and cn2, whose averages are c1 and c2 respectively, and s2p
is the pooled variance:

s2p ¼
s2y=x1ðN1 � 2Þ þ s2y=x2ðN2 � 2Þ

N1 þ N2 � 4
(10)

http://www.iquir-conicet.gov.ar/descargas/univar.rar


Table 5
Illustration of the randomization test for the comparison of the average errors from
three different analytical methods.

Test sample cnom c1 c2 c3

1 10 11 12 10
2 20 19 22 22
3 30 29 28 31

Table 4
MATLAB code for implementing the randomization test.a

a This routine tests whether errors bymethod 2 are larger than errors by method
1.
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where s2y=x1 and s2y=x2 are the residual variances of each calibration

graph. It should be noticed that Eq. (10) is only valid when the
variances of each regression line are comparable, a fact which can
be checked with a suitable F test [10,17].

An example is provided by the analysis of the antibiotic
ciprofloxacin in water and human serum, using six different
concentrations in the range 0.00–0.50mgL�1 [18]. Table 3 shows
the replicate signals, slopes and statistical parameters for the
comparison. Since texp is larger than the tabulated value, the
conclusion is that the slopes are different at 95% confidence level,
justifying the use of standard addition.

3.5. Comparison of two analytical methods

The root mean square error (RMSE) is usually employed as an
indicator of whether a given analytical methodology provides
better predictive ability. However, the comparison of RMSE values
should not be based on visual inspection. A suitable statistical test
should be applied to assess whether two RMSE values are
statistically different, such as the randomization test described
in Ref. [19]. Accordingly, no conclusions should be drawn on the
basis of RMSE values being larger or smaller, until a proper test has
been applied. A shortMATLAB code for applying the randomization
test is provided in Ref. [19], and an adapted version is now given in
Table 4.

To illustrate the philosophy of the randomization test, a simple
example is provided in Table 5 (top). For a group of five test
samples, concentrations are estimated with three different
methods, giving rise to three RMSE values: RMSE1=1.0,
RMSE2=2.0 and RMSE3=1.2. Both RMSE2 and RMSE3 are larger
than RMSE1, but the question is whether this is statistically
relevant. In the middle of Table 5, the operation of the
randomization test is shown for the comparison of RMSE2 with
RMSE1. First the difference between squared errors is computed, as
well as the mean difference, equal to 3 units in Table 5. Then the
sign of each difference is randomly inverted, as seen in the
subsequent columns as three pertinent examples of the randomi-
zation operation. The mean of each of the new column of
differences is compared to the original mean, and a statistics is
registered of the relative number of times these new differences
are larger than the original one. This is the p-value associated to the
test. As seen in Table 5 (middle), in the three example cases the
new differences are smaller than the original ones. In fact,
Table 3
Comparison of slopes of two calibration graphs, previous to developing a standard
addition method.

ConcentrationmgL–1 Signal in water Signal in serum

Replicate 1 Replicate 2 Replicate 1 Replicate 2

0.00 0.8 0.0 9.6 10.8
0.10 23.4 25.8 25.8 25.1
0.20 38.8 42.5 35.7 38.1
0.30 56.5 58.3 47.9 53.0
0.40 75.6 73.7 63.9 65.8
0.50 93.0 93.0 81.7 82.7

Calibration parameters
In water In serum

Slope 180 141
Residual variance 5.8 4.4

Comparison of slopes
s2p 5.1

texp 5.1
t(0.025,8)a 2.3

a t(0.025,8) is the one-tail t-coefficient at 95% confidence level with 6 +6–4=8
degrees of freedom (6 is the number of concentrations levels).
repeating the randomization process a large number of times leads
to the conclusion that the value of p is �0.05, indicating that
RMSE2 is significantly larger than RMSE1. Here the hypotheses are
H0 (RMSE2 =RMSE1) and Ha (RMSE2 >RMSE1), and the test directly
provides the probability p associated to H0, suggesting rejection of
the null hypothesis.

In the bottom part of Table 5 an analogous comparison is made
between RMSE3 and RMSE1. In this case, the means of the new
differences (arising after randomly inverting the signs of the
original difference) are sometimes smaller and sometimes larger
than the original value of 0.4. Application of the test a large number
of times leads to the conclusion that p =0.5, indicating that RMSE3
and RMSE1 are not statistically different, i.e., the null hypothesis H0

is accepted.
Table 6 shows a second example involving the results of the

randomization test of the predictions of two analytical methods in
a set of test samples. Random errors equally affect the predicted
concentrations, with a standard deviation of 1 unit. Method 1 is
assumed to be unbiased, while method 2 is increasingly biased.
4 40 41 42 39
5 50 49 52 51
RMSE 1.0 2.0 1.2

Comparison of RMSE2 with RMSE1

Test sample (c2–cnom)
2 – (c1–cnom)2 Randomize signs

1 3 3 �3 3
2 3 �3 3 �3
3 3 3 �3 3
4 3 �3 3 3
5 3 3 3 3
Mean value 3 0.6 0.6 1.8
Comparison with 3 < < <

p value �0.05

Comparison of RMSE3 with RMSE1

Test sample (c3–cnom)
2– (c1–cnom)2 Randomize signs

1 �1 �1 1 1
2 3 �3 �3 3
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
Mean value 0.4 �0.8 �0.4 0.8
Comparison with 0.4 < < >
pvalue 0.5



Table 8
Illustration of the assessment of the accuracy of an analyticalmethod using the EJCR
test, and the separate confidence regions for the slope and intercept.

Sample Reference value Predicted value Standard deviation

1 0.00 0.06 0.03
2 0.05 0.13 0.05
3 0.11 0.10 0.09
4 0.16 0.07 0.08
5 0.21 0.25 0.04

Table 6
Comparison of RMSE values for two different methods, in terms of the % of times
that p is <0.05.a

Bias1 RMSE1 Bias2 RMSE2 Number of test samples

10 50 100

0 1.0 0 1.0 10% 10% 4%
0 1.0 0.5 1.1 10% 15% 30%
0 1.0 1 1.4 25% 80% 100%
0 1.0 1.5 1.8 50% 100% 100%

a Random errors in concentrations have a standard deviation of 1 unit.

16 A.C. Olivieri / Analytica Chimica Acta 868 (2015) 10–22
When the bias in method 2 is zero, the relative number of cases for
which differences are found in both methods is small, indepen-
dently of the number of test samples (Table 6). However, as the bias
in method 2 increases, the RMSE2 increases, and the number of
cases for which significant differences are found also increases.
However, notice in Table 6 that for a bias of 1.5 units, when the
number of test specimens is small (10), there is still a 50% chance of
not finding significant differences between both methods, even
when RMSE2 is almost twice RMSE1.

These results highlight the need of employing suitable tests to
prove that a certain RMSE is smaller (or larger) than the one
provided by an alternative analytical method. Visually checking
that RMSE>RMSE1 does not guarantee that the observed
difference is statistically meaningful.

3.6. Recovery studies

When discussing recovery results, it is usually stated that they
are satisfactory, only by visual inspection of the predicted values or
the closeness of recoveries to 100%. Nevertheless, statistical tests
should be applied to assess whether a recovery is not statistically
different than 100% [20], reporting both experimental and critical t
values [20]. It should be noticed, however, that these tests assume
certain conditions that they data should fulfill, such as constant
variance [21].

Table 7 shows a typical problem of assessing the recoveries of
an analyte from a group of pharmaceutical samples of similar
composition, whose concentrations may be assumed to have a
similar variance. Usually, tables such as Table 7 are left
unprocessed, resorting only to visual inspection of the recoveries
for justifying good analytical predictions. A suitable statistical
analysis involves a hypothesis test of whether the average recovery
is significantly different from 100% or not. The hypotheses are H0

ðRexp ¼ 100%Þ and the alternative Ha ðRexp 6¼ 100%Þ; the null
hypothesis is rejected at significance level a if texp exceeds the
critical value at levela, t(a,N�1) (N is the number of test samples).
The experimental texp value is estimated from:
Table 7
Analyte recoveries for a group of samples, and statistical test of whether the mean
recovery is significantly different than 100% or not.

Sample Nominalmg�1 Foundmg�1 Recovery/%

1 50 49.5 99.0
2 50 50.2 100.4
3 100 100.3 100.3
4 100 98.4 98.4
5 150 149.3 99.5

Recovery analysis
Mean recovery Rexp 99.5

Standard deviation of recoveries (SR) 0.9
Number of samples (N) 5
texp 1.2
t(0.025,4) 2.8
texp ¼ j100� Rexpj
ffiffiffiffi
N

p

SR
(11)

where Rexp is the average experimental recovery and SR the
standard deviation of the recoveries. Comparison is usually
made at 95% confidence level, as detailed in Table 7. According
to the results quoted in the latter table, the method is accurate,
since texp< t(0.025,N�1).

When the analyte concentration range in the test samples is
rather wide and constant variance cannot be assumed, linear
regression of predicted vs. nominal analyte concentrations is
recommended [22]. The analysis of these results should not be
based on the study of whether the ideal values of unit slope and
zero intercept are individually included within their confidence
ranges around the means. The recommended test is the so-called
elliptical joint confidence region (EJCR) test, which implies
drawing the EJCR for the slope and intercept of the above linear
plot, and checking whether the ideal point (slope =1, intercept = 0)
is included in the ellipse [22]. It should be noticed that for non-
constant prediction variance, a regression technique should be
employed accounting for the fact that there are non-constant
errors, such as weighted least-squares (WLS) or bilinear least-
squares (BLS), and not ordinary least-squares (OLS), as is usually
done [23,24]. Otherwise, dramatically different conclusions might
be obtained [24].

The specific expression describing the EJCR is:

Nðy� BÞ2 þ 2ðx� AÞðy� BÞ
XN
n¼1

cxn þ ðx� AÞ2
XN
n¼1

c2xn

¼ 2s2y=xF2;N�2 (12)

where A and B are the estimated slope and intercept for the
regression of predicted vs. nominal analyte concentrations,N is the
number of test samples, cxn the concentration of the nth sample
used as reference and placed in the x axis of the regression analysis,
sy/x is the residual standard deviation of this specific linear
regression (not to be confused with the one corresponding to the
calibration graph), and F(0.05,2,N�2) is the critical value of the
6 0.26 0.22 0.10
7 0.32 0.23 0.08
8 0.37 0.37 0.05
9 0.42 0.43 0.04
10 0.47 0.50 0.02
11 0.53 0.54 0.03
12 0.58 0.55 0.08
13 0.63 0.61 0.05
14 0.68 0.67 0.05
15 0.74 0.74 0.02
16 0.79 0.77 0.04
17 0.84 0.80 0.12
18 0.89 0.82 0.05
19 0.95 1.00 0.13
20 1.00 0.97 0.19

Recovery analysis
WLS EJCR (1,0) point not included in EJCR
OLS EJCR (1,0) point included in EJCR
OLS slope 0.96�0.07 Slope = 1 included in interval
OLS intercept 0.01�0.04 Intercept = 0 included in interval
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parameter F with 2 and N�2 degrees of freedom and a 95%
confidence level.

An appropriate example is illustrated in Table 8, which collects
data for a number of samples, including the reference concentra-
tion in standards, the mean of triplicate sample analysis by a
method under scrutiny, and the corresponding standard devia-
tions. Regression usingWLS, which takes into account the variance
at each concentration, provides the elliptical region shown in Fig. 2
(red line), indicating that themethod is not accurate. However, OLS
regression points otherwise (blue line in Fig. 2). Incidentally, the
consideration of the individual confidence intervals for the OLS
slope and intercept (black rectangle in Fig. 2) leads to the same
conclusion as the OLS elliptical region (Table 8). The EJCR test
can be implemented using the MATLAB code provided in www.
iquir-conicet.gov.ar/descargas/ejcr.rarwww.iquir-conicet.gov.ar/
descargas/ejcr.rar.

4. Multi-component calibration

4.1. First-order algorithms

For first-order multivariate calibration, e.g., near infrared (NIR)
spectroscopic studies, PLS seems to be preferred as the de facto
standard [25], although principal component regression (PCR) has
been shown to provide equivalent results to PLS in terms of
prediction ability [26]. As stated in the Abstract of the latter paper,
“ . . . In all cases, except when artificial constraints were placed on the
number of latent variables retained, no significant differences were
reported in the prediction errors reported by PCR and PLS. PLS almost
always required fewer latent variables than PCR, but this did not
appear to influence predictive ability.”

Usually first-order calibration data contain fewer samples than
variables, because instruments measure hundreds or thousands of
variables per sample. In this case one can in principle apply: (1)
multiple linear regression (MLR), which requires the selection of a
suitable number of wavelengths which should be smaller than the
number of samples [27], or (2) PLS/PCR, which involves compres-
sion of full spectral data into a few latent variables [28]. The subject
‘MLR vs. PLS/PCR' has given rise to considerable debate in the past.

It should be noticed that PLS and PCR show a number of
advantages overMLR: (1) noise reduction, because of the averaging
[(Fig._2)TD$FIG]

Fig. 2. Different regions in the slope-intercept plane: blue ellipse, EJCR for the slope
and intercept estimated by OLS regression, red ellipse, EJCR estimated by WLS
regression, black rectangle, region limited by the individual confidence intervals for
the slope and intercept. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
of correlated measurements, (2) chemical information in the
scores and loadings, (3) better handling of spectral correlations
using latent variables, and perhaps more importantly, (4)
diagnostic information in the full spectral residuals. The latter
allow to flag samples as outliers if they do not follow the model, a
propertywhich has come to be known as the first-order advantage.
WithMLR itwould be impossible to obtain such beautiful results in
NIR spectroscopy as the provision of early evidence of non-
conformity and contamination of intact foodstuff at the entrance of
a feed mill [29].

Variable selection is mandatory in MLR due to the need of
having a full-rank calibration data matrix. In PLS/PCR, however,
variable selection is in principle not needed, although it may be
beneficial in a subtle way. Wavelength selection may provide
better quality information to the model, i.e., variables which are
more informative as regards the analyte or property of interest
[30].

An appropriately simple examplemay illustrate these concepts.
Fig. 3 shows the spectra of four pure components at unit
concentration, with component No. 1 being the analyte of interest.
The latter shows three active spectral peaks, each of them partially
overlapped with the remaining three constituents. With these
spectra, a 50-sample calibration and a 100-sample test set were
built, bothwith random component concentrations in the range 0–
1 units. For PLS and PCR calibration, the full 50-wavelength spectra
were employed with 4 latent variables. For MLR, only a few
wavelengths were selected, based on the well-known and efficient
successive projection algorithm (SPA) [31]. Gaussian random noise
of different size was introduced in all concentrations and signals,
and predictions using these algorithms are compared in Table 9. As
can be seen, as the relative impact of noise in signal and
concentration increases, the average prediction errors increase,
as expected. However, the average PLS/PCR prediction error is
always lower than that for MLR (the randomization test for
comparison of average prediction errors gives p<0.05 in all cases,
Section 3.5, meaning that PLS/PCR predictions are significantly
better than MLR ones). The sensitivity of both models can be
computed as the inverse of the length of the regression coefficients
[13]. For PLS/PCR, the analyte sensitivity is computed as 1.8 units
(signal� concentration�1), significantly larger than that for MLR,
which varied in the range 0.2–0.8 units, depending on the number

[(Fig._3)TD$FIG]

Fig. 3. Simulated overlapped pure spectra for four components. The analyte of
interest (No. 1) corresponds to the solid black line, while the remaining blue, green
and red solid lines describe the spectra for the remaining sample components No. 2,
3 and 4, as indicated. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 4. (A) Simulated overlapped pure spectra for three components. The analyte of
interest (No.1) corresponds to the solid black line, while the remaining blue and red
solid lines describe the spectra for the remaining sample components. (B) Vector of
regression coefficients obtained by PLS processing from calibration data for
mixtures of the three components shown in (A). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 9
Comparison of PLS, PCR and MLR predictive results on a simulated data set, as a function of uncertainty in both signals and concentrations (see text).

Uncertainty in concentrationsa Uncertainty in signala RMSE LODm

PLS PCR MLRb PLSc MLR

0.1 0.1 0.0026 0.0026 0.0032 (8) 0.004–0.006 0.01–0.02
0.1 1 0.016 0.016 0.041 (6) 0.04–0.05 0.13–0.23
1 0.1 0.014 0.014 0.018 (8) 0.008–0.02 0.04–0.07
1 1 0.028 0.028 0.041 (7) 0.04–0.06 0.16–0.28

a Uncertainties are expressed as % of the maximum calibration concentration or signal.
b Number of SPA-selected wavelengths between parenthesis.
c The limit of detection is only provided for PLS.
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of selected wavelengths. This would lead to correspondingly lower
detection and quantitation limits for PLS in comparison with MLR,
which is confirmed in Table 9, where detection limits are reported
using a recent approach (see below). Incidentally, Table 9 shows
that PLS and PCR prediction results are of the same quality.

It is also worth noticing that PLS is sometimes employed in the
so-called PLS-2 version, which permits the simultaneous calibra-
tion of all analytes of interest, at the expense of using the same
calibration parameters and spectral regions for all analytes. The
more common PLS-1 version, on the other hand, requires one to
calibrate a model for each analyte at a time. This allows one to
optimize calibration parameters, wavelength regions, etc. in a
specific way for each analyte. PLS-1 appears to be the model of
choice, with specific advantages over PLS-2 which have been
analyzed in detail [32]. The PLS-2 version is recommended only for
highly correlated data in the concentration block, which is not the
case when the concentration calibrations are carefully designed to
have low inner correlations [25].

4.2. Regression coefficients

Various wavelength selection procedures rely on the use (either
direct or indirect) of regression coefficients: regions with
significant values of the regression vector (either positive or
negative) are suggested to be included in the model, while spectral
windows where the regression vector is noisy or low-intensity are
discarded [33]. Several modifications of this simple strategy are
known, including: (1) uninformative variable elimination (UVE)
based on the addition of noise [34], and (2) variable importance in
projection (VIP) [35].

However, the use of regression coefficients for selecting
wavelengths may be dangerous [36]. The selected ranges may
only accidentally coincide with known absorption values by the
analyte, and thus regression coefficients may misguide the search
of useful regions. The conclusions heavily depend on the assumed
relation between significant PLS regression coefficients and the
relative importance of a given feature or variable [37–39].

There are reasonswhy caremust be taken for the interpretation
of regression vectors. One is the contravariance constraint:
regression vectors are orthogonal or nearly orthogonal to the
space spanned by the interferents, which naturally leads them to
show negative peaks, making chemical interpretation difficult
[37]. The second one is their dependence on the samples in the
calibration and on the signal to noise ratio. In many cases, the
largest regression coefficients have no correspondence to the
largest bands in the analyte spectra [36].

An example is shown in Fig. 4A, which describes ternary
mixtures where the analyte of interest shows a spectrum
represented by the black solid line, embedded in mixtures with
other two analytes (red and blue solid lines in Fig. 4A). The building
of a PLS model leads to regression coefficients (green solid line in
Fig. 4B) whose largest (negative) peaks coincide with the response
peaks for the interferents and not with those for the analyte itself.
Only the two secondary peaks of significantly lower absolute
intensity are closer to the analyte peak, although they lie on its
sides and not on the maximum. In such cases, wrong information
would be obtained by judging analyte responses from regression
coefficients.

Alternative methodologies are available, not based on PLS
regression coefficients, for variable selection [30].

4.3. Linear vs. non-linear models

Sometimes PCR and PLS are compared in calibration perfor-
mance with sophisticated non-linear models based on the neural
network philosophy [40], such as least-squares support vector
machines [41], perceptron networks [41], radial basis functions
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[41], kernel-PLS, etc. [42]. This might appear as self-contradictory:
either an adequate underlying model is linear, and hence PCR/PLS
should be the calibration tool of choice, or the model is not linear,
in which case it might be justified to move to a non-linear
calibration model. However, the performance of these models
should be carefully checked through suitable statistical proce-
dures. It is necessary to check whether the RMSE for a sufficiently
large group of test samples is indeed smaller (statistically
significantly, e.g., by using the randomization test commented
above). Marginal improvements in predictive ability, i.e., a non-
significant decrease in RMSE, should not be regarded as a proof
that a non-linear neural network is required to model the data.

In any case, the lack of linearity can be checked in the
multivariate case with suitable statistical tests [43,44]. The results
of these tests, combined with a statistically significant improve-
ment in prediction error by applying non-linear models, might
constitute a proof that the system behaves in a non-linear manner.
One particularly appealing technique is based on the augmented
partial residual plots (APARP) which can be constructed for PLS/
PCR models [44]. The following is the recommended protocol: (1)
model the multivariate data with A latent variables, (2) regress
analyte concentrations against an augmented model including the
A scores and the squared values of the first score, (3) plot the
portion of the concentration data modeled by the first score and
the squared first score vs. the first score, (4) compute the residuals
of the linear regression of the latter plot, and finally (5) check for
the presence of correlations in the residuals of the latter regression
using a suitable statistical test [44]. If significant trends are found
in these APARP residuals, the data can be considered non-linear.
Table 10 shows a short MATLAB code which can be used to apply
this methodology. Correlations in the residuals are checked using
the Durbin-Watson (DW) test [45]. MATLAB directly estimates the
probability associated to the DW statistics:

DW ¼

XI�1

i¼1

ðriþ1 � riÞ2

XI
i¼1

r2i

(13)

using the built-on ‘dwtest�m’ routine, where ri is the ith APARP
residual and I the number of calibration samples. In this case the
hypotheses are H0 (data are linear) and Ha (data are non-linear);
the test directly gives the probability p associated to H0. If the null
hypothesis is rejected, the data are declared as non-linear and vice-
versa.

Fig. 5 compares the APARP results for the linear example
described in Section 4.1 when processed by PLS, and a similarly
simulated example where the signal-concentration relationship is
non-linear. The probabilities associated to the DW test indicate
absence of non-linearities in the APARP of Fig. 5B (p= 0.8) and
Table 10
MATLAB code for implementing the APARP test.
significant non-linearity in Fig. 5D (p�0.05). In any case, residual
trends for the non-linear case are apparent (Fig. 5D).

4.4. Mathematical pre-processing

Mathematical pre-processing techniques exist for removing
variations in spectra from run to run, which are unrelated to
analyte concentration changes [46,47]. The removal of these
unwanted effects, e.g., dispersion in near infrared (NIR) spectra of
solid or semi-solid materials, usually leads to more parsimonious
partial least-squares (PLS) models. The latter require less latent
variables than those based on raw data, and often produce better
statistical indicators. Usually, however, these tools are applied on a
trial-and-error basis, although rational approaches to selecting the
best pre-processing have been proposed [48].

Pre-processing techniques applied before PLS calibration
should be justified if they lead to considerably simpler and more
parsimonious models than regular PLS. For example, orthogonal
signal correction (OSC) and other variants [49] can be employed to
simplify the models when significant sources of spectral variation
due to dispersion in NIR spectroscopy or other phenomena. Proper
justification includes a significant decrease in prediction error and
number of calibration latent variables. In the study of liquid
samples with no dispersion effects, it is preferable to avoid OSC or
related procedures, aimed at decreasing the calibration PLS factors
by one or two, but leading to insignificant improvement in
prediction ability [50].

However, mathematical pre-processing is not always beneficial,
as one may naively expect. In some applications, it is essential to
leave the dispersion component of the NIR spectra, since they carry
information on physical, rather than on chemical properties of the
studied materials. For example, when measuring wood density
from NIR data, removing the dispersion effects by scattering
correctionmakes the data less sensitive to the target property [51].

Sometimes prediction is shown to improve after spectral
smoothing. However, this might be a dangerous activity [52]. The
effect of smoothing is most times negligible or only marginal in
terms of calibration performance, but sometimes it is detrimental.
The reason for the latter result is that smoothing introduces
correlations into the noise structure, and regular PCR/PLS (as most
multivariate techniques) may lead to worst predictions in
comparison with raw data processing if they do not take into
account the effect of correlated noise [52].

4.5. Limits of detection and quantitation

In PLS studies, the detection limit is sometimes estimated using
a univariate approach, regressing predicted vs. nominal analyte
concentrations for the calibration set, and computing LODu from
Eq. (6) [53]. However, this procedure is debatable, since it provides
a single PLS detection limit, whereas other authors have suggested
that sample-specific LOD values exist, which depend on the level of
other background constituents [54].

Recently, the multivariate detection limit for PLS has been
suggested to be available in the form of a range of values, whose
lower and upper limits are given by [55]:

LODmin ¼ 3:3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðxÞ 1þ h0minð Þ

k bk2 þ h0minvarðccalÞ
s

(14)

LODmin ¼ 3:3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðxÞ 1þ h0maxð Þ

k bk2 þ h0maxvarðccalÞ
s

(15)

whereb is the vector of regression coefficients, indicates the norm
or vector length, var(x) is the variance in the instrumental signal,
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Fig. 5. Detection of non-linearities in two simulated examples: (A) and (B) plots correspond to linear data, and (C) and (D) plots to non-linear data. Both data sets involve 4
calibrated components and 50 calibration samples. Plots (A) and (C) show the modelled part by the first score and its squared values (yAPARP in Table 10) as a function of the
first scores (T(:,1) in Table 10). Plots (B) and (D) show the residuals (rAPARP in Table 10) of the linear regression of plots (A) and (C) as a function of the first scores. The
probabilities associated to the Durbin-Watson statistics of the residuals are 0.8 for the linear case (plot B) and �0.05 for the non-linear case (plot D).
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var(ccal) is the variance in calibration concentrations, and h0min and
h0max are theminimum andmaximumvalues of the leverage at the
blank level. The interpretation of the factor 3.3 in Eqs. (14) and (15)
is the same as that given for univariate calibration. The value of
h0min in Eq. (14) is identical to h0 in Eq. (7), while h0max is:

h0max ¼ max hi þ h0min 1� ci � ccal
ccal

� �2
" # !

(16)

where hi and ci are the leverage and (uncentered) analyte
concentration of a generic calibration sample (mean-centering is
assumed in building the PLS model). The relationship between the
univariate approach, which provides a single detection limit, and
the range of detection limits given by the new approach has been
discussed in Ref. [55].

A MATLAB software for first-order calibration is available at
www.iquir-conicet/descargas/mvc1.rar [56], which includes the
estimation of figures of merit according to the latest findings.

4.6. Selectivity

According to IUPAC, selectivity can be defined as the extent to
which a method can be used to determine individual analytes in
mixtures or matrices without interferences from other constitu-
ents of like behavior [57]. In practical terms, it can be evaluated as
the ratio between sensitivity and unit-concentration pure analyte
signal. In the context of first-order multivariate calibration, the
sensitivity can be defined as the net analyte signal at unit
concentration, and estimated as the inverse of the norm of the
regression vector [13].

The above selectivity definition is debatable, because it cannot
be applied to inverse latent-structuredmethods such as PLS,where
no approximations are available to pure analyte spectra [13]. An
alternative is to replace the pure analyte signal by the signal for a
test sample as denominator in the selectivity expression, although
this makes the selectivity sample-dependent: two test samples A
and B having the same number of chemical constituents should
display the same analyte selectivity. However, if the signal for
sample B is larger than that for sample A because constituents
other than the analyte are more concentrated in B than in A, the
selectivity would be larger in A than in B, which is unreasonable.
Therefore, it may only be sensible to define the selectivity when
the pure analyte signal is either known from separate experiments,
or is adequately retrieved by the data processing algorithm.

4.7. Multivariate standard addition

Standard addition is designed to circumvent the effect of a
background on the analyte response leading to a change in
sensitivity, i.e., a change in the slope of the univariate signal-
concentration relationship. The generalized standard addition
method (GSAM) [58], is the first-order multivariate counterpart of
univariate standard addition, and is realized by measuring first-
order data for various overlapping analytes embedded in a sample
background. Generalized standard addition not only demands
knowledge of the number and identity of the analytes, but also that
standards of each of them are available, in order to be added in
perfectly known amounts to each sample. In any case, the
limitations of this method regarding the background effects are
analogous to those for the univariate standard addition mode.

A background signal arising from responsive non-analytes
constitutes an interference in univariate analysis, and cannot be
corrected by means of standard addition. This is typical of most
biological samples, where the second-order advantage is required
for successful quantitation. The presence of a responsive back-
ground, which affects the analyte response in a sample (for
example, through analyte-background interactions such as com-
plex formation or protein binding) requires at least second-order
standard addition for analyte quantitation [59].

http://www.iquir-conicet/descargas/mvc1.rar
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4.8. First- vs. second-order data

Whenever there is the possibility of measuring and processing
second-order data, they should be preferred over first-order data,
because of various reasons, including the second-order advantage,
i.e., quantitating analytes in test mixtures in the presence of
interferents which have not been included in the calibration phase
[3]. This means that if the same instrument employed for
registering first-order data is also able to provide second-order
data at no extra cost, the latter should be the option of choice.

For example, first-order synchronous fluorescence spectra are
sometimes employed to perform first-order multivariate calibra-
tion, on the basis that they aremore selective than either excitation
or emission spectra [60]. Some efforts have also been made in
optimizing the wavelength offset for synchronous fluorescence
optimal results. However, modern spectrofluorimeters are capable
of measuring second-order fluorescence excitation-emission
matrices (EEM) at no extra cost and very rapidly; these second-
order data are immensely more powerful than first-order
synchronous fluorescence data. This is because EEM data: (1) do
not require optimization of the wavelength offset, simply because
they use the complete data matrix, (2) they allow one to achieve
the second-order advantage, and (3) they provide additional
selectivity and sensitivity to that obtained by first-order measure-
ments [61]. This should be convincing enough to move from first-
order synchronous spectra to second-order fluorescence matrices.

A similar situation is found when registering liquid chromato-
grams at a single detectionwavelength, either UV-vis absorption or
fluorescence emission, and the detector is able to measure multi-
wavelength spectra. The latter measuring mode leads to elution
time-spectral data matrices, which may allow for background and
interference corrections without sample clean-up [62].

5. Conclusions

A series of practical guidelines has been provided for the
processing and reporting of both univariate and multivariate
calibration data, in accordance with international standards and
official protocols. Following a set of reporting rules contributes to
the use of a common analytical language, and aids in reaching
mutual understanding among analytical users.
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