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This tutorial provides an overviewof the validation of qualitative analyticalmethods,with particular focus on
their main performance parameters, for both univariate and multivariate methods. We discuss specific pa-
rameters (sensitivity, specificity, false positive and false negative rates), global parameters (efficiency, You-
den's index and likelihood ratio) and those parameters that have a quantitative connotation since they are
usually associated to concentration values (decision limit, detection capability and unreliability region).

Some methodologies that can be used to estimate these parameters are also described: the use of con-
tingency tables for the specific and global parameters and the performance characteristic curve (PCC) for the
ones with quantitative connotation. To date, PCC has been less commonly used in multivariate methods.

To illustrate the proposals summarized in this tutorial, two cases study are discussed at the end, one
for a univariate qualitative analysis and the other for multivariate one.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Laboratories have to guarantee the quality and trustworthiness of
the results of any analytical method. Then, its validation is funda-
mental to ensure the reliability, traceabilityor comparabilityof results.

Most analytical problems require the amount of one or more
substances present in a sample to be determined (quantitative
analysis). Other analytical problems require semi-quantifiable or
non-quantifiable information: i.e. to authenticate a substance/
product or verify if a substance is present above or below a pre-
established concentration level (cut-off value). In these cases, us-
ing qualitative methods that provide a binary response (positive/
negative) might be suitable. They have commonly been used in
systems that require immediate decisions to be taken since they are
an appealing alternative to quantitative analysis, which generally
gives more but often unnecessary sample information and requires
a greater investment of money and/or time. For some time now,
qualitative methods have been increasingly developed and applied
in such fields as clinical medicine, biology and chemistry [1e4].

The performance of quantitative methods has been the subject
of numerous studies, which have resulted in the production of in-
ternational guidelines. By contrast, there is still no consensus about
the validation protocol and the terminology used for qualitative
methods. Several authors have tried to make proposals or guide-
lines about various aspects of the validation of qualitative methods
using the information available in the literature [5e7]. In 2005, the
International Union of Pure and Applied Chemistry (IUPAC) pro-
moted a project that aimed to draft an internationally harmonized
protocol (guidelines) for the organisation and interpretation of
collaborative trials for the validation of qualitative methods [8]. All
the effort that has been made (and is still being made) focuses
mainly on univariate analytical methods whereas the multivariate
ones are hardly developed.

This tutorial presents an overview about the validation of
qualitative methods, both univariate and multivariate, focussing on
the performance parameters and the strategies used to establish
them.
Fig. 1. Diagram of method development and validation (adapted from EUROCHEM The
Fitness for Purpose of Analytical Methods [9]).
2. Fundamentals: general terminology

2.1. Method validation

The development and validation of a method are closely related
since performance parameters are often evaluated as part of
method development. When approaching an analytical problem,
analysts have to consider several issues, which are schematised in
Fig.1 [9,10]. The problem's solutionmust be regarded as a cyclic and
iterative process of checking and evaluating the method, which
does not stop until the method is deemed capable of meeting the
requirements. The process starts with the study of the analytical
problem at hand, what is known about it and what the analytical
requirements are. The analytical method that best responds to
these requirements must be chosen. When no existing analytical
method responds to the requirements, then an existing method-
ology has to be redesigned or a new one developed. Before a
method is validated, it must first be assessedwhether it satisfies the
requirements (fits the purpose) or not. If it does, the method has to
be validated. The method is considered to be fully validated when
all the requirements are satisfied and the whole process has been
documented.

According to the Handbook for the Quality Assurance of
Metrological Measurements, “method validation consists of doc-
umenting the quality of an analytical procedure, by establishing
adequate requirements for the performance criteria, such as accuracy,
precision, detection limit, etc. and by measuring the values of these
criteria” [11]. Thus, the validity of a method must be proven in its
documentation, which must describe how the method is per-
formed, which parameters have been investigated during the
validation process, what the results of the validation study are.

In ISO/IEC 2005, method validation became the “confirmation by
examination and provision of objective evidence that the particular
requirements for a specified intended use are fulfilled” [12]. In general
terms, it establishes the concept of ‘fitness-for-purpose’ since it
evaluates the fitness of the analytical method for its purpose. As a
result, the performance characteristics to be established depend on
the requirements of the analytical problem.

In this regard, validation is considered as the process of ensuring
that an analytical procedure is reliable and can fulfil the expecta-
tions of a particular application. In short, it means that it can be
used with confidence.
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2.1.1. Validation level
Depending on the needs of the laboratory, several levels of

validation can be considered.
2.1.1.1. Single-laboratory method validation. Laboratories have to
take internal measures to ensure the quality of the data they pro-
vide. There are several circumstances inwhich internal validation is
carried out: to ensure the viability of methods developed in-house,
to assess a method developed in other laboratories and to estimate
the quality of long-term results. Internal quality control is also
considered as internal validation [13].

Most of the research work carried out has been on single-
laboratory validation since laboratories are continuously modifying
and improving methodologies to achieve, for example, lower detec-
tion limits, to considernovel interferencesor to reduce timeandcosts.
This tutorial will also focus on single-laboratory validation.
2.1.1.2. Interlaboratory method validation. Different laboratories
agree to carry out the same analytical trial under the supervision of
a coordinator, who sets out the goals, the conditions and, obviously,
the parameters to be studied. The aims of an interlaboratory study
can be: (1) to assess the performance of an analytical method and
(2) to compare laboratories.

Collaborative studies are the best way to assess and verify the
quality of the work done by a laboratory on the validation of a
method. They can be used only after the method has already been
fully validated in single-laboratory trials [10,14]. These studies
enable all of the participants to determine parameters such as bias,
precision or robustness and compare them with statistically
assessed results.

Generally, higher levels of validation require a greater invest-
ment of time and money, and the final results are of greater quality
in terms of trustworthiness, reliability and consistency. So, it is
fundamental to decide what level of validation is the most suitable.
2.1.2. Performance parameters
Performance parameters are a set of measurable attributes that

define the quality of an analytical method. Thus, methods must be
validated by establishing their performance parameters, which
depend on the type of analytical method.

Quantitative performance parameters are established on the
basis of statistical fundamentals. Since qualitative methods are
based on binary response (positive/negative), their performance
parameters cannot be established using the same fundamentals.
Instead, they have to be established on the probabilities that arise
from four possible binary response scenarios [5]:

- True positive (TP) result, when the qualitative method gives a
positive output for a sample that is positive.

- False positive (FP) result, when the qualitative method gives a
positive output for a sample that is negative.
Table 1
Quality performance parameters.

Quantitative Qual

✓ Accuracy: trueness, precision ✓ Tr
✓ Uncertainty ✓ Fa

✓ Sensitivity and specificity ✓ Se
✓ Range and linearity ✓ Ef
✓ Limits: limits of detection/quantification ✓ Li
✓ Selectivity/interferences ✓ U
✓ Ruggedness or robustness ✓ Se
✓ Stability ✓ Ru

✓ St
- True negative (TN) result, when the qualitative method gives a
negative output for sample that is negative.

- False negative (FN) result, when the qualitative method gives a
negative output for a sample that is positive.

Table 1 shows the performance parameters considered in both
qualitative and quantitative analyses. Depending on (1) the nature
of the analytical problem, (2) the analytical method purpose or (3)
the level of validation; the required performance parameters to be
estimated could be several or all of the parameters presented in
Table 1. It should be pointed out that quantitative performance
parameters will not be discussed in this tutorial.

The parameters in bold are evaluated in the same way in both
types of analysis. They have been extensively defined in EC/657/2002
[15]. For instance, trueness is achieved by using certified reference
material or, when this is not possible, another reliable reference.

Qualitative parameters that are not in bold are derived directly
or indirectly from binary response and, therefore, from the four
scenarios defined above. Worthy of special mention are the
underlined parameters which have the same name in both types of
analytical method although the concepts they represent and their
evaluations are slightly different.

Sensitivity, in quantitative methods, indicates how the response
changes when the analyte concentration varies whereas in quali-
tative methods it refers to the ability of the method to recognise
truly positive samples (and so is directly related to the TP response).

The same occurs with the term specificity. In quantitative
methods, it refers to the ability of a method to distinguish between
the analyte being measured and other substances whereas in
qualitative methods it is the ability of a method to detect truly
negative samples (and so is directly related to the TN response).

False positive and false negative rates assess the probability of
error, which is directly related to the FP and FN responses,
respectively. They complement sensitivity and specificity (i.e.,
sensitivity ¼ 1 � false negative rate). On the other hand, efficiency,
Youden's Index and the likelihood ratio assess the overall suitability
of the method since they are a combination of true responses
(directly related to the parameters of sensitivity and specificity).
Further information will be given in section 3 and Table 5.

According to 2002/657/EC, detection capability (CCb) is “the
smallest amount of a substance that can be reliably detected,
identified and/or quantified in a sample with a statistical certainty
of 1e b” [15]. b error is “the probability that the tested sample is truly
non-compliant, even though a compliant measurement has been ob-
tained (false compliant decision)” [15]. This probability of error is
usually set at 5% (significance level 0.05). To clarify concepts, let us
consider the case of a contaminant regulated by legislation. For
instance, a sample is non-compliant when the contaminant is
present and compliant when it is not. Therefore, CCb is the con-
centration limit at which the qualitative method detects the
contaminant (it is present) with a 5% of error of stating that the
contaminant is not present when in fact it is (false compliant
itative

ueness
lse positive (FP) and false negative (FN)rates

nsitivity and specificity
ficiency, Youden's Index and Likelihood ratio
mits: Decision limit/Detection capability and other related terminology
nreliability region
lectivity/interferences
ggedness or robustness
ability
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decision or false negative result). Belter et al. [16] has recently
published a review of the wide range of terms used for this
parameter, the most widespread of which is “limit of detection”.

According to 2002/657/EC, decision limit (CCa) means “the limit
at and above which it can be concluded with an error probability of a
that a sample is non-compliant” [15]. a error is also usually set at 5%
(significance level 0.05) and it is defined as “the probability that the
tested sample is compliant, even though a non-compliant measure-
ment has been obtained (false non-compliant decision)” [15].
Following the same example discussed above, CCa is the concen-
tration limit at which the qualitative method detects the contam-
inant (it is present) with a 5% of error of stating that the
contaminant is present when in fact it is not (false non-compliant
decision or false positive result). This parameter is also referred
to as threshold, cut-off, critical value, limit of detection [16,17].

It should be pointed out that in the literature the term limit of
detection is used to refer to both CCb and CCa. Thismay be due to the
fact that in quantitative analysis it is defined as “the smallest amount
or concentration of analyte in the test sample that can be reliably
distinguished from zero” [13]. It is usually estimated by simulta-
neously considering both probabilities of committing error, a and b.

In qualitative analysis, a and b errors are both evaluated from
experimental data (compliant and noncompliant samples) and
usually expressed as frequency of two false decisions (or errors),
false non-compliant and false compliant. As a consequence, two
concentration limits are defined, one for each kind of error. The one
referred to as limit of detection will depend on what is the main
interest: to restrain the errors of saying that a sample contains a
substance when in fact it does not (false non-compliant) or to
restrain the errors of saying that a sample does not contain a
substance when in fact it does (false compliant).

The unreliability region is defined by the two limits CCa and
CCb. In between those two limits, the probability of making awrong
decision is higher than a fixed percentage, usually 5% (false positive
and false negative rates). In this regard, unreliability could be
related to uncertainty in quantitative analysis. But, unreliability
cannot be considered as dispersion around a value as the response
in qualitative analysis is not quantifiable [18].

The unreliability region and limit parameters have a quantita-
tive connotation since they are associated to the amount of sub-
stance. For this reason, they cannot be established for qualitative
analysis based on categorical propriety such as a food authentica-
tion problem. Further information will follow in section 3.

2.2. Qualitative analysis

Qualitative analysis has been defined by several recognised in-
ternational organisations. The International Union of Pure and
Applied Chemistry (IUPAC) stated that it is “the analysis in which
substances are identified or classified on the basis of their chemical or
physical properties” [19].

Other organisms such as the U.S. Food and Drug Administration
(FDA) and the Association of Official Analytical Chemists (AOAC
International) have reformulated the definition. Thus, qualitative
analysis is a “method in which substances are identified or classified
on the basis of their chemical, biological or physical properties. Its
response is either the presence or absence of the analyte(s) in question,
detected either directly or indirectly in a specified test” [20,21].

As can be easily inferred from the definitions, qualitative anal-
ysis is characterised by its binary response (positive/negative out-
puts). Although it is not specifically mentioned in the official
definitions, qualitative analysis might also be related to a categor-
ical propriety of the samples instead to the presence or absence of
an analyte(s).

Nowadays, it is quite usual to use ‘screening method’ as a
synonym for ‘qualitative method’ even though this may not always
be the case. Screeningmethods “are used to detect the presence of a
substance or class of substances at the level of interest. These
methods have the capability for a high sample throughput and are
used to sift large numbers of samples for potential non-compliant
results. They are specifically designed to avoid false compliant re-
sults”. Legislation recommends a false compliance rate lower than
5% (1% for banned substances and 5% for substances with a
maximum permitted level) [15]. Thus, they generally involve short
analysis times, which lead to a high throughput of samples at low
cost and mean that they are suitable for routine analysis. In this
scenario, non-compliant samples are usually submitted to confir-
matory analysis if the specific amount of substance present in the
sample needs to be known. This requires an in-depth study of the
sample, which is time and cost consuming.

Depending on the nature of the data used, we will refer to
univariate or multivariate methods:

Univariate qualitative methods provide a binary response from
only one analysed variable. This variable should provide enough
information to solve the analytical problem at hand (Fig. 2a) [22].
The binary response can be obtained from a specific instrumental
signal (i.e., an absorbance value at specific wavelength). It can also
be obtained through visual observation of colour change (in the
web version) or development (i.e., test kits which are prepared to
detect/identify substances at a specific threshold concentration).

In the same way, multivariate qualitative methods provide a bi-
nary response from two or more analysed variables (Fig. 2b) [22].
Thesevariablesmight come froman instrumental signal (forexample,
an absorbance spectrum, hence, a vector of absorbance values
recorded in a definedwavelength range) or from a non-instrumental
signal (for example, sensory panels). Since the analysed variables are
non-specific, a data treatment step is always required to obtain the
binary response. Data are treated using chemometric tools,mainly by
the application of classification techniques.

Regardless of the number of variables analysed, binary re-
sponses d positive/negative outputs d are obtained using a deci-
sion criterion, which can be related to either a quantifiable value or
to a categorical property (see Table 2). In the first case, there is a
threshold, generally imposed by regulation or clients. In the
absence of any other verifiable information, it is set by the analysts
on the basis of their knowledge of the analytical problem.

A common qualitative analysis (univariate or multivariate) is the
detection of an analyte above/below a threshold concentration. One
particular case is the detection and identification of compounds,
which imply the presence/absence of the analyte. In this case, the
threshold is set at concentration value equal zero.

Another goal of the qualitative analysis is related to a sample
assignation as compliant/non-compliant regarding any intrinsic
property (categorical property), i.e. authentication problem: sam-
ple assignation to a protected designation of origin (PDO). Since the
decision criterion is not related to a quantifiable value, it has no
associated threshold value. This kind of analysis has to be carried
out using the multivariate approach.

3. Univariate qualitative analysis

Univariate qualitative analyses are used to detect a substance or
group of substances. Thus, the decision criteriond how positive and
negative responses are defined d is directly related to a threshold
concentration. The analysis of samples that have the substance at the
threshold level will provide a specific signal (threshold signal): (i) if
the signal is instrumental, the output is generally positive when the
sample signal � threshold signal (i.e., contaminated sample) whereas
the output is negative when the sample signal < threshold signal (i.e.,
non-contaminated sample); ii) if the signal is visual, the output is
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Fig. 2. Scheme of a qualitative analysis using (a) univariate and (b) multivariate approaches.

Table 2
Types of qualitative analysis.

Focus of the
study

Decision criterion Threshold Data Examples

Analyte/Index Related to quantifiable value Above/below a certain value s

0
Univariate/
Multivariate

Maximum permissible amount (e.g. Content of biodiesel in
diesel)

Presence/absence (value ¼ 0) Banned substances (e.g. doping in sport)

Sample Related to categorical
property

e Multivariate Authentication (e.g. Protected Designation of Origin, PDO)

Table 3
Summary of the main methodologies that can be used to evaluate a qualitative method.

Validation step Performance Parameters Methodology

Mandatory FP and FN rates, sensibility and specificity Bayes' Theorem
Efficiency, Youden's Index and Likelihood ratio Statistical Hypothesis Test

Contingency Table

(If applicable) Unreliability region, Limits (xccb, xDL) Performance characteristic curves
Statistical Hypothesis Test

Table 4
2 � 2 contingence table.

Predictions Actual

Positive Negative

Positive TP FP
Negative FN TN

Total analysed samples TP þ FN FP þ TN

TP, true positive; TN, true negative; FP, false positive; FN, false negative.
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positive when colour is developed while the output is negative if
there is no colour, or the other way around.

A full validation process consists of estimating both mandatory
and any other performance parameters by analysing truly positive
and negative samples (Table 3). The parameters related to con-
centration limits are established after mandatory performance
parameters achieve satisfying values.

Several methodologies can be used to estimate the mandatory
performance parameters: Bayesian decision theory, statistical hy-
pothesis tests and contingency tables. They provide an overall
characterization of the qualitative method at a specific concentra-
tion level (static situation), and they all estimate the same perfor-
mance parameters. Nonetheless, the terminology in each case is
slightly different.

This tutorial will explain how contingency tables can be used to
estimate mandatory performance parameters. Detailed informa-
tion on Bayesian decision theory [23] and statistical hypothesis
tests [24,25] can be found elsewhere.

Contingency tables are based on frequency evaluation of the
responses (positive and negative) and are widely used since they
are easy to work with and can be applied to solve any qualitative
analytical problems. They consist of a 2 � 2 table which is obtained
by analysing actual samples (positive and negative) which are then
compared with the outcomes of the qualitative analysis (Table 4).
The expressions used to calculate the main performance parame-
ters are shown in Table 5. Sensitivity, specificity, false positive and
false negative rates are obtained from the frequencies of each
respective response divided by the total number of samples. Global
indexes (efficiency, Youden's index and the likelihood ratio) are
obtained by a combination of the previous parameters.

If the mandatory performance parameters satisfy the re-
quirements stipulated by the analyst, additional performance pa-
rameters can be estimated when the threshold value is related to a
quantifiable property (see Tables 2 and 3). This tutorial will explain
how performance characteristic curves (PCC) can be used to estimate
additional performance parameters which provide quantitative
information about the qualitative analytical method. To do so, the



Table 5
Description of the performance parameters.

Sensitivity TP
TPþFN

False negative (FN) rate
(1 � sensitiviy)

FN
TPþFN

Specificity TN
TNþFP

False positive (FP) rate
(1 � specificity)

FP
TNþFP

Efficiency TNþTP
TNþFPþTPþFN

Youden's index (sensitivity þ specificity � 1)
Likelihood ratio Sensitivity

1�Specificity
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PCC curves assess the method in a dynamic situation instead of a
static situation like other methodologies, and consider values
around (above and below) the pre-set threshold value. Note that in
the literature, PCC curves have also been referred to as performance
curves [26], the generalized linear model [27], probability of
detection [28,29] and probability of identification [30], among
other names, or just used without specific name [6].

To illustrate how PCC curves are used, let us consider the case of
a contaminant which is regulated by legislation, so it has a
threshold value (i.e. maximum content 5 mg/L). This value leads to
an instrumental threshold signal, which is obtained experimentally.
Positive output is defined as a contaminated sample when sample
signal > threshold signal and negative as a non-contaminated
sample when sample signal � threshold signal. To establish the
PCC curve, samples with concentrations around 5mg/L (i.e. 3, 4 and
6, 7 mg/L) are considered. Several samples are analysed for each
level concentration. The probability of getting a positive result, P(x),
is obtained by the frequency of positive outputs for each concen-
tration studied. The experimental PCC curve is obtained by repre-
senting the probabilities of positives, P(x), versus the corresponding
concentration. As Fig. 3a shows, the ideal qualitative analysis would
Fig. 3. (a) Ideal graph and (b) real graph for a binary response, the decision criterion of
which corresponds to a threshold value s 0. P(x): probability of getting a positive
response. N(x) ¼ 100 � P(x): probability of getting a negative response. FN rate: false
negative rate. FP rate: false positive rate. CCa: decision limit. CCb: detection capability.
be 100% sure to give a positive response, P(x), when the amount of
contaminant is >5 and a negative response, N(x), when the amount
of contaminant is �5.

Real behaviour, however, is different from the ideal one (see
Fig. 3b). Toobtain thePCCcurve, theexperimentalP(x)valuesarefitted
to a sigmoid function (Eq. (1) corresponds to the expression of one
possible function), minimizing the root mean square of the residuals.

pðxÞ ¼ 1� e
�
�

x
a

�b

(1)

where p(x) is the rate of having a positive output, x is the concen-
tration of an analyte and a (amplitude of the curve) and b (slope)
are the regression coefficients which are fitted to minimize the root
mean square of the residuals.

To obtain the concentration limits two horizontal lines have to
be drawn. The upper line is usually set at P(x) ¼ 95% and the lower
line at P(x) ¼ 5%. From the intersection of those horizontal lines
with the PCC curve, the concentration limits are obtained:

- CCa (decision limit): it is obtained from the intersection between
the lower horizontal line d which corresponds to the proba-
bility of committing an FP error (false non-compliant) of 5%
(P(x) ¼ 5%) d and the sigmoid curve.

- CCb (detection capability): it is obtained from the intersection
between the upper horizontal line d which corresponds to the
probability of committing an FN error (false compliant) of 5%
(P(x) ¼ 95% ¼ 1 � FN) d and the sigmoid curve.

- unreliability region: it is the region between the two previously
defined limits where there is the probability of false compliance.

The region 0 < x < CCa is considered the reliable negative region
since at concentrations lower than CCa (x < CCa) the probability of
getting a true negative result is >95%, and the rate of getting a false
positive result decreases (lower than 5%). Similarly, the region
x > CCb is considered the reliable positive region since there is a 95%
or higher probability of getting a true positive result at concen-
trations higher than CCb.

4. Multivariate qualitative analysis

As mentioned before, multivariate analysis is required when the
problem at hand cannot be solved by a specific measurement. Thus,
multivariate qualitative methods can also be applied to detect the
presence of a substance or a group of substances. The analytical
problem previously described in the univariate analysisd to detect
whether a sample is contaminated or not, in accordance with a
threshold value set by legislation (5 mg/L) d can be, hence, solved
from a multivariate point of view. Using multivariate analysis,
two categories have to be defined: category A (sample is
compliant or not contaminated; concentrations � 5 mg/L) and
category B (sample is non-compliant or contaminated;
concentrations > 5 mg/L).

However, multivariate approaches are commonly used to solve
analytical problems related to an intrinsic property of the samples,
which is usually known as categorical property. Thus, the decision
criterion d how positive and negative responses are defined d is
not directly related to a threshold concentration but to a sample
belonging to a predefined category (this is also known as class
assignation). As example, the detection of cancerous tissue, quality
control of a manufacturing process or the determination of the
origin of a wine among some other examples.

Let us take as example a wine authentication problem (i.e., PDO
Priorat wine). Hence, the compliant category (category A) is defined
as ‘Priorat wine’. Depending on how the non-compliant category
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(category B) is defined, this authentication problem can be tackled
from two different points of view:

- unspecific category B: In this case, the analyst has a lack of
knowledge of the kind of wine that could be used to commit
fraud. Thus, the non-compliant category is not focused on spe-
cific type of samples, thus, it is defined as ‘not Priorat wine’.

- specific category B. The difference compared to previous case is
that the analyst is awarded of the kind of fraud that can be
committed. So, the analyst knows that another similar and
usually cheaper wine (i.e. Montseny wine) can be dishonestly
labelled as a PDO Priorat. In this case, the non-compliant cate-
gory is well defined by Montseny wine samples, thus, it is
defined as ‘Montseny wine’.

Regardless the problem to be solved, the process followed to
perform multivariate qualitative analysis implies three steps: (1)
sampling and analysis, (2) classification rule and (3) validation.
Mention to wine examples will be done in order to facilitate
understanding.
4.1. Sampling and analysis

The sampling must be representative of the total population to
ensure accuracy in the result. Thus, samples representative of both
category A (i.e., Priorat wine) and category B (i.e., Montseny wine)
must be collected. When the category B is unspecific (i.e., ‘not
Priorat wine’), it is hardly representatively sampled because no set
can include all the different sorts of wine from around the world
that are not Priorat. Thus, ‘not Priorat wine’ will be always under
representative.

To guarantee representativeness in the category, several factors
should be taken into consideration during the sampling (i.e., har-
vests, cellars, wine-ageing, among others). A minimum number of
samples (i.e, 20e30) must be selected for each category, depending
on the availability of samples, the cost of analysis, the factors
considered, etc. The higher the number of samples, the better the
total population is represented, thus, the better are the conclusion
obtained from the analysis.

The analysis of all samples is carried out after the sampling
process, getting a data vector for each sample. Ranging the vectors,
an n-by-p data matrix is obtained, where n is the sample size, and p
is the number of variables measured.
4.2. Classification rule

By applying a classification technique, a class for each category is
mathematically defined. It is beyond the scope of this tutorial to
Fig. 4. Example of decision criterion obtained depending on the type of classification techn
one class (c). Samples belonging to Category A ( ), samples belonging to Category B ( ) an
discuss in detail all the classification techniques available, and
detailed information can be found elsewhere [31e33]. Unlike the
univariate case, the decision criterion is not related to a threshold
signal but to a mathematical function (classification rule) which
allow assigning the samples to the predefined categories: sample
belongs to category A (positive) or to category B (negative). Fig. 4
depicts the different type of classification rules obtained depend-
ing on the classification techniques used.

When a discriminant classification technique is used, the deci-
sion criterion is called delimiter (Fig. 4a). Both categories A and B
have to be defined, obtaining a unique delimiter for sample assig-
nation. When unknown samples are predicted ( , Fig. 4a) they are
always assigned to one of the predefined categories, ‘Priorat’ or
‘Montseny’, even if the analysed wine correspond to neither them.
Positive/negative outputs can be defined according to Eq. (2), being
x a sample:

Positive : sample belongs to category AðPriorat wineÞ
Negative : sample belongs to category BðMontseny wineÞ (2)

When class-modelling techniques are applied, the decision cri-
terion is called model boundary (Fig. 4b). Two categories must be
defined although a model is built for each category individually by
using only the samples belonging to the category. At the end, two
models are characterized, each one with different model boundary.
When unknown samples are predicted ( , Fig. 4b), they can be
assigned to one category, to both categories or to neither of them.
This kind of classification techniques can be interesting since the
analyst can detect a wine which is neither Priorat nor Montseny,
thus it is a different wine to the modelled ones. If a sample belongs
to both categories, the result is considered to be inconclusive. Then,
the sample might be submitted to a confirmatory analysis to check
which type of wine is, if this information is required. Positive,
negative and inconclusive outputs are defined according to Eq. (3),
being x a sample:

Positive : sample belongs to category AðPriorat wineÞ
Negative : sample belongs to category BðMontseny wineÞ
Inconclusive : sample belongs to both categories A and B
Different from modelled : sample is neither assigned to
category A nor B

(3)

A particular case of class-modelling techniques is when only one
class is modelled, either because the analyst is interested in char-
acterizing only one category or because only samples from one of
the categories can be collected. This could be a good option to tackle
the authentication PDO wine problem when dealing with unspe-
cific category B (‘not Priorat wine’).

Fig. 4c shows an example in which only one category is
modelled (‘Priorat wine’). When unknown samples are predicted
ique used. Discriminate technique (a). Class-modelling technique: two classes (b) and
d unknown sample used in prediction ( ).
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( , Fig. 4c), they can be recognised by the model (compliant) or not
(non-compliant) Thus, positive and negative outputs are defined
according to Eq. (4), being x a sample:

Positive : sample belongs to category AðPriorat; compliantÞ
Negative : sample does not belong to category
Aðnot Priorat;non� compliantÞ

(4)

Although the model is built only using samples belonging to the
category under study, the specificity must be checked by submit-
ting non-compliant samples to the model.

Note that classification techniques can characterize two or more
categories; however, we had focused on those cases in which only
two possible outputs (binary response) are considered.
4.3. Validation

In the field of classification techniques, the term ability is used to
assess the quality of the class assignation. The ability is calculated
by dividing the number of samples correctly classified in the
category by the total amount of samples of the category. Similarly,
the assignation error is obtained by dividing the number of samples
misclassified by the total amount of samples of the category. This
ability d and error d can be calculated individually for each
defined category (i.e., A and B), but also for all samples indepen-
dently of the category (global ability).

If those abilities are computed from the set of samples used to
build the classification rule (training set), the performance pa-
rameters are named: classification ability of category A, category B
and global. These parameters are almost always optimistic and
sometimes seriously misleading since they are obtained from the
training set (autopredictive). For this reason, predictions of new
well-categorised samples (test set) are generally more realistic,
being a key step in assessing model success. Depending on the
sample size, two strategies can be used to assess predictions:

- If the initial dataset is large enough, it is split into training and
test sets: the training set is used to build the classification rule
and the test set to assess prediction ability. There are different
ways to split the initial dataset; however, it must be done
ensuring the representativeness for each category. Similarly to
the classification ability, three prediction abilities are obtained:
prediction ability of category A, category B and global.

- If the initial dataset is not large enough, an alternative is to
follow the cross-validation strategy to assess the prediction
ability. It requires a single dataset d which is the training set.
One (or more) samples are removed from the dataset and the
model is built with the remaining samples. Then, the prediction
ability of the model is tested with the removed samples. This
procedure is repeated until all the samples have been left out of
the dataset. Cross-validation can be carried out through several
strategies: contiguous blocks, leave-one-out, random subsets,
etc. [31]. Thus, three prediction abilities are obtained: prediction
ability of category A, category B and global.

The relationship between the performance parameters termi-
nology used in univariate (Table 5) and multivariate qualitative
analysis is the following:

- Sensitivity: It is the classification and/or prediction ability ob-
tained from the category defined as positive (in our example
category A, hence, ‘Priorat wine’). The key point is that sensi-
tivity is computed from positive samples (positive output).

- Specificity: It is the classification and/or prediction ability ob-
tained from the category defined as negative (in our example
category B, hence, ‘Montseny wine’). Again, the key point is that
specificity is defined from negative samples (negative output).

- Efficiency: It corresponds to the global classification and/or
prediction ability.

Note that when dealing with class-modelling techniques in
which two classes are modelled (case corresponding to Fig. 4b), this
relationship could not be strictly correct if there are samples clas-
sified to any of the categories.

On the other hand, if only one category is modelled (case cor-
responding to Fig. 4c), it is necessary to analyse non-compliant
(negative) samples to assess the specificity and the global ability.

Efficiency (Table 5) is not the only term used among the scien-
tific community since it is commonly known as accuracy [34]. Also,
some authors use the term efficiency but it is calculated by means
of the geometric mean [35] (Eq. (5)):

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TN,TP

ðTNþ FPÞ,ðTPþ FNÞ

s
(5)

Finally, instead of expressing parameters as abilities (usually in
%), other authors prefer to express the parameters as % of error,
which is just 1 minus the corresponding ability values [36].

Once the mandatory performance parameters (both autopre-
dictive and predictive) satisfy the requirements, PCC curves can
also be used when the problem under study is related to a quan-
titative value (i.e., adulteration problem). In practice, this has rarely
been done because multivariate qualitative analysis is primarily
used for the authentication of samples, for which PCC curves
cannot be used.

5. Cases study

The first case study deals with a univariate qualitative analysis
based on a visual signal obtained from a test kit designed to detect a
regulated compound in nuts [17]. Other examples of univariate
methods based on visual and instrumental signals can be found
elsewhere [2,37e39].

The second case study considers a multivariate qualitative
methodology based on spectroscopic signals designed to detect
adulterants in nuts [40]. Other examples of this kind of method can
be found in the following references [36,41e47].

5.1. Example 1: univariate qualitative analysis

The analytical problem to be solve is the determination of
Aflatoxin B1 in fried ready-salted peanuts [17]. A commercial test
kit was used that had been specially designed for this kind of
compound and which gave a visual response. According to the
European Union, the maximum concentration of this compound
permitted in nuts is 2.0 ng/g. Thus, commercial kit has been
developed to indicate a negative result by displaying colour when
concentrations are <2.0 ng/g, and a positive result by not displaying
colour when concentrations are �2 ng/g. Positive samples are
submitted to confirmatory analysis.

Several performance parameters were established. From con-
tingency tables: false positive and negative rates, sensitivity and
specificity were obtained in static situation, at the maximum
permitted concentration (2.0 ng/g) and without contaminant
(0.0 ng/g). Results were successful, both sensitivity and specificity
value were 100%.

To build the PPC curve (Fig. 5), a total of 84 samples containing
Aflatoxin B1 with concentrations ranging from 0.6 to 2.6 ng/g were
analysed. The obtained probabilities of positives, P(x), at each
studied concentration are fitted to a sigmoid function and the



Table 6
Adapted from Ref. [37] with permission. Performance parameters obtained for each
adulterant, expressed in %. For simplicity, false positive (1-sensitivity) and false
negative (1-specificity) rates are omitted.

Sensitivity Specificity Efficiency Youden's Index

Hazelnut 93 e e e

Almond e 100 97 93

Chickpea e 98 93 91

Fig. 5. Adaptation from Ref. [17] with permission. Probability of positive responses,
P(x), is plotted versus the concentration levels tested. Upper limit: CCb; lower
limit: CCa.

M.I. L�opez et al. / Analytica Chimica Acta 891 (2015) 62e7270
performance parameters are estimated. The decision limit (CCa) is
set at 0.8 ng/g, indicating that at lower concentrations the proba-
bility of truly negative output is equal to or higher than 95% and the
probability of FP or false non-compliant is lower than 5%. Similarly,
the detection capability (CCb) is set at 1.6 ng/g, indicating that at
higher concentrations the probability of truly positive output is
equal to or higher than 95%. Therefore, the unreliability region is
between 0.8 and 1.6 ng/g. It should be pointed out that the unre-
liability region is far away from the maximum allowed by law.

In practice, the probability of a false negative is almost zero since
the detection capability is at 1.6 ng/g, much lower than the value
claimed by the kit's manufacturer. Since we are dealing with a
contaminant food product, it is desirable to control and minimize
the error of considering a contaminated sample as non-
contaminated. Thus, the bias in the decision limit can be regarded
as an advantage. This fact is in accordance with screening method
definition which as it has been stated previously (section 2.2), they
are specifically designed to avoid false compliant results.

Considering that the Aflatoxin B1 contamination has to be a
minor fact in the global context of commercialized samples, the
majority of the analysed samples should have Aflatoxin B1 levels
below 2.0 ng/g, hence, negative samples. Therefore, using this
screening method, the number of samples submitted to confirma-
tory analysis is highly reduced.
5.2. Example 2: multivariate qualitative analysis

The analytical problem to be solve deals with the adulteration of
hazelnut pastes with other substance that are not contaminants but
which are used mainly for economical reasons to reduce the cost
[40]. The price of hazelnuts depends on the market and it can be
kept down by adding such ingredients as almond paste or flour,
since it is very similar to hazelnut but usually much cheaper.
Another cheap adulterant that can be used is chickpea flour.
Although this adulterant is more unexpected, it can be used
because its physical properties are similar to those of the hazelnut.
Experience shows that the most common percentage of adultera-
tion is around 7%.

The qualitative method combines infrared spectroscopy with a
classification technique named soft independent modelling of class
analogies (SIMCA). Since the main interest of the case under study
is to describe the compliant samples, the one-class modelling
strategy was used (as described in Fig. 4c), therefore the model was
just built with the unadulterated samples. From prediction step a
binary output is obtained for each sample: the output is positive
when a sample is recognised as model compliant and negative
when a sample is recognised as model non-compliant.
To build the model, 28 hazelnut samples from different
geographic origins were used. The sensitivity and false negative
ratewere assessed by cross-validation. The specificity, false positive
rate and global parameters were assessed by predicting adulterated
samples at 7% (28 adulterated samples with almond and 28 adul-
terated samples with chickpea). Table 6 shows the performance
parameters values. Results show successful sensitivity and speci-
ficity results, evenwhen considering almond adulterant, which has
similar properties to hazelnut.

Since obtained performance parameters showed successful
values, the PCC curves were attempted to be established since this
kind of problem allows it. To obtain the PCC curve, samples at
different concentrations of adulterant have to be predicted by the
SIMCA model. To do so, different percentages of adulteration were
studied (1e8% in intervals of one). Finally, around 13 samples were
studied at each adulteration level and for each adulterant, being
about 104 the total amount of samples. Then the rates of positive
outputs, p(x), are calculated and fitted to a sigmoid function, ac-
cording to Eq. (6), minimizing the root mean square of the residuals
(RMSE).

pðxÞ ¼ 1
1þ ebðx�aÞ (6)

Due to the fact that the output is positive when a sample is
recognised as model compliant (non adulterated), this curve has an
‘Ƨ’-shape from 1 to 0, where p(x) is the rate of having a positive
output, x is the adulterant concentration, and a (amplitude of the
curve) and b (slope) are the regression coefficients which are fitted
to minimize the RMSE.

In this particular case, the additional performance parameters
d unreliability region and the limits d were not able to be esti-
mated. Although the percentages of adulteration were from 1 to 8%
(in intervals of one), all sample were correctly recognised as model
non-compliant (true negatives). Thus, from 0% to 1% of adulterant,
there was a sudden drop in the probability of positives (from
P(x)¼ 93% to close to 0%), making no sense trying to fit a PCC curve.
To be able to fit the curve, additional experimentation at percent-
ages in between 0 and 1 should be required. In practice, and again
in this particular case, it makes no sense to experiment at very low
percentages of adulterant and in a narrow range, since the eco-
nomic impact might not be significant.
6. Concluding remarks

In this tutorial, univariate and multivariate qualitative method
validation is discussed in the context of international and official
legislation. Qualitative performance parameters and the method-
ologies used to estimate them are also discussed. It should be borne
in mind that there is no consensus about the terminology used, and
some definitions are context specific (depend on how positive and
negative outputs are defined), so we have attempted to reflect the
most common terms.

Researchers must be aware of the performance parameters that
can be established for each analytical problem. The methodology
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used to estimate them should be chosen for its suitability to the
problem at hand.

This tutorial aims to encourage researchers who work in
multivariate qualitative analysis dealing with a binary output to
fulfil the validation by establishing performance parameters that
involve quantitative information (unreliability region and concen-
tration limits). Nonetheless, multivariate qualitative analysis is
usually developed to solve an analytical problem that involves
more than two outputs. In such cases, there is still any guideline
that summarizes the validation procedure and the performance
parameters that should be estimated.

Finally, there is still a lot to be done regarding the transference of
advances achieved in qualitative method validation from the
research world to the routine laboratories. One reason could be
precisely the need to interpret the definitions to each particular
case which is not always an easy task. Other reason is that most of
the current protocols are thought to detect or identify a compound.
In this tutorial, however, we have shown that qualitative methods
can be used to assign samples according to a categorical propriety.
At the end, routine laboratories are resistant to change their own
established protocols. For reasons of time and cost, they prefer its
updating instead of including new ones.
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