Chimica e Tecnologia Farmaceutica (sostanze dopanti e d'abuso): introduzione

Pharmacodynamics

Chemical structure of drugs and biomolecules

bonds

functional groups

synthesis

biological interactions / reactions

extraction / analysis

computational chemistry

Bond type and bond strenght

Covalent bonds A-B

not usually involved In drug action

electrons sharing

reactions as movement of electrons

Electronegativity X:

$$[X_A - X_B] = \sqrt{D_{AB} - (D_{A2} D_{B2})^{0.5}}$$

D: bond dissociation energy

-	out-	of-		
	> pnas	c nı	iclei	
$2p_y 2p_y$	in-pi	hase		
There is less ove	rlan			π
between parallel	riap l ø orbital	s		

Table 1.2 The energy of some covalent bonds					
Single bonds	Energy kJ mol ¹	Dipole	Double bonds	Energy kJ/mol ⁻¹	Dipole
H-H	431			1000	
H–O	455	1.51			
H-N	385			1	6.000000V
H–S	367	0.68	100.000		
С-Н	410	0.4			
C0	330	0.74	C_0	170	2.3
Ç-C	330		C=C	146	
CCl	325				
C–N	275	0.22	C=N	147	3.5
C–S	235	0.9			
N-0	182				
P-O		10000	P-O	120	

Normal single bond

Two unbonded H atoms

one H2 molecule with the H atoms sharing the electrons

The action of drugs on biological molecules involve intermolecular forces in water

Substance	Mol. Wt.	M. P.	B. P.	Intermolecular forces
Argon (Ar)	40		- 1 86°C	Dispersion forces
Carbon dioxide (CO ₂)	44	- 78.5°C sublimes		Increased dispersion forces due to larger number of bonds
Propane	42		-42°C	Further increase in dispersion forces due to more bonds
Methyl chloride CH ₃ Cl	50.5	–97°C	– 23.7°C	Dispersion forces + weak dipole-dipole interaction
Nitrogen dioxide (NO ₂)	42		21.2°C	Dispersion forces + dipole-dipole interaction
Ethanol C ₂ H ₅ OH	46	114°C	78.5°C	Dispersion forces – hydrogen bonding
Sodium fluoride	42	993°C	1704°C	lonic bonding

interaction

Ionic bonds A⁺ B⁻

broken by water as a solvent

electrons on one atom

solubility function of dielectric constant: NaCl in water, 1 g / 2.8 mL NaCl in glycerol, 1 g / 10 mL NaCl in ethanol, almost insoluble

Force of attraction between two ions:

 $F = Q_1 Q_2 / \epsilon r^2$

ε: dielectric constant; Q: charge; r: distance

Table 1.4 Dielectric constants of some common solvents		
SOLVENT	DIELECTRIC CONSTANT &	
Water	78.5	
Glycerol C ₃ H ₅ (OH) ₃	42.5	
Acetonitrile CH₃CN	36.2	
Methanol CH ₃ OH	32.6	
Ethanol CH ₃ CH ₂ OH	24.3	
Benzene C ₆ H ₆	4.6	

Ionisation

ACIDS: % ion. =
$$\frac{10^{\text{pH-pKa}}}{1 + 10^{\text{pH-pKa}}} \times 100$$

BASES: % ion. =
$$\frac{10^{\text{pKa-pH}}}{1 + 10^{\text{pKa-pH}}} \times 100$$

Charged groups within proteins: Sites for binding of ionic drugs

рКа	% lonisation at pH 7.4
1.8–2.4	100
3.7	99.98
4.3	99.9
	- 2013 to 44
7.5-10.3	55.7-99.9
12.5	100
10.5	99.9
6.0	4
	рКа 1.8–2.4 3.7 4.3 7.5–10,3 12.5 10.5 6.0

Interactions in solvents

Dipole-dipole A⁺⁻ B⁺⁻

Force of attraction between dipoles:

 $F = 2 \mu_A \mu_B / \epsilon r^4$ (linear) $F = 2 \mu_A \cos\Theta \mu_B \cos\Theta' / \epsilon r^4$ (angular)

ε: dielectric constant; μ: dipole moment; r: distance

Ion-dipole A⁺⁻ B⁺⁻

Force of attraction between ion and dipole:

 $F = Q \mu \cos\Theta / \epsilon r^3$

ε: dielectric constant; μ: dipole moment; r: distance

Interactions in solvents

Van der Waals forces (transient dipoles)

Force of attraction between chains

 $F = 3 I \alpha^2 / 4 r^7$

I: first ionisation potential; α : polarisability

Charge transfer

Force of attraction between π -bases and π -acids:

 $-\overset{b_{-}}{C}-\overset{b_{+}}{C}-\overset{b_{-}}{C}-\overset{b_{-}}{C}-\overset{b_{+}}{C}-\overset{b$

Figure 1.10 Charge transfer complex between creatinine and picric acid.

Classes of organic compounds and properties

Hydrocarbons

Lipophilicity (devoid of polarity): physical properties governed by Van der Waals interactions

LogP positive value: interaction with membranes and hydrophobic pockets within receptor proteins. Alkyl, aryl and alkylhalides

Importance of stereochemistry (low temperature: zigzag form: thinner membranes)

Optical isomerism

Double bonds, lipids oxidation

Classes of organic compounds and properties

Amines

Positive charge

pKa and factors affecting it: alkyl groups, steric factors, electron-withdrawing groups

Aromatic amines and heterocyclic amines

Guanidines and quaternary amines

Neutral and acidic nitrogen compounds

Amides, barbiturates, sulphonamides, xanthines

Classes of organic compounds and properties

Oxygen and sulphur containing functional groups

Loss of water

Oxidation

Phenols

Carbonyls

Esters, amides and hydrolysis; aldehydes and ketones; carboxylic acids

Proteins and nucleic acid chemistry

Classes of organic compounds and properties

Carbonyls

Esters hydrolysis

Pharmaceutics

Turning a chemical entity to a medication

Pharmaceutical formulation

Routes of administration: p.o. - i.v. - s.c. - i.p. ...

Pharmaceutical manufacturing: synthesis, scaling-up, industrial installations

What the body does to a drug

Liberation: the process of release of a drug from the pharmaceutical formulation; *in vivo - in vitro* correlation

Absorption Distribution Metabolism Excretion

[Toxicity]

What the body does to a drug

Liberation:

Absorption Distribution Metabolism Excretion

[**T**oxicity]

Partitioning/Dissociation of different species

Drug stability: Chemical and enzymatic hydrolysis Pro-drugs

Pharmacokinetic response of the body to the drug:

Figure 8.1 Drug dose response profile for a hypothetical drug, showing the absorption and elimination phases following administration.

Figure 8.2 The route of a drug into the body.

Partition coefficient (logP)

Dissociation constant (ionisation state, Ka, logD)

Solubility

Chemical / enzymatic stability

Transport through biological membranes:

✓ *Diffusion*: transport of molecules in the gas or liquid phase (solution) due to their continuous and rapid movement (2500 Km h⁻¹ for water at 37° C). Collisions. Diffusion depends on *difference in concentration* and on *permeability* of membrane.

Transport through biological membranes:

✓ *Passive (protein-assisted) transport:* the *specificity* is characteristic and important. The limited *capacity* may cause saturation. Change of conformation occurs. Solute concentration determines the flow sense. Ion channels are transmembrane pores.

✓ Active (protein-assisted) transport: requires energy in the form of ATP (primary active transport) or an ion gradient (secondary a. t.) The plasma membrane Na⁺/K⁺ pump generates sodium and potassium gradient.

✓ *Exocytosis and Endocytosis*: involve the formation of *vesicles* surrounded by membranes. Pino- and phago- (particles) –cytosis. Macrophages.

Absorption of chemicals:

✓ via the skin: not for nutrients → diffusion only. Epidermis is the external layer. Dermis is the internal layer, rich in blood vessels. Epidermis is relatively dry: water content may increase absorption. DMSO more than H_2O

Absorption of chemicals:

 \checkmark by the gastrointestinal tract: 8 m long. 300 m² of surface.

• *stomach*: pH 2 (HCl). Enzymatic hydrolysis of proteins: pepsin.

• *small intestine*: pH 7-8 (with HCO_3^- from pancreas/liver). Enzymatic hydrolysis of proteins, polysaccharides, fats, nucleic acids. Daily small intestine absorption: 8.5 L. Functional unit: **villus**

A D M E

Absorption of chemicals:

 \checkmark by the gastrointestinal tract

Some (toxic) elements use membrane transport carriers of physiological ones: Ta, Co, Mn of Fe; Pb of Ca.

Stomach: unique *acid* environment.

Intestine: bacterial flora as *reductive* enclave.

A D M E

Absorption of chemicals:

✓ via the lungs: 300 m² of surface. Functional unit: **alveolus**. Air/blood distance: 1 μ m. Inhalation at rest: 5 L min⁻¹. Inhalation at work: 20 L min⁻¹ and more. Site for oxygen complexation by hemoglobin.

Absorption of chemicals:

\checkmark via the lungs:

- *aerosols:* dust (solid particles), fume (combustion products), smoke (organic combustion products), fog and mist (liquid droplets), smog (particles and gas)
- *gases and vapors:* highly reactive (HCl, NH₃, SO₂), intermediate reactive (COCl₂, O₃, Cl₂, NO, NO₂, etc.), less reactive but toxic.

Distribution of chemicals in organisms:

ability to pass through biological membranes

blood flow in various tissues and organs: binding to plasma proteins (hydrophilic compounds) / accumulation in the adipose tissue (lipophilic c.)

✓ biological barriers: "resistance" to passage between the two compartments. Blood-brain barrier protect the brain from many chemicals but it may also act as a cage (Hg / Hg²⁺)

✓ *partition coefficients*: blood/air; blood/brain; blood/body fat; blood/oil (different from water/oil because of the presence of proteins). Saturation (in the case of low blood/oil coefficient)

Excretion of chemicals from organisms:

✓ *via the lungs*: volatile compounds.

✓ via the liver (bile): Active transport. Metals (Pb²⁺, Mn²⁺, Hg²⁺) and high molecular weight (>500) compounds. Sulfobromophthalein* is used to test liver function.
 Yellow bilirubin** is normally excreted through the liver. Enterohepatic circulation.

Excretion of chemicals:

✓ via the kidneys: Functional unit:
 nephron. Primary urine: 200 L/die. After
 water, nutrients and minerals
 reabsorption: secondary urine, 1.5 L/die.

✓ via minor ways (sweat, hair, nails, teeth, saliva, pancreatic secretion, milk)

Metabolism of xenobiotics:

Enzymatic systems that exclude / degrade /detoxify / expel exogenous chemicals have evolved.

CHEMICAL CONVERSION

- ✓ to increase volatility: excretion with the exhaled air
- ✓ *to increase the molecular weight:* excretion with the bile
- ✓ to increase the water solubility: excretion with the urine
- \checkmark by breaking bonds
- ✓ by changing functional groups
- \checkmark by combining the exogenous with an endogenous compound

Metabolism of xenobiotics

(by enzymes belonging to both the primary and the secondary metabolism)

- ✓ Phase I (functional groups introduction or modification)
- ✓ Phase II (conjugation)

Figure 5.1 The two phases of the metabolism of exogenous compounds, exemplified by the major conversion of benzene.

Metabolism of xenobiotics: cytochrome P450

Metabolism of xenobiotics: cytochrome P450

The oxidation cycle of cytochrome P450.

A D M E

Metabolism of xenobiotics: NADH / NAD⁺

Metabolism of xenobiotics: cytochrome P450

Figure 5.4 Reactive oxygen species are generated during cytochrome P450 oxidations.

• <u>O</u>-<u>O</u> •

•<u>0</u>-<u>0</u>

molecular oxygen (a diradical)

superoxide (an anion radical) (pKa 4.8)

$$O_2 \xrightarrow{e^-} O_2^{\odot} \xrightarrow{e^-, 2 \text{ H}^+} H_2O_2 \xrightarrow{e^-, \text{H}^+} O_1^+ + H_2O \xrightarrow{e^-, \text{H}^+} 2 H_2O_2$$

Metabolism of xenobiotics:

superoxide inactivation and deleterious reactions

superoxide dismutase (SOD):
$$2 \stackrel{\odot}{O_2} + 2 \stackrel{\oplus}{H} \longrightarrow H_2O_2 + O_2$$

catalase: $2 H_2O_2 \longrightarrow 2 H_2O + O_2$
glutathione peroxidase : $H_2O_2 + G-SH \longrightarrow 2 H_2O + G-S-S-G$
glutathione disulfide reductase
Figure 5.6 The enzymatic disarmament of superoxide and hydrogen peroxide.

$$\overset{\circ}{O}_2$$
 + H_2O_2 + H^{\oplus} \longrightarrow $\overset{\circ}{O}H$ + H_2O + O_2

the Haber Weiss reaction

$$H_2O_2 + Fe^{2+} + H^{\oplus} \longrightarrow OH + H_2O + Fe^{3+}$$

the Fenton reaction

Metabolism of xenobiotics: other (main) enzymes

- *dioxygenases* (insertion of two oxygen atoms from molecular O₂)
- *amine oxidases* (transform primary amines to aldehydes, secondary to ketones)
- *peroxidases* (could generate electrophilic compounds)
- catalase ($RH_2 + H_2O_2 \rightarrow R + H_2O$). Ethanol/acetaldehyde conversion
- aldehyde dehydrogenase (RCHO \rightarrow RCOOH).
- acyl coenzyme A dehydrogenase (fatty acids \rightarrow acetyl units).

Phase I metabolism: OXIDATION

✓ *epoxidation of C-C multiple bonds*. Metabolic electrophilic activation possible.

Figure 5.10 Possible mechanisms for the oxidation of alkenes.

Phase I metabolism: OXIDATION

 \checkmark epoxidation of C-C multiple bonds.

Phase I metabolism: OXIDATION

\checkmark hydroxylation of saturated C.

A D M E

Phase I metabolism: OXIDATION

 \checkmark hydroxylation of amino groups. α -hydroxylation (with N, O, S)

Phase I metabolism: OXIDATION

 \checkmark hydroxylation of halides.

Phase I metabolism: OXIDATION

✓ hydroxylation of amino groups. N-hydroxylation (benzylic)

Figure 5.16 N-Hydroxylation of an aromatic amine.

Phase I metabolism: OXIDATION

✓ oxidation of heteroatoms. N-oxidation, S-oxidation

Figure 5.20 Oxidation of nitrogen (in tertiary amines) and sulfur.

Phase I metabolism: OXIDATION

✓ oxidation of C-C to C=C

Figure 5.17 The oxidation of a single bond to a double bond during β -oxidation.

Figure 5.18 The metabolic activation of valproic acid.

Phase I metabolism: OXIDATION

✓ oxidation of C-N to C=N to C=O. Oxidative deamination

Figure 5.19 The oxidation of an amine to an imine, which can be hydrolyzed to a ketone.

Phase I metabolism: OXIDATION

✓ oxidation of C-OH to CHO

tertiary alcohol

Figure 5.21 Oxidation of alcohols.

Phase I metabolism: REDUCTION

✓ reduction of heteroatoms

✓ reductive dehalogenation

Figure 5.22 Reduction of a ketone with the coenzyme NADPH.

Figure 5.23 Examples of reductions that may take place in mammals.

A D M E

Figure 5.24 The hydrolysis of epoxide by epoxide hydrolase.

Figure 5.26 Metabolic activation of benzo[a]pyrene.

✓ hydrolyses of esters and amides. $RCOOR' \rightarrow RCOOH + HOR'$ $RCONR'R'' \rightarrow RCOOH + NR'R''$

Phase II metabolism: CONJUGATIONS WITH SULPHATE

Phase II metabolism: CONJUGATIONS WITH SULPHATE

Figure 5.29 The sulfate group as a leaving group.

Phase II metabolism: CONJUGATIONS WITH GLUCURONIC ACID

glucuronic acid source:

uridine-5'-diphospho-a-D-glucuronic acid (UDP-GA)

A D M E

Figure 5.31 The hydrolysis of conjugates with glucuronic acid.

Phase II metabolism: CONJUGATIONS WITH AMINOACIDS

Figure 5.32 Conjugation with an amino acid.

Figure 5.33 Conjugation of electrophiles with glutathione.

A D M E

Phase II metabolism: CONJUGATIONS WITH GLUTATHIONE

mercapturic acid derivative

Phase II metabolism: CONJUGATIONS WITH GLUTATHIONE

Figure 5.35 The conjugation of acrolein with glutathione.

A D M E

Phase II metabolism: OTHER CONJUGATIONS

 \checkmark acylation

✓ methylation

Figure 5.36 A possible way to activate aromatic amines.

Figure 5.37 Methylation of thiols with SAM.

- Acute and chronic effects : single or repeated event (cumulative) . The same compound can have 2 different effects (acute and chronic) using 2 different mechanisms (eg Benzene SNC leukemia). The effect can result from chronic and difficult to eliminate subsequent accumulation .
- **Reversible effects :** cease when exposure ceases and irreversible damage is not repairable. The same compound can have 2 different effects (reversible and irreversible)
- Local effects : first contact (eyes , skin) and systemic . Target Organs: for accumulation or selective action (enzymes , metabolism, receptors) . 1° : CNS circulatory system 2° , 3° Blood and blood-forming organs ; 4° parenchyma (liver , kidney, lungs). Muscles and bones are rarely target .
- Independent effects : no correlation to each other .
- Additional Effects : different compounds with the same effect = sum .
- Synergistic Effects : Sum effect > additive effects. eg. ethanol + CCl₄ on the liver .
- **Potentiating effect :** one of the two is not toxic but potentiates the effect of the other one.
- Antagonistic effects : functional or physiological / chemical / PK / receptor