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Purpose of review

This review summarizes recent progress in the development of myostatin inhibitors for the treatment of
muscle wasting disorders. It also focuses on findings in myostatin biology that may have implications for the
development of antimyostatin therapies.

Recent findings

There has been progress in evaluating antimyostatin therapies in animal models of muscle wasting
disorders. Some programs have progressed into clinical development with initial results showing positive
impact on muscle volume.
In normal mice myostatin deficiency results in enlarged muscles with increased total force but decreased
specific force (total force/total mass). An increase in myofibrillar protein synthesis without concomitant
satellite cell proliferation and fusion leads to muscle hypertrophy with unchanged myonuclear number. A
specific force reduction is not observed when atrophied muscle, the predominant therapeutic target of
myostatin inhibitor therapy, is made myostatindeficient.
Myostatin has been shown to be expressed by a number of tumor cell lines in mice and man.

Summary

Myostatin inhibition remains a promising therapeutic strategy for a range of muscle wasting disorders.
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INTRODUCTION

Cachexia is a wasting syndrome exhibited by many
cancer patients particularly at advanced stages of
disease. It is characterized by the loss of skeletal
muscle mass (with or without fat loss), despite
adequate nutritional intake. Cancer cachexia is
associated with diminished quality of life, func-
tional performance and decreased survival.
Cancer-related muscle loss is an independent pre-
dictor of poor outcome linked to increased immo-
bility and mortality, and has also been associated
with intolerance to chemotherapy. There has been
increasing interest in therapeutic interventions that
prevent, delay or treat cancer-related muscle wast-
ing, in hopes of improving outcomes for the cancer
patient. Some recent reviews and key articles in this
area are available [1–16].

There are many commonalities at the molecular
level in the pathways in skeletal muscle that result in
atrophy, whether it is in the context of cancer
cachexia or other noncancer muscle wasting situ-
ations. The mechanisms regulating skeletal muscle
iams & Wilkins. Unautho

re.com
mass have recently been reviewed [17–21]. Myosta-
tin has emerged as an intriguing therapeutic target
[22]. Myostatin, a member of the TGFb superfamily
of growth factors, is a highly conserved negative
regulator of skeletal muscle mass that is upregulated
in many conditions of muscle wasting. Various
induced or natural conditions leading to myostatin
deficiency result in increased muscle mass and
strength in normal animals and have been shown
rized reproduction of this article is prohibited.
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KEY POINTS

� Myostatin inhibitors can enhance strength and
functional performance measures in mouse models of
cancer cachexia.

� Reports of effects of myostatin inhibitors in animal
models of rare or orphan neuromuscular diseases
including muscular dystrophy generally demonstrate an
increase in muscle mass but effects on strength,
performance and/or survival are mixed.

� Several different types of myostatin pathway inhibitors
including myostatin antibodies and ActRIIB antibody
are in clinical development and preliminary results
reported show that they can increase LBM and/or TMV
in healthy volunteers, muscular dystrophy and cancer
patients, although development of an ActRIIB-Fc
(ACE-031) has been discontinued because of bleeding
issues.

� Myostatin inhibitors work to induce muscle hypertrophy
predominantly through effects on myofibrillar protein
synthesis rather than stimulating satellite
cell proliferation.

� Myostatin deficiency is able to increase total force in
normal mice but specific force is compromised due, at
least in part, to reduced MND size in the myofibers in
these hypertrophied muscles. Treating disorders with,
where muscle is atrophied and MND size is below
normal, with myostatin inhibitors, has not been
confounded by such issues. Myostatin has been
reported to be expressed by a number of murine and
human tumor cell lines.
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to treat or prevent a range of muscle wasting con-
ditions.

The myostatin signaling pathway and its role in
regulating skeletal muscle has been recently
reviewed [23,24]. At the molecular level, myostatin
binds to and activates the activin receptor IIB
(ActRIIB)/Alk 4/5 complex (Fig. 1). Although
ActRIIB/Alk4/5 is broadly expressed, myostatin is
produced and exhibits its effects primarily on
skeletal muscle.

Many approaches are being taken both preclini-
cally and clinically to inhibit the myostatin signal-
ing pathway (Fig. 1). The majority of these
approaches acts extracellularly to block myostatin
engaging with the ActRIIB/Alk4/5 receptor com-
plex, either by binding directly to myostatin itself
or by binding to components of this receptor com-
plex. Due to the fact that multiple ligands signal
through, and therefore bind, ActRIIB apart from
myostatin (including activin A, gdf11, bmp9)
[25–27] the approaches that target the ActRIIB
receptor or use ActRIIB as a soluble decoy receptor
may not specifically block myostatin action.
Copyright © Lippincott Williams & Wilkins. Unau
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Similarly, the naturally occurring myostatin bind-
ing proteins follistatin and Fstl3 are known to bind a
number of growth factors in addition to myostatin
[28,29]. The added risk/benefit of these multitar-
geted approaches is under investigation (see below).
PROGRESS IN VALIDATION OF
MYOSTATIN AS A TARGET FOR MUSCLE
WASTING DISORDERS

Preclinical results

Two recent studies, performed in mouse models of
cancer cachexia, have examined the effects of myo-
statin inhibitors on physical performance and
muscle function, building on previous data that
showed positive effects on muscle mass [30,31].
Mice with Lewis Lung carcinoma treated with
ActRIIB-Fc (Fig. 1), a soluble myostatin receptor that
binds myostatin, activin and other ligands, showed
increases in body weight and muscle weights with
grip strength significantly increased and resting
time significantly decreased by treatment [32

&

]. A
myostatin antibody in the same model was able to
completely abrogate the tumor-induced reduction
in total muscle force in various limb and diaphragm
muscles [33

&

]. The results of these recent studies are
encouraging as the value of myostatin inhibitors to
cancer patients exhibiting muscle wasting is ulti-
mately to affect functional performance through
increased muscle function.

Aside from models of cancer cachexia, most
recently published preclinical activity with myosta-
tin inhibitors has focused on developing therapies
in the area of rare or orphan diseases, in which
symptoms are devastating to patients and few if
any significant treatment options are available. Test-
ing of myostatin inhibitors in animal models of
muscular dystrophy [34] has shown generally
positive effects on muscle mass but inconsistent
effects on muscle function and histopathology
[reviewed in [35

&

]]. ActRIIB-Fc or ActRIIB shRNA
given to mdx mice, a well used but not ideal model
of human muscular dystrophy [36,37

&&

], produced
increases in muscle mass and total force but specific
force was unchanged [38,39

&

,40]. In contrast, a
recent study reported an increase in specific force
of the soleus muscle in mdx mice after long-term
exposure to a myostatin propeptide [41]. Studies
with myostatin inhibitors have not shown any
improvement on eccentric contraction-induced
force drop, a key measure of myofiber structural
integrity [40,42,43]. Therefore, there is increasing
evidence that myostatin inhibitors can improve
muscle function in the mdx mouse through an
increase in muscle mass and total force but do not
thorized reproduction of this article is prohibited.
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FIGURE 1. Summary of therapeutic invention points in the myostatin signaling pathway. Myostatin binds to its receptor
complex ActRIIB/Alk 4 or 5 on skeletal muscle resulting in activation of the Smad 2/3, mitogen-activated protein kinase and
inhibition of the PI3K intracellular signaling pathways that together result in gene transcriptional changes and effects on
protein synthesis that ultimately give rise to muscle atrophy. Myostatin pathway inhibitors act extracellularly by either binding
myostatin directly (Fstl3, Follistatin, myostatin antibody, GASP1, myostatin propeptide, decorin peptides, ActRIIB-Fc) or by
binding its receptor complex (ActRIIB antibody) in order to block myostatin engaging its receptor complex and activating
downstream signaling. Some of the inhibitors are naturally occurring (myostatin propeptide, Gasp1, follistatin, Fstl3) whereas
others are engineered (myostatin antibody, ActRIIB antibody, ActRIIB-Fc). —I represent inhibitory activities. ! represent
activating activities. Ab ¼ antibody.
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consistently improve the underlying weakness of
dystrophic muscle. There has been hope that myo-
statin inhibitors might attenuate the muscle fibrosis
that is a hallmark of muscular dystrophy, given
myostatin’s role in inducing dystrophic muscle
fibroblast proliferation [44

&

] and the observation
of decreased connective tissue in myostatin null
mice [45

&

]. Although earlier observations in mdx
mice [34] and more recent observations in the
golden retriever muscular dystrophy model [GRMD
[46]], showed improvement in fibrosis with myo-
statin antibody or myostatin propeptide treatment,
respectively, no improvement on muscle histopa-
thology was seen after ActRIIB-Fc treatment of mdx
mice [40,42]. It has been suggested that the degree of
muscle disease at the time of treatment may influ-
ence outcome [43]. Human muscular dystrophy
disorders display paradoxical muscle wasting and
selective hypertrophy of skeletal muscles, leading
to imbalance, contractures and postural instabilities
[37

&&

]. When the muscle hypertrophic myostatin
heterozygote whippet [47] was crossed with the
GRMD dog, selective muscle hypertrophy seen in
opyright © Lippincott Williams & Wilkins. Unautho
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the GRMD dog was exaggerated resulting in more
pronounced postural instability and worsened
clinical scores, cautioning that further hypertrophy
of already selective hypertrophic muscle in muscu-
lar dystrophy may not be beneficial [37

&&

]. Dysferlin
null mice, a model of dysferlin-deficiency muscular
dystrophy [48], expressing the myostatin inhibitor
follistatin, demonstrated a transient increase in
muscle mass followed by decreased muscle mass
and function and increased muscle fibrosis [Lee
et al. MDA meeting, San Diego, 2013].

There is excitement regarding disease-modifying
therapies currently in clinical development for mus-
cular dystrophy based on exon skipping methods,
which overcome the underlying genetic defect of the
dystrophin gene and improve specific muscle force
without effects on muscle mass [reviewed in [49,50]].
Myostatin inhibitors are currently being investigated
preclinically as possible adjunct therapy with these
molecules [39

&

,42,51–53].
The recently described increase in axon number

together with delay in age-related neural degener-
ation in myostatin null mice have added support to
rized reproduction of this article is prohibited.
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the investigation of myostatin inhibitors for the
treatment of severe neuromuscular disorders
[54

&

,55]. However, SOD1 null mice, a model of
amyotrophic lateral sclerosis, did not exhibit any
improvements in survival (despite improvements in
muscle mass) when exposed to myostatin inhibitors
[56]. In another report, crossing of SMN null mice, a
model of Spinal Muscular Atrophy, with myostatin
null mice did not lead to increases in muscle mass or
effects on survival [57], consistent with results using
myostatin inhibitors from Sumner et al. [58] but
inconsistent with the positive effects reported by
Rose et al. [59]. In contrast to the above reports,
treatment of the myotubularin-deficient mouse, a
model of X-linked myotubular myopathy, with
ActRIIB-Fc did lead to transient increases in muscle
mass and strength and a 17% increase in survival
[60

&&

].
Other animal models of muscle wasting have

been used to determine if inhibition of myostatin
has therapeutic potential in treating a range of
muscle wasting conditions. Positive results have
been reported in models of chronic kidney disease,
disuse atrophy and age and hypogonadism-induced
muscle loss [61,62

&

,63]. Overexpression of the myo-
statin interacting protein GASP1 [64] has been
shown to induce muscular hypertrophy in mice
but has not yet been tested in models of muscle
wasting. Identification of myostatin-blocking
decorin peptides are at an even earlier stage of
preclinical development [65]. There is increasing
preclinical evidence to suggest that inhibition of
myostatin may also have metabolic benefits. Myo-
statin deficiency or myostatin inhibition in mice has
been shown to result in decreased fat mass and
increased insulin sensitivity raising the therapeutic
potential of myostatin inhibition in obesity and
insulin resistance associated with obesity [reviewed
in [23]].
Clinical results

Some myostatin inhibitors have progressed into
clinical development as summarized in Table 1.

LY2495655 is a myostatin antibody that is cur-
rently in clinical development for muscle wasting
associated with cancer and other disorders (see Table
1). Results of a study in healthy volunteers demon-
strated the drug to be well tolerated and led to an
increase in thigh muscle volume (TMV) [66

&&

].
Interim results of a Phase 1 safety study of
LY2495655 in advanced cancer patients without
chemotherapy reported that a maximum tolerated
dose was not reached and increased muscle volume
with concomitant increases in hand grip strength
and other functional measures were observed;
Copyright © Lippincott Williams & Wilkins. Unau
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however, a clear dose–response was not observed,
ascribed to small sample size and patient heterogen-
eity [66

&&

]. A Phase 2 trial of LY2495655 in patients
with locally advanced/inoperable or metastatic pan-
creatic cancer receiving standard of care chemother-
apy is ongoing with overall survival as the primary
endpoint of the trial (Table 1).

BYM-338 is an antibody directed to ActRIIB that
is currently in Phase 2 for the treatment of cachexia
in patients with stage IV nonsmall cell lung cancer
or Stage III/IV adenocarcinoma of the pancreas. The
primary endpoint of the trial is TMV at 8 weeks as
measured by MRI. BYM-338 is also in Phase 2 trials
for other muscle wasting disorders (Table 1). Single
infusions of BYM-334 in healthy volunteers were
reported to be well tolerated and resulted in an
increase in TMV (D. Rook; International conference
on sarcopenia research, Orlando, December 2012).

The correlation of increases in muscle volume
to clinically meaningful functional outcomes for
patients treated with myostatin inhibitors still
awaits validation. Interestingly, myostatin protein
levels were found to be upregulated in muscle biop-
sies taken from early stage gastric cancer patients
even before significant weight loss (>10%) had
occurred, leading to the suggestion of early inter-
vention to prevent cancer cachexia [67

&

].
Clinical development of myostatin inhibitors

for the treatment of muscular dystrophy has made
recent progress [49,68]. Phase 1/2 results of MYO-
029, a myostatin antibody, failed to show effects on
muscle strength or function in adult Becker, limb-
girdle and facioscapulohumeral muscular dystrophy
patients [69]. PF-06252616 is a myostatin antibody
currently in Phase 1 testing in healthy volunteers; it
was recently given orphan drug designation by the
European Medical Agency (EMA) for treatment of
Duchenne muscular dystrophy (DMD). ACE-031, a
human ActRIIB-Fc, in single and multiple ascending
studies in healthy volunteers showed significant
increases in lean body mass (LBM) and TMV [70

&&

]
[Borgstein et al. World Muscle Society, Japan, 2010].
ACE-031 was awarded orphan status and accelerated
review by the Food and Drug Administration for
muscular dystrophy in 2010. Results from a Phase
2 study with ACE-031 in DMD boys showed an
increase in LBM and attenuation of declines in
TMV and six minute walk distance (6MWD)
[71

&&

]. However, the observation of reversible nose-
bleeds and skin telangiectasias in the healthy volun-
teer MAD study as well as in the Phase 2 muscular
dystrophy study [71

&&

] has led to the termination of
these trials. The underlying mechanism behind
these adverse events is not understood although
the genetic associations of mutations in the ALK1
type I receptor with hereditary haemorrhagic
thorized reproduction of this article is prohibited.
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telangiectasias type 2 [72], and the elucidation of the
Alk1/ActRIIB complex as the main signaling path-
way for BMP9 [27,73] warrant further investigation
into this particular ligand.

Skeletal muscle weakness is associated with a
large array of conditions that involve muscle wast-
ing ranging from age-related atrophy, termed sarco-
penia, to the wasting associated with immobility,
termed disuse atrophy (reviewed in [18,22]). Several
clinical trials are in progress that seek to prove the
concept that myostatin inhibitors may be thera-
peutically beneficial and provide meaningful
benefit to these wasting states. Trials are ongoing
in chronic obstructive pulmonary disease (COPD)
patients, in rehabilitation postorthopedic surgery/
hip replacement subjects and in the sarcopenic
adult and older weak fallers (Table 1). In a Phase 2
trial in sporadic inclusion body myositis (sIBM), a
rare autoimmune disorder [74], BYM-338 was able
to increase LBM, TMV and improve quadriceps
strength and 6MWD (Amato et al. Annual MDA
conference, San Diego, 2013; Table 1).
EMERGING MYOSTATIN PATHWAY
BIOLOGY WITH IMPLICATIONS FOR
THERAPEUTIC TARGETING: ROLE OF
SATELLITE CELLS IN HYPERTROPHY OF
SKELETAL MUSCLE INDUCED BY
MYOSTATIN DEFICIENCY

In general muscles enlarged beyond normal size, or
‘supersized’ as a result of myostatin deficiency have
increased total force but reduced specific force [75–
78]. In myostatin null mice, the increase in total
force does not match the increase in muscle mass
[79]. Analysis of the contractility of single fibers
from MSTN null mice demonstrated that the specific
force deficits were at the level of the muscle myo-
fiber [80,81

&&

]. Historically, it has been thought that
a major function of myostatin was to maintain
muscle satellite cell quiescence and that the relief
of this inhibitory influence led to satellite prolifer-
ation and fusion to existing myofibers resulting in
hypertrophy, akin to the mechanisms of muscle
enlargement after exercise [81

&&

,82]. However,
recent evidence demonstrates that myostatin exerts
its effects directly on the myofiber with little effect
on satellite cell activity [83

&

]. The number of myo-
nuclei in muscle is unchanged between normal and
myostatin null mice resulting in larger ratios of
cytoplasm volume : nuclei or myonuclear domains
(MNDs) in null mice [81

&&

,84]. Qaisar et al. [81
&&

]
suggested that there is a threshold size of MND
under which the fiber is able to maintain the myo-
fibrillar contractile apparatus and hence specific
force. However, when a specific MND threshold is
thorized reproduction of this article is prohibited.
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reached the fiber is unable to maintain the specific
force. Interestingly, food restriction of the MSTN–/–

mouse, by reducing muscle fiber size, restored the
MND to normal with a corresponding normaliza-
tion of force generation capacity of the muscle [85].
Lee et al. [86

&&

] demonstrated that muscle hyper-
trophy still occurred in animals with satellite cell
deficiencies treated with myostatin inhibitors and
in mice with a myofiber specific ablation of the
myostatin receptor ActRIIB, confirming that the
myofiber itself is the target of myostatin action.
Myostatin deficiency leads to an increase in myofi-
brillar protein synthesis although a decrease in
protein degradation may also be at play
[80,87

&

,88
&

]. These findings suggest that myostatin
inhibition in mice leading to ‘supersized’ muscles
occurs with minimal satellite cell activation and can
lead to a MND size in which there may not be
concomitant increases in function. It remains to
be determined if this same mechanism is active in
man but with the increased attention and specu-
lation around misuse of myostatin inhibitors this
might prove to be a blessing in disguise [89,90]. As
exemplified above, treating disorders with myosta-
tin inhibitors in which muscle is atrophied and
MND size is below normal has not been confounded
by negative effects on specific force measures. These
results also suggest that myostatin inhibitors would
be effective in states of satellite cell dysfunction or
depletion such as muscular dystrophy [91].

Emerging linkage of myostatin with tumor
biology
Perhaps not surprisingly skeletal muscle tumors,
specifically rhabdomyosarcomas (RMS), the most
common soft tissue tumor in children, are known
to overexpress myostatin [92]. Blocking myostatin
activity with a dominant negative form of ActRIIB
resulted in decreased proliferation and promoted
differentiation of a human RMS cell line suggesting
that myostatin inhibition may be a valuable target
for interventions for RMS [93]. More interestingly,
Lokireddy et al. [94

&&

] for the first time reported that
myostatin protein is expressed and secreted from
the mouse adenocarcinoma cell line C26, and from
several human cancer cell lines. A characterization
of myostatin expression in primary tumors is war-
ranted in light of these initial findings.

CONCLUSION
There are a number of intervention points being
exploited to inhibit myostatin signaling in order to
enhance muscle mass under the conditions of
muscle atrophy. Many of these therapies have
now progressed into early stage clinical trials.
Results of several Phase 2 trials underway are awaited
opyright © Lippincott Williams & Wilkins. Unautho
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to determine if increased muscle volumes translate
into muscle strength, performance and outcomes
that are clinically meaningful to patients.
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