
1 Exercises on 2nd order PDEs

Note: In all these exercises, Fourier coefficients can be expressed as integrals. It is not required
to compute the integrals explicitly.

1.1 Heat equation

Hint: When the problem has non-homogeneous boundary conditions, it is convenient to
subtract an appropriate function in order to get a problem with homogeneous boundary
conditions.

Ex. 1 . One-dimensional problem Consider a bar of length L with heat diffusivity
coefficient α. The bar’s ends are kept at constant temperatures u(0, t) = T1, u(L, t) = T2. The
initial temperature is u(x, t = 0) = 4(L− x)2x2.

• What is the temperature distribution at t =∞? (This can be answered without explicit
calculations).

• Write the solution at generic times.

Ex. 1 b . Consider the same setup as above, with initial condition a constant u(x, t =
0) = T0, and the two ends both kept at constant temperature T = 0, i.e. u(0, t) = u(L, t) = 0.
Write the solution at generic times as a Fourier series.

Ex. 2 - One-dimensional, different boundary conditions A bar of length L = π is
initially at temperature T = 0 at time t = 0. At times t > 0, the left end of the bar is
insulated, while the right end is kept at constant temperature T = 50. Find an expression for
the time-dependent temperature distribution.

Hint: The fact that the left end is insulated means that there is no heat flow across this
end. Remember that the heat flow is proportional to the gradient of the temperature.

Ex. 3 - With time-dependent boundary conditions At time t = 0, a bar of length L
has uniform temperature u(x, t = 0) = 0, 0 ≤ x ≤ L. For t > 0, the endpoints of the bar are
heated such that

u(x = 0, t) = 3t, u(x = L, t) = 4t, (1.1)

for 0 ≤ t ≤ 1. What is the temperature distribution at t = 1?
Hint: Do a subtraction in order to get a homogeneous boundary condition. Notice that

in this case this will lead you to a non-homogeneous PDE to solve. You can solve it using a
Fourier decomposition with time-dependent coefficients (the same trick that we used to solve
the problem of the wave equation subject to an external force). Derive the ODE satisfied by
the coefficients and solve it.
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Ex. 4 - Sphere Write the equations describing the cooling of a sphere of radius R, with
initial uniform temperature u(~x, t = 0) = T0 > 0, which is immersed in a space with uniform
temperature Text = 0.

Hint: use spherical coordinates. See formulas at the end of the file for the relevant
eigenfunctions (there are some simplifications given this initial distribution).

1.2 Wave equation

Ex. 5 - 1D A string of length L, fixed at the points x = 0 and x = L on the horizontal
axis, has initially a displacement of the form u(x, t = 0) = sin2(xπL ), and its transversal velocity

is ∂
∂tu(x, t)

∣∣
t=0

= 0. The endpoints of the strings are kept fixed. The propagation speed for
waves on the string is v.

• Is the motion of the string for t > 0 periodic? If yes, what is its period (i.e., minimal
time such that the motion repeats itself)?

• Derive an explicit expression for u(x, t) for t > 0 (it can be written as an infinite Fourier
series, which does not need to be summed. The coefficients should be defined explicitly,
as integrals).

Hint: The first point can be answered both using the method of images and using the Fourier
decomposition method. Try to deduce the answer using both methods.

Ex. 6 - Vibrations of a drum Consider a circular drum of radius R. The propagation
speed for waves on the drum is v.

• What are the vibration frequencies of the drum?

• Suppose that at time t = 0 the displacement of the drum’s membrane is u(r, θ, t = 0) =
(r2 − R2) cos θ, and its initial velocity is ∂tu(r, θ, t = 0) = 0. Write an explicit solution
using the eigenfunctions method for the displacement of the membrane. The coefficients
of the series can be defined as explicit integrals, but there is no need to compute the
integrals or sum the series.

Hint: To recall the form of the eigenfunctions in this case, see notes at the end of the file.

Ex. 7 - A different drum Consider a second drum (with the same propagation speed v)
which has the shape of a quarter of a disk, namely in radial coordinates, 0 ≤ r ≤ R, 0 ≤ θ ≤ π

2 .

• What are the vibration frequencies of the drum?

• Suppose that at time t = 0 the displacement of the drum’s membrane is u(r, θ, t = 0) = 0,
and its initial velocity is ∂tu(r, θ, t = 0) = sin(2θ)(r − R) + sin(4θ)(r − R)2. Write an
explicit solution using the eigenfunctions method for the displacement of the membrane.
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1.3 Laplace/Poisson equation

Ex. 8 - Dirichlet rectangle A square metal plate of side π (0 ≤ x, y ≤ π), has its sides
kept at the following temperatures:

T (x, 0) = T (π, y) = 0, T (0, y) = sin y, T (x, π) = 5 sin 2x−7 sin 8x, 0 ≤ x, y ≤ π. (1.2)

What is the equilibrium temperature of the plate?

Ex. 9 - Neumann rectangle Consider the Laplace equation uxx+uyy = 0 on a rectangular
domain of sides L, M (0 ≤ x,≤ L, 0 ≤ y ≤M), with Neumann boundary conditions

ux(x, 0) = ux(L, y) = uy(x,M) = 0, uy(x, 0) = f(x). (1.3)

Write a form for the solution using Fourier’s method. Specify any consistency conditions that
are required.

Ex. 10 - Disk Consider Laplace equation ∆(2D)u = 0 in the interior of a disk of radius R,
with boundary condition u(R, θ) = f(θ) on the boundary of the disk.

• Using the Green’s function method discussed in the lecture, write down explicitly the
solution at an interior point u(r, φ), as a function of the boundary data.

• Derive an alternative form of the solution using the Fourier method.

Ex. 11 - Annulus Consider Laplace equation in the interior of an annulus region, namely
the region defined by R1 < r < R2, r =

√
x2 + y2.

Consider the case R2 = 2, R1 = 1. Using a decomposition into eigenfunctions in radial
coordinates, solve the following boundary value problem:

∆(2D)u = 0, R1 < r < R2, u(r2, θ) = 1 + 2 cos θ + cos 2θ, u(r1, θ) = sin 2θ. (1.4)

1.4 Relevant formulas

1.4.1 Fourier orthogonality

The following orthogonality properties of the sine/cosine functions are the basis of Fourier
analysis:

1

L

∫ 2L

0
sin(

nπx

L
) sin(

mπx

2L
) = δmn, n,m ∈ N+ (1.5)

1

L

∫ 2L

0
cos(

nπx

L
) cos(

mπx

2L
) =

δmn
2δm,0

, n,m ∈ N, (1.6)

1

L

∫ 2L

0
cos(

nπx

L
) sin(

mπx

2L
) = 0. (1.7)
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In some types of applications we often need the following relations:

2

L

∫ L

0
sin(

nπx

L
) sin(

mπx

2L
) = δmn, n,m ∈ N+, (1.8)

2

L

∫ L

0
cos(

nπx

L
) cos(

mπx

2L
) =

δmn
2δm,0

n,m ∈ N, , (1.9)

which are a simple consequence of the two above (notice that instead (1.7) above does not
generalize to the half-interval).

In problems with mixed Dirichlet-Neumann boundary conditions, the following are useful:

2

L

∫ L

0
sin(

(n+ 1
2)πx

L
) sin(

(n+ 1
2)πx

2L
) = δmn, n,m ∈ N, (1.10)

2

L

∫ L

0
cos(

(n+ 1
2)πx

L
) cos(

(n+ 1
2)πx

2L
) = δmn, n,m ∈ N, (1.11)

The standard Fourier decomposition of a function defined on an interval [0, 2L] involves
both sine and cosine functions.

f(x) =
a0
2

+

∞∑
n=1

(an cos(nπx/L) + bn sin(nπx/L)) . (1.12)

this defines a function of period 2L. The coefficients can be found explicitly using orthogonality.
For instance, integrating sin(nπxL ) against the function, and using the orthogonality above, we

deduce bn = 1
L

∫ 2L
0 dx sin(nπxL )f(x).

Often in PDE problems we want to use a different type of series expansion, which is needed
to capture the boundary conditions. Typically, we use a basis of trigonometric functions which
corresponds to the standard Fourier decomposition of a larger interval.

For instance, consider a function f(x) defined on the interval x ∈ [0, L]. In problems
where we want to impose Dirichlet-Dirichlet boundary conditions, we use an expansion as a
sine-series:

f(x) =
∞∑
n=1

dn sin(nπx/L). (1.13)

Notice that this defines a function of period 2L, which is odd: f(x) = −f(−x). It is the odd

extension of the original function. The coefficients are given by dn = 2
L

∫ L
0 dx sin(nπxL )f(x), as

can be deduced using the orthogonality relations (1.8) above.

1.4.2 Radial coordinates

Radial coordinates in 2D The Laplace operator in 2D is ∆(2D) ≡ ∂2x + ∂2y . In radial
coordinates it becomes:

∂2r +
∂r
r

+
∂2θ
r2
, (1.14)

where the radial coordinates are r =
√
x2 + y2, θ = arccos xr = arcsin y

r .
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Notable radial equation in 2D - Laplace The ODE

R′′(r) +
R′(r)

r
− m2R(r)

r2
= 0 (1.15)

arises studying Laplace equation ∆u = 0 in radial coordinates in 2D.
This equation has two independent solutions: R(r) = r±m for m > 0, and for m = 0 the

two independent solutions are: R(r) = const, R(r) = log r.

Notable radial equation in 2D - Helmholtz The ODE

R′′(r) +
R′(r)

r
+
λ r2R(r)−m2R(r)

r2
= 0 (1.16)

arises studying Helmholtz equation ∆u = −λu in radial coordinates in 2D.

It can be transformed into Bessel equation for y(x) = R(
√
λx): y′′(x)+y′(x)

x +x2−m2

x2
y(x) = 0.

Assume Re(m) ≥ 0. Then the solution of Bessel equation with behaviour xm for x ∼ 1 is
called Bessel function of the first kind Jm(x). It has infinitely many zeros on the positive real
axis (including x = 0 if m > 0).

Bessel functions satisfy the following orthogonality relations:∫ 1

0
xJα(µα,kx)Jα(µα,lx) ∝ δkl, (1.17)

∀α, k = 1, 2, . . . , where µα,k denote the zeros, Jα(µα,k) = 0, k = 1, 2, . . . .

Radial coordinates in 3D The Laplace operator in 3D is ∆(3D) ≡ ∂2x + ∂2y + ∂2z . In radial
coordinates it becomes:

∂2r +
2∂r
r

+
∂2θ + cot θ∂θ +

∂2φ
sin2 θ

r2
, (1.18)

where the radial coordinates are r =
√
x2 + y2 + z2, θ = arccos zr , φ arcsin y

r sin θ = arccos x
r sin θ .

Notable radial equation in 3D - Laplace The ODE

R′′(r) +
2R′(r)

r
− l(l + 1)R(r)

r2
= 0, (1.19)

arises studying Laplace equation ∆u = 0 in radial coordinates in 3D.
This equation has two independent solutions: R(r) = rl and r−l−1.

Notable radial equation in 3D - Helmholtz Studying the more general Helmholtz
equation, ∆(3D)u = −λu, the radial part leads to the ODE

R′′(r) +
2R′(r)

r
− l(l + 1)R(r)− λr2R(r)

r2
= 0, (1.20)
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This equation can also be mapped to Bessel equation doing the substitution y(x) = R(
√
λx)/

√
x.

check it!
Assume Re(l) ≥ 0. The solution with behaviour R(r) ∼ rl can be written as R(r) ∝

J
l+1

2
(
√
λr)

√
λ r

.

Note: The simplest case is for l = 0 (which is relevant to decompose the angle-independent
part of solutions of Helmholtz’s equation on the sphere). In this case, the eigenfunction is simple

because J 1
2
(x)/
√
x =

√
2
π
sinx
x .
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