Useful equations

These equations, if relevant for the test, will be distributed during the written exam.
Orthogonality properties for trigonometric functions: for $m, n \in \mathbb{N}$:

$$
\begin{align*}
\frac{2}{L} \int_{0}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x & =\delta_{m . n} \tag{0.1}\\
\frac{2}{L} \int_{0}^{L} \cos \left(\frac{n \pi x}{L}\right) \cos \left(\frac{m \pi x}{L}\right) d x & =\delta_{m . n} 2^{\delta_{n, 0}}, \tag{0.2}\\
\frac{2}{L} \int_{0}^{L} \cos \left(\frac{2 n \pi x}{L}\right) \sin \left(\frac{2 m \pi x}{L}\right) d x & =\frac{2}{L} \int_{0}^{L} \cos \left(\frac{(2 n+1) \pi x}{L}\right) \sin \left(\frac{(2 m+1) \pi x}{L}\right) d x=0 . \tag{0.3}
\end{align*}
$$

Orthogonality for Bessel functions:

$$
\begin{align*}
\int_{0}^{1} d x x J_{m}\left(\mu_{m, i} x\right) J_{m}\left(\mu_{m, j} x\right) & \propto \delta_{i, j}, \tag{0.4}\\
\int_{0}^{1} d x x J_{m}\left(\nu_{m, i} x\right) J_{m}\left(\nu_{m, j} x\right) & \propto \delta_{i, j}, \tag{0.5}
\end{align*}
$$

where $\mu_{m, i}, i=1, \ldots, \infty$ are zeros of the Bessel function $J_{m}: J_{m}\left(\mu_{m, i}\right)=0$, and $\nu_{m, i}, i=$ $1, \ldots, \infty$ are zeros of its first derivative: $J_{m}^{\prime}\left(\nu_{m, i}\right)=0$.

Bessel differential equation:

$$
\begin{equation*}
x^{2} y^{\prime \prime}(x)+x y^{\prime}(x)+\left(x^{2}-\alpha^{2}\right) y(x)=0 . \tag{0.6}
\end{equation*}
$$

For $\alpha \geq 0$, the solution with $y(x) \sim x^{\alpha}$ at $x \sim 0$ is $y(x)=J_{\alpha}(x)$ (Bessel function of the first kind).

Spherical Bessel differential equation:

$$
\begin{equation*}
x^{2} y^{\prime \prime}(x)+2 x y^{\prime}(x)+\left(x^{2}-\ell(\ell+1)\right) y(x)=0 . \tag{0.7}
\end{equation*}
$$

For $\ell \geq 0$, the solution with $y(x) \sim x^{\ell}$ at $x \sim 0$ is $y(x)=j_{\ell}(x) \equiv \sqrt{\frac{\pi}{2 x}} J_{\ell+\frac{1}{2}}(x)$.
Orthogonality for spherical harmonics, and their definition:

$$
\begin{equation*}
\int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \phi Y_{\ell}^{m}(\theta, \phi)\left(Y_{\ell^{\prime}}^{m^{\prime}}(\theta, \phi)\right)^{*} \propto \delta_{m, m^{\prime}} \delta_{\ell, \ell^{\prime}} \tag{0.8}
\end{equation*}
$$

Their definition is: $Y_{\ell}^{m}(\theta, \phi)=e^{i m \phi} P_{\ell}^{|m|}(\cos \theta)(|m| \leq \ell, m \in \mathbb{Z}, \ell \in \mathbb{N})$, with

$$
P_{\ell}^{|m|}(x) \equiv \frac{(-1)^{m}}{2^{\ell} \ell!}\left(1-x^{2}\right)^{2 \frac{|m|}{2}} \frac{d^{\ell+|m|}}{d x^{l+|m|}}\left[\left(x^{2}-1\right)^{\ell}\right] .
$$

2D Laplace operator in polar coordinates

$$
\begin{equation*}
\Delta^{(2 D)}=\partial_{r}^{2}+\frac{\partial_{r}}{r}+\frac{\partial_{\theta}^{2}}{r^{2}} . \tag{0.9}
\end{equation*}
$$

3D Laplace operator in polar coordinates

$$
\begin{equation*}
\Delta^{(3 D)}=\partial_{r}^{2}+2 \frac{\partial_{r}}{r}+\frac{\Delta_{S}}{r^{2}}, \tag{0.10}
\end{equation*}
$$

where $\vec{x}=(x, y, z)=(r \cos \phi \sin \theta, r \sin \phi \sin \theta, r \cos \theta)$, and the angular part is:

$$
\begin{equation*}
\Delta_{S}=\partial_{\theta}^{2}+\cot (\theta) \partial_{\theta}+\frac{\partial_{\phi}^{2}}{\sin ^{2} \theta} \tag{0.11}
\end{equation*}
$$

The action of the angular part on spherical harmonics is: $\Delta_{S} \circ Y_{\ell}^{m}(\theta, \phi)=-\ell(\ell+1) Y_{\ell}^{m}(\theta, \phi)$.
Canonical form of P-symbol The "canonical form" of the Papperitz Riemann equation is

$$
y=P\left\{\begin{array}{cccc}
& 0 & 1 & \infty \tag{0.12}\\
x & 0 & 0 & a \\
& 1-c & c-a-b & b
\end{array}\right\}
$$

and one of the solutions of this canonical ODE is:

$$
\begin{equation*}
y(x)={ }_{2} F_{1}(a, b ; c ; x) \tag{0.13}
\end{equation*}
$$

All other solutions can be found via transformations.
Wronskian formula for inhomogeneous solution of 2 nd order linear ODE If y_{1}, y_{2} are two independent solutions of the linear homogeneous ODE:

$$
\begin{equation*}
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0, \tag{0.14}
\end{equation*}
$$

then

$$
\begin{equation*}
y_{\mathrm{inh}}(x) \equiv \int^{x} H(x, t) r(t) d t, \tag{0.15}
\end{equation*}
$$

with

$$
H(x, t) \equiv \frac{\left|\begin{array}{cc}
y_{1}(t) & y_{2}(t) \tag{0.16}\\
y_{1}(x) & y_{2}(x)
\end{array}\right|}{W(t)}, \quad W(t) \equiv\left|\begin{array}{cc}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right|,
$$

satisfies

$$
\begin{equation*}
y_{\mathrm{inh}}^{\prime \prime}+P(x) y_{\mathrm{inh}}^{\prime}+Q(x) y_{\mathrm{inh}}=r(x) . \tag{0.17}
\end{equation*}
$$

