Exercises on ODEs first part

0.1 Direct methods

Write the solutions to the following ODE problems for the function $y(x)$ using the methods discussed in the lectures. The methods are: separation of variables, the potential method, and methods for homogeneous and inhomogeneous linear equations, in particular variation of constants.

NOTE: one typo was corrected in Ex. 4.

Problems

1) Find the general solution to $x y^{\prime}(x)=1+y(x)$;
2) Find the solution to $x y^{\prime}-x y=y$ such that $y=1$ for $x=1$;
3) Write the general solution to $y^{\prime}\left(y+x^{2}\right)+2 x y+\sin (x)=0$.
4) Consider the ODE $y^{\prime \prime}+2 y^{\prime}+y=e^{-x}$. A particular solution is given by $y=\frac{x^{2} e^{-x}}{2}$. Write the general solution.
5) Find the general solution to $y^{\prime}-x y=1$.
6) Solve $\left(1+y^{2}\right)+x y y^{\prime}=0$ with $y=0$ when $x=5$.
7) Write in implicit form the general solution to $y^{\prime}\left(x e^{y}+1\right)+x^{2}+e^{y}=0$.
8) Find the solution to $y^{\prime}+x^{2} y=x^{2}$ such that $y=3$ for $x=0$.
9) Consider the ODE: $y^{\prime \prime}+2 x y^{\prime}-2 y=0$. A solution is given by $y(x)=x$. Write the general solution.
10) Solve $(\cos (x)+1) y^{\prime}-(y+1) \sin (x)-2 x=0$, with $y(0)=0$.

Solutions and hints:

1) Hint: separable equation. Solution: $y(x)=A x-1$.
2) Hint: separable. Solution: $y(x)=e^{-1+x} x$.
3) Hint: use the potential method. Solution: $y(x)= \pm \sqrt{A+x^{4}+2 \cos (x)-1}-x^{2}$.
4) Hint: we need to construct two solutions of the homogeneous equation, using the exponential ansatz. Solution: The two independent solutions are e^{-x} and $x e^{-x}$ (Notice that the indices of the characteristic equation coincide). The general solution is $y(x)=\frac{x^{2} e^{-x}}{2}+\left(A_{1}+A_{2} x\right) e^{-x}$.
5) Hint: use the variation of constants method. Solution: $y(x)=e^{\frac{x^{2}}{2}}+A \int_{0}^{x} e^{\frac{x^{2}-s^{2}}{2}} d s$.
6) Hint: separable. Solution: $y(x)= \pm \frac{\sqrt{25-x^{2}}}{x^{2}}$.
7) Hint: use the potential method. Solution: the potential is (apart for additive constant) $U(x, y)=\frac{x^{3}}{3}+x e^{y}+y-1$ and solutions are given in implicit form by $U(x, y)=A$.
8) Hint: (for instance) you can use the variation of constants method to find the particular solution to the inhomogeneous equation (but you can also probably guess it). Solution: $y(x)=1+2 e^{-\frac{x^{3}}{3}}$.
9) Hint: Construct a second independent solution by variation of constants. Solution: the second solution is obtained after solving the ODE with the ansatz $y_{2}(x)=a_{2}(x) x$. We find $y_{2}(x)=x \int^{x} e^{-s^{2}} \frac{d s}{s^{2}}$. The general solution is $y(x)=A_{1} x+A_{2} x \int^{x} e^{-s^{2}} \frac{d s}{s^{2}}$.
10) Hint: Potential method. Solution: $y(x)=\frac{x^{2}-\cos (x)+1}{\cos (x)+1}$.
