Exercises on ODEs first part

0.1 Direct methods

Write the solutions to the following ODE problems for the function y(x) using the methods discussed in the lectures. The methods are: separation of variables, the potential method, and methods for homogeneous and inhomogeneous linear equations, in particular variation of constants.

NOTE: one typo was corrected in Ex. 4.

Problems

- 1) Find the general solution to xy'(x) = 1 + y(x);
- 2) Find the solution to xy' xy = y such that y = 1 for x = 1;
- 3) Write the general solution to $y'(y+x^2) + 2xy + \sin(x) = 0$.
- 4) Consider the ODE $y'' + 2y' + y = e^{-x}$. A particular solution is given by $y = \frac{x^2 e^{-x}}{2}$. Write the general solution.
- 5) Find the general solution to y' xy = 1.
- 6) Solve $(1+y^2) + xyy' = 0$ with y = 0 when x = 5.
- 7) Write in implicit form the general solution to $y'(xe^y+1)+x^2+e^y=0$.
- 8) Find the solution to $y' + x^2y = x^2$ such that y = 3 for x = 0.
- 9) Consider the ODE: y'' + 2xy' 2y = 0. A solution is given by y(x) = x. Write the general solution.
- 10) Solve $(\cos(x) + 1)y' (y + 1)\sin(x) 2x = 0$, with y(0) = 0.

Solutions and hints:

- 1) Hint: separable equation. Solution: y(x) = Ax 1.
- 2) Hint: separable. Solution: $y(x) = e^{-1+x}x$.
- 3) Hint: use the potential method. Solution: $y(x) = \pm \sqrt{A + x^4 + 2\cos(x) 1} x^2$.
- 4) Hint: we need to construct two solutions of the homogeneous equation, using the exponential ansatz. Solution: The two independent solutions are e^{-x} and xe^{-x} (Notice that the indices of the characteristic equation coincide). The general solution is $y(x) = \frac{x^2e^{-x}}{2} + (A_1 + A_2x)e^{-x}$.
- 5) Hint: use the variation of constants method. Solution: $y(x) = e^{\frac{x^2}{2}} + A \int_0^x e^{\frac{x^2 s^2}{2}} ds$.

- 6) Hint: separable. Solution: $y(x) = \pm \frac{\sqrt{25-x^2}}{x^2}$.
- 7) Hint: use the potential method. Solution: the potential is (apart for additive constant) $U(x,y) = \frac{x^3}{3} + xe^y + y 1$ and solutions are given in implicit form by U(x,y) = A.
- 8) Hint: (for instance) you can use the variation of constants method to find the particular solution to the inhomogeneous equation (but you can also probably guess it). Solution: $y(x) = 1 + 2e^{-\frac{x^3}{3}}$.
- 9) Hint: Construct a second independent solution by variation of constants. Solution: the second solution is obtained after solving the ODE with the ansatz $y_2(x) = a_2(x)x$. We find $y_2(x) = x \int^x e^{-s^2} \frac{ds}{s^2}$. The general solution is $y(x) = A_1 x + A_2 x \int^x e^{-s^2} \frac{ds}{s^2}$.
- 10) Hint: Potential method. Solution: $y(x) = \frac{x^2 \cos(x) + 1}{\cos(x) + 1}$.