
1 Exercises on 2nd order PDEs

Note: In all these exercises, Fourier coefficients can be expressed as integrals. It is not required
to compute the integrals explicitly.

NOTE: typos corrected in (1.29), (1.38).

1.1 Heat equation

Hint: When the problem has non-homogeneous boundary conditions, it is convenient to
subtract an appropriate function in order to get a problem with homogeneous boundary
conditions.

Ex. 1 (a)

Consider a bar of length L with heat diffusivity coefficient α. The bar’s ends are kept at constant
temperatures u(0, t) = T1, u(L, t) = T2. The initial temperature is u(x, t = 0) = 4(L− x)2x2.

• What is the temperature distribution at t =∞? (This can be answered without explicit
calculations).

• Write the solution at generic times.

Solution To find the solution we split

u(x, t) = T1 + x
T2 − T1

L
+ v(x, t). (1.1)

Now v(x, t) has boundary conditions v(0, t) = v(L, t) = 0.

• Because of the boundary conditions, v(x, t) will be expanded in a sine-series, which implies
(for the heat equation) that its limit at large times is zero (we will see it explicitly below).
Therefore we conclude that

lim
t→∞

u(x, t) = T1 + x
T2 − T1

L
. (1.2)

• The solution has the form

u(x, t) = T1 + x
T2 − T1

L
+
∞∑
n=1

cn sin(
nπ

L
x)e−α(nπ

L
)2t, (1.3)

where, matching the initial condition, we find

cn =
2

L

∫ L

0
dx sin(

nπ

L
x) v(x, 0), (1.4)

with v(x, 0) = 4(L− x)2x2 − T1 − xT2−T1L .
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Ex. 1 (b)

Consider the same setup as above, with initial condition a constant u(x, t = 0) = T0, and
the two ends both kept at constant temperature T = 0, i.e. u(0, t) = u(L, t) = 0. Write the
solution at generic times as a Fourier series.

Solution In this case

u(x, t) =
∞∑
n=1

cn sin(
nπ

L
x)e−α(nπ

L
)2t, (1.5)

with

cn =
2

L

∫ L

0
dx sin(

nπ

L
x) T0 = T0

2

nπ
(1− (−1)n) . (1.6)

Ex. 2 - One-dimensional, different boundary conditions

A bar of length L = π is initially at temperature T = 0 at time t = 0. At times t > 0, the left
end of the bar is insulated, while the right end is kept at constant temperature T = 50. Find
an expression for the time-dependent temperature distribution.

Hint: The fact that the left end is insulated means that there is no heat flow across this
end. Remember that the heat flow is proportional to the gradient of the temperature.

Solution The boundary conditions are ux(0, t) = 0, u(π, t) = 50.
Because the right BC is not homogeneous we subtract:

u(x, t) = v(x, t) + ax+ b (1.7)

such that vx(0, t) = 0, v(π, t) = 0. We should choose a = 0, b = 50, so u(x, t) = v(x, t) + 50.
The initial condition u(x, 0) = 0 now becomes

v(x, 0) = −50. (1.8)

and vx(0, t) = v(π, t) = 0. Expanding in the appropriate eigenfunctions we have

v(x, t) =

∞∑
n=0

cn cos((n+
1

2
)x)e−α(n+ 1

2
)2t, (1.9)

where

cn = −50
2

π

∫ π

0
dx cos((n+

1

2
)x) =

100(−1)n+1

π(n+ 1
2)

. (1.10)

So:

u(x, t) = 50 +

∞∑
n=0

100(−1)n+1

π(n+ 1
2)

cos((n+
1

2
)x)e−α(n+ 1

2
)2t (1.11)
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Ex. 3 - With time-dependent boundary conditions

At time t = 0, a bar of length L has uniform temperature u(x, t = 0) = 0, 0 ≤ x ≤ L. For
t > 0, the endpoints of the bar are heated such that

u(x = 0, t) = 3t, u(x = L, t) = 4t, (1.12)

for 0 ≤ t ≤ 1. What is the temperature distribution at t = 1?
Hint: Do a subtraction in order to get a homogeneous boundary condition. Notice that

in this case this will lead you to a non-homogeneous PDE to solve. You can solve it using a
Fourier decomposition with time-dependent coefficients (the same trick that we used to solve
the problem of the wave equation subject to an external force). Derive the ODE satisfied by
the coefficients and solve it.

Solution Again we do a subtraction

u(x, t) = 3t+
x

L
t+ v(x, t), (1.13)

so that
v(0, t) = v(L, t) = 0. (1.14)

The IC is in this case still
v(x, 0) = 0. (1.15)

and now v satisfies the inhomogeneous PDE:

vt − αvxx = −3− x

L
. (1.16)

Now we try to solve with

v(x, t) =
∞∑
n=1

sin(
nπ

L
x) cn(t), (1.17)

where the initial condition demands
cn(0) = 0. (1.18)

From the PDE (1.16), we deduce an ODE for the coefficients:

c′n(t) + αk2
ncn(t) = dn, (1.19)

with
kn ≡

nπ

L
, (1.20)

where dn is the coefficient of the decomposition −3− x
L =

∑∞
n=1 sin(nπL x) dn for 0 ≤ x ≤ L, i.e.

dn = − 2

L

∫ L

0
(3 +

x

L
) sin(

nπ

L
x) dx. (1.21)
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To solve the ODE (1.19) we notice that the homogeneous equation has solution e−αtk
2
n . We can

find a solution of the inhomogeneous equation by the variation of constants method. or we just
notice that we can choose a constant solution, since the inhomogeneous term is independent
on t. Indeed, a solution of the inhomogeneous equation is cinh(t) = dn

αk2n
, so cn(t) = Ane

−αk2nt +

dn/αk
2
n, and matching the initial condition (1.18) we find

cn(t) =
dn
αk2

n

(
1− e−αk2nt

)
. (1.22)

This completes our solution:

u(x, t) = 3t+
x

L
t+

∞∑
n=1

sin(
nπ

L
x)

dn
αk2

n

(
1− e−αk2nt

)
. (1.23)

with dn defined in (1.21), and we can use this formula to evaluate the temperature at t = 1.

Ex. 4 - Sphere

Write the equations describing the cooling of a sphere of radius R, with initial uniform tem-
perature u(~x, t = 0) = T0 > 0, which is immersed in a space with uniform temperature
Text = 0.

Hint: use spherical coordinates. See formulas at the end of the file for the relevant
eigenfunctions (there are some simplifications given this initial distribution).

Solution The solution of this exercise is written in the notes’ file in the chapter on the heat
equation.

1.2 Wave equation

Ex. 5 - 1D

A string of length L, fixed at the points x = 0 and x = L on the horizontal axis, has initially a
displacement of the form u(x, t = 0) = sin2(xπL ), and its transversal velocity is ∂

∂tu(x, t)
∣∣
t=0

= 0.
The endpoints of the strings are kept fixed. The propagation speed for waves on the string is
v.

• Is the motion of the string for t > 0 periodic? If yes, what is its period (i.e., minimal
time such that the motion repeats itself)?

• Derive an explicit expression for u(x, t) for t > 0 (it can be written as an infinite Fourier
series, which does not need to be summed. The coefficients should be defined explicitly,
as integrals).

Hint: The first point can be answered both using the method of images and using the Fourier
decomposition method. Try to deduce the answer using both methods.

4



Solution

• The motion of the wave equation in an interval domain is periodic. To compute the period,
we notice that in the Fourier method the solution will be written in terms of functions
with time periods 2π

ωn
, with ωn = nπ

L v. These periods are all integer subdivisions of the
period of the first harmonic, which is therefore the period of the full solution: the period
is 2π/ω1 = 2L

v . Alternatively, we can think in terms of the method of images: the solution
will be given by the evolution of an odd-extension of the solution, which is a function
with space period 2L. Since in the wave equation features of the solution propagate with
speed v, to obtain the time period we can just divide the space period by v. We reobtain,
indeed, 2L/v.

• The form of the solution is

u(x, t) =
∞∑
n=1

cn sin(
nxπ

L
) cos(

nπ

L
vt), (1.24)

where we already used the condition that ut = 0 at t = 0 to eliminate sines in the t
variable.

The coefficients (matching with initial condition) are

cn =
2

L

∫ L

0
dx sin(

nxπ

L
) sin2(

xπ

L
). (1.25)

Ex. 6 - Vibrations of a drum

Consider a circular drum of radius R. The propagation speed for waves on the drum is v.

• What are the vibration frequencies of the drum?

• Suppose that at time t = 0 the displacement of the drum’s membrane is u(r, θ, t = 0) =
(r2 − R2) cos θ, and its initial velocity is ∂tu(r, θ, t = 0) = 0. Write an explicit solution
using the eigenfunctions method for the displacement of the membrane. The coefficients
of the series can be defined as explicit integrals, but there is no need to compute the
integrals or sum the series.

Hint: To recall the form of the eigenfunctions in this case, see notes at the end of the file.

Solution

• Recalling the form of the solution in polar coordinates (see below), the vibration frequen-
cies can be ωm,i = v

µm,i
R , m ∈ N, i ∈ N+, where µm,i are zeros of Bessel functions of the

first kind with integer parameter: Jm(µm,i) = 0 for i = 1, 2, 3, . . . , (m ∈ N).
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• Since the initial condition contains the angular part cos θ, it is already decomposed in
the angular part, with m = 1. This tells us that we should have a decomposition of the
form

u(r, θ, t) = cos θ
∞∑
i=1

J1(µ1,i
r

R
) (ci cos(ω1,it) + di sin(ω1,it)) , 0 ≤ r ≤ R, (1.26)

with ω1,i defined above.

From the initial conditions we read:

di = 0, i = 1, 2, 3, . . . , (1.27)

and

ci =

∫ R
0 rdrJ1(µ1,i

r
R) (r2 −R2)

.
∫ R

0 rdr(J1(µ1,i
r
R))2.

. (1.28)

Ex. 7 - A different drum

Consider a second drum (with the same propagation speed v) which has the shape of a quarter
of a disk, namely in radial coordinates, 0 ≤ r ≤ R, 0 ≤ θ ≤ π

2 .

• What are the vibration frequencies of the drum?

• Suppose that at time t = 0 the displacement of the drum’s membrane is u(r, θ, t = 0) = 0,
and its initial velocity is ∂tu(r, θ, t = 0) = sin(2θ)(r − R) + sin(4θ)(r − R)2. Write an
explicit solution using the eigenfunctions method for the displacement of the membrane.

Solution

• In the new situation we have an additional boundary condition, namely u(r, θ, t) has to
satisfy u(r, 0, t) = u(r, π2 , t) = 0. This means that for the angular part, the allowed eigen-
functions are no longer sinmθ, cosmθ, with m ∈ N, but only sin(kθ) with k ∈ 2N (which
guarantees that at θ = π/2 they vanish). Thus, the radial part will be given by Bessel
function with indices k which can only be even integers. Thus, the frequencies of this
drum are v

µk,i
R , with k ∈ N , i ∈ N+ (which is a subset of the ones of the full circular drum).

GENERALIZATION: Notice also that if we had a drum with the shape of a circle sector
with angle α (rather than π/2), then the frequencies would be v

µk,i
R with k ∈ Nπ

α , i ∈ N+.

• The solution with this initial conditions should have the form

u(r, θ, t) = sin(2θ)

∞∑
i=1

aiJ2(
µ2,i

R
r) sin(ω2,it) + sin(4θ)

∞∑
i=1

biJ4(
µ4,i

R
r) sin(ω4,it), (1.29)
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(ωk,i ≡ v
µk,i
R ), where we exploited that the initial condition was already decomposed in

the angular variable, and also we used u = 0 at t = 0 to eliminate the cosines in the time
dependence.

The coefficients, obtained matching with ut at t = 0, are:

ai =
1

ω2,i

∫ R
0 rdrJ2(µ2,i

r
R) (r −R)

.
∫ R

0 rdr(J2(µ2,i
r
R))2

, (1.30)

bi =
1

ω4,i

∫ R
0 rdrJ4(µ4,i

r
R) (r −R)2

.
∫ R

0 rdr(J4(µ4,i
r
R))2

. (1.31)

1.3 Laplace/Poisson equation

Ex. 8 - Dirichlet rectangle

A square metal plate of side π (0 ≤ x, y ≤ π), has its sides kept at the following temperatures:

T (x, 0) = T (π, y) = 0, T (0, y) = sin y, T (x, π) = 5 sin 2x− 7 sin 8x, 0 ≤ x, y ≤ π.
(1.32)

What is the equilibrium temperature of the plate?

Solution The equilibrium temperature can be found by solving the Laplace equation (i.e.,
what remains of the heat equation after imposing time independence).

To solve the problem on this square domain, we need to break into two, T (x, y) = u1(x, y)+
u2(x, y), where u1, u2 solve Laplace equation with BC’s:

u1(0, y) = sin(y), 0 ≤ y ≤ π, and is zero on the other three sides , (1.33)

u2(x, π) = 5 sin 2x− 7 sin 8x, 0 ≤ x ≤ π, and is zero on the other three sides . (1.34)

Solutions are found with the eigenfunctions method as explained in the notes in the Laplace
equation part.

Notice that here we do not have infinite sums because the data of the problem are already
divided into a a finite number of eigenfunctions, so the other ones will never be involved. So,
even though in general we would have u1(x, y) =

∑
n sinny (An coshnx+Bn sinhnx), here we

will have only a single term:

u1(x, y) = sin y (A coshx+B sinhx) (1.35)

and imposing that u1(π, y) = 0 and u1(0, y) = sin y we get:

u1(x, y) = sin(y)
sinh(π − x)

sinh(π)
. (1.36)

Similarly we find:

u2(x, y) = 5 sin(2x)
sinh(2y)

sinh(2π)
− 7 sin(8x)

sinh(8y)

sinh(8π)
, (1.37)

and the full solution is Tequilibrium(x, y) = u1(x, y) + u2(x, y).
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Ex. 9 - Neumann rectangle

Consider the Laplace equation uxx+uyy = 0 on a rectangular domain of sides L, M (0 ≤ x,≤ L,
0 ≤ y ≤M), with Neumann boundary conditions

ux(0, y) = ux(L, y) = uy(x,M) = 0, uy(x, 0) = f(x). (1.38)

Write a form for the solution using Fourier’s method. Specify any consistency conditions that
are required.

Solution The Neumann problem for Laplace’s equation always has a consistency condition
(see notes).

The consistency condition is (see notes)∫
∂Ω

∂

∂n
u dS = 0, (1.39)

where Ω is the domain, so in our case it becomes∫ L

0
dxf(x) = 0. (1.40)

We will see why it is needed to solve the problem, also in the eigenfunctions method.

Since the solution has zero Neumann BC’s on three sides, apart for the one at y = 0, we use a
decomposition of the form∗

u(x, y) = A0 +
∞∑
n=1

cos(
nπ

L
x)
(
An cosh(

nπ

L
y) +Bn sinh(

nπ

L
y)
)
, (1.41)

We still need to impose the BC’s on the top and bottom sides. The top side gives

u(x, y) = A0 +
∞∑
n=1

cos(
nπ

L
x) Cn cosh(

nπ

L
(y −M)), (1.42)

and the condition on the bottom side gives

∞∑
n=1

cos(
nπ

L
x) Cn

nπ

L
sinh(

nπ

L
(M)) = f(x). (1.43)

The condition for f(x) to be expandable in this cosine series without the constant term is
precisely the condition (1.40). If and only if (1.40) is satisfied, then we have

Cn =
2

nπ sinh(nπL (M))

∫ L

0
dxf(x) cos(

nπ

L
x), (1.44)

and this completes the solution.

∗Notice that A0 is an additive constant which we cannot fix (the Neumann problem has this ambiguity, i.e.
the solution is defined up to an additive constant).
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Ex. 10 - Disk

Consider Laplace equation ∆(2D)u = 0 in the interior of a disk of radius R, with boundary
condition u(R, θ) = f(θ) on the boundary of the disk.

• Using the Green’s function method discussed in the lecture, write down explicitly the
solution at an interior point u(r, φ), as a function of the boundary data.

• Derive an alternative form of the solution using the Fourier method.

Solution It is contained in the notes in the part on Laplace equation.

Ex. 11 - Annulus

Consider Laplace equation in the interior of an annulus region, namely the region defined by
R1 < r < R2, r =

√
x2 + y2.

Consider the case R2 = 2, R1 = 1. Using a decomposition into eigenfunctions in radial
coordinates, solve the following boundary value problem:†

∆(2D)u = 0, R1 < r < R2, u(R1, θ) = sin 2θ, u(R2, θ) = 0. (1.45)

Solution In the second part of the previous question, we saw that in polar coordinates solu-
tions to Laplace equation in the disk are a superposition of terms

∑∞
n=0 r

n (An cos(nθ) +Bn sin(nθ)).
This follows because rn is the solution to the radial part of the Laplace equation, once the an-
gular part is fixed. There is a second solution r−n (or log r for n = 0), which is discarded
because it is singular at r = 0.

However, now that we study an annular region there is no reason to exclude these solutions and
indeed we need them in order to satisfy the extra boundary condition on the inner boundary.

So the ansatz now is:

u(r, θ) =
∞∑
n=1

rn (An cos(nθ) +Bn sin(nθ)) +
∞∑
n=1

r−n (Cn cos(nθ) +Dn sin(nθ)) +A0 +C0 log r,

(1.46)
for R1 < r < R2. The two boundary conditions give

sin(2θ) = A0 + C0 logR1 +

∞∑
n=1

[(
AnR

n
1 + CnR

−n
1

)
cos(nθ) +

(
BnR

n
1 +DnR

−n
1

)
sin(nθ)

]
,

0 = A0 + C0 logR2 +

∞∑
n=1

[(
AnR

n
2 + CnR

−n
2

)
cos(nθ) +

(
BnR

n
2 +DnR

−n
2

)
sin(nθ)

]
.

†The boundary condition is simplified with respect to the original file, just to make the calculation shorter.
One could solve the general case with exactly the same method, i.e. the inner and outer boundary conditions
can be any functions.
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We see that we have to set to zero all coefficients‡ apart for the following ones:

B2 =
R2

1

R4
1 −R4

2

, D2 = − R2
1R

4
2

R4
1 −R4

2

, (1.47)

so the solution is

u(r, θ) = sin(2θ)

(
R2

1

R4
1 −R4

2

r2 − R2
1R

4
2

R4
1 −R4

2

r−2

)
. (1.48)

1.4 Relevant formulas

1.4.1 Fourier orthogonality

The following orthogonality properties of the sine/cosine functions are the basis of Fourier
analysis:

1

L

∫ 2L

0
sin(

nπx

L
) sin(

mπx

2L
) = δmn, n,m ∈ N+ (1.49)

1

L

∫ 2L

0
cos(

nπx

L
) cos(

mπx

2L
) =

δmn
2δm,0

, n,m ∈ N, (1.50)

1

L

∫ 2L

0
cos(

nπx

L
) sin(

mπx

2L
) = 0. (1.51)

In some types of applications we often need the following relations:

2

L

∫ L

0
sin(

nπx

L
) sin(

mπx

2L
) = δmn, n,m ∈ N+, (1.52)

2

L

∫ L

0
cos(

nπx

L
) cos(

mπx

2L
) =

δmn
2δm,0

n,m ∈ N, , (1.53)

which are a simple consequence of the two above (notice that instead (1.51) above does not
generalize to the half-interval).

In problems with mixed Dirichlet-Neumann boundary conditions, the following are useful:

2

L

∫ L

0
sin(

(n+ 1
2)πx

L
) sin(

(n+ 1
2)πx

2L
) = δmn, n,m ∈ N, (1.54)

2

L

∫ L

0
cos(

(n+ 1
2)πx

L
) cos(

(n+ 1
2)πx

2L
) = δmn, n,m ∈ N, (1.55)

The standard Fourier decomposition of a function defined on an interval [0, 2L] involves
both sine and cosine functions.

f(x) =
a0

2
+
∞∑
n=1

(an cos(nπx/L) + bn sin(nπx/L)) . (1.56)

‡We could have started already with an ansatz with only the relevant angular part, and then fixed the last
two coefficients

10



this defines a function of period 2L. The coefficients can be found explicitly using orthogonality.
For instance, integrating sin(nπxL ) against the function, and using the orthogonality above, we

deduce bn = 1
L

∫ 2L
0 dx sin(nπxL )f(x).

Often in PDE problems we want to use a different type of series expansion, which is needed
to capture the boundary conditions. Typically, we use a basis of trigonometric functions which
corresponds to the standard Fourier decomposition of a larger interval.

For instance, consider a function f(x) defined on the interval x ∈ [0, L]. In problems
where we want to impose Dirichlet-Dirichlet boundary conditions, we use an expansion as a
sine-series:

f(x) =

∞∑
n=1

dn sin(nπx/L). (1.57)

Notice that this defines a function of period 2L, which is odd: f(x) = −f(−x). It is the odd

extension of the original function. The coefficients are given by dn = 2
L

∫ L
0 dx sin(nπxL )f(x), as

can be deduced using the orthogonality relations (1.52) above.

1.4.2 Radial coordinates

Radial coordinates in 2D The Laplace operator in 2D is ∆(2D) ≡ ∂2
x + ∂2

y . In radial
coordinates it becomes:

∂2
r +

∂r
r

+
∂2
θ

r2
, (1.58)

where the radial coordinates are r =
√
x2 + y2, θ = arccos xr = arcsin y

r .

Notable radial equation in 2D - Laplace The ODE

R′′(r) +
R′(r)

r
− m2R(r)

r2
= 0 (1.59)

arises studying Laplace equation ∆u = 0 in radial coordinates in 2D.
This equation has two independent solutions: R(r) = r±m for m > 0, and for m = 0 the

two independent solutions are: R(r) = const, R(r) = log r.

Notable radial equation in 2D - Helmoltz The ODE

R′′(r) +
R′(r)

r
+
λ r2R(r)−m2R(r)

r2
= 0 (1.60)

arises studying Helmoltz equation ∆u = −λu in radial coordinates in 2D.

It can be transformed into Bessel equation for y(x) = R(
√
λx): y′′(x)+y′(x)

x +x2−m2

x2
y(x) = 0.

Assume Re(m) ≥ 0. Then the solution of Bessel equation with behaviour xm for x ∼ 1 is
called Bessel function of the first kind Jm(x). It has infinitely many zeros on the positive real
axis (including x = 0 if m > 0).
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Bessel functions satisfy the following orthogonality relations:∫ 1

0
xJα(µα,kx)Jα(µα,lx) ∝ δkl, (1.61)

∀α, k = 1, 2, . . . , where µα,k denote the zeros, Jα(µα,k) = 0, k = 1, 2, . . . .

Radial coordinates in 3D The Laplace operator in 3D is ∆(3D) ≡ ∂2
x + ∂2

y + ∂2
z . In radial

coordinates it becomes:

∂2
r +

2∂r
r

+
∂2
θ + cot θ∂θ +

∂2φ
sin2 θ

r2
, (1.62)

where the radial coordinates are r =
√
x2 + y2 + z2, θ = arccos zr , φ arcsin y

r sin θ = arccos x
r sin θ .

Notable radial equation in 3D - Laplace The ODE

R′′(r) +
2R′(r)

r
− l(l + 1)R(r)

r2
= 0, (1.63)

arises studying Laplace equation ∆u = 0 in radial coordinates in 3D.
This equation has two independent solutions: R(r) = rl and r−l−1.

Notable radial equation in 3D - Helmoltz Studying the more general Helmoltz equation,
∆(3D)u = −λu, the radial part leads to the ODE

R′′(r) +
2R′(r)

r
− l(l + 1)R(r)− λr2R(r)

r2
= 0, (1.64)

This equation can also be mapped to Bessel equation doing the substitution y(x) = R(
√
λx)/

√
x.

check it!
Assume Re(l) ≥ 0. The solution with behaviour R(r) ∼ rl can be written as R(r) ∝

J
l+1

2
(
√
λr)

√
λ r

.

Note: The simplest case is for l = 0 (which is relevant to decompose the angle-independent
part of solutions of Helmoltz’s equation on the sphere). In this case, the eigenfunction is simple

because J 1
2
(x)/
√
x =

√
2
π

sinx
x .
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