
Answers

Exercise 1.
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Exercise 2

• Given the initial condition u(x, 0) = u0(x) (in the present case u0(x) = 4
1+x2

), the solution
is given in implicit form by:

u(x, t) = u0(s) (0.3)

with
x = ets+ (et − 1)u0(s) (0.4)

• The equation forms a gradient singularity when the Jacobian of the map (x, t) vanishes.
The Jacobian is in this case ∂sx = et + (et − 1)u′0(s), so the singularity occurs when

xs = 0 −→ et = u′(s)
1+u′0(s)

.

The time when the singularity forms is described by the earliest time when xs = 0:
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}
. (0.5)

Exercise 3

There are a few different ways to write the solution, depending on the choice of singular point
for the expansion and various possible transformations of P-symbols.

Here I give one possible solution, giving a basis of solutions constructed around point
x = −1. The equation has indices (0,−1

2) relative to x1 = −1, (0, 12) relative to x2 = 2, and
(13 ,

2
3) relative to x3 = 3.
With a conformal map we map them to 0, 1,∞ and relate the equation to the P-symbol:
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From this we extract two solutions:

y1 = 2F1

(
1

3
,
2

3
;
3

2
;

(x+ 1)

3(3− x)

)
(0.7)

and the second independent solution is (obtained with transformations of the P-symbol):
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. (0.8)
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Exercise 4

We should use the polar decomposition of Laplace equation in 2D. The solution is

T (r, θ) =
(r
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) 5
3

sin(
5

3
θ) + 2

(r
2

)5
sin(5θ). (0.9)
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