Answers

Exercise 1.

$$
\begin{equation*}
u(x, t)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n x}{2}\right) \cos \left(\frac{n t c}{2}\right), \tag{0.1}
\end{equation*}
$$

with

$$
\begin{equation*}
A_{m}=\frac{1}{2} \int_{0}^{2 \pi} \sin ^{2}\left(\frac{x}{2}\right) \cos \left(\frac{n x}{2}\right), \quad m=0,1,2, \ldots \tag{0.2}
\end{equation*}
$$

Exercise 2

- Given the initial condition $u(x, 0)=u_{0}(x)$ (in the present case $u_{0}(x)=\frac{4}{1+x^{2}}$), the solution is given in implicit form by:

$$
\begin{equation*}
u(x, t)=u_{0}(s) \tag{0.3}
\end{equation*}
$$

with

$$
\begin{equation*}
x=e^{t} s+\left(e^{t}-1\right) u_{0}(s) \tag{0.4}
\end{equation*}
$$

- The equation forms a gradient singularity when the Jacobian of the map (x, t) vanishes. The Jacobian is in this case $\partial_{s} x=e^{t}+\left(e^{t}-1\right) u_{0}^{\prime}(s)$, so the singularity occurs when $x_{s}=0 \longrightarrow e^{t}=\frac{u^{\prime}(s)}{1+u_{0}^{\prime}(s)}$.
The time when the singularity forms is described by the earliest time when $x_{s}=0$:

$$
\begin{equation*}
t_{\text {shock }}=\min \left\{\log \left(\frac{u^{\prime}(s)}{1+u_{0}^{\prime}(s)}\right), \text { such that } \log \left(\frac{u_{0}^{\prime}(s)}{1+u_{0}^{\prime}(s)}\right)>0\right\} . \tag{0.5}
\end{equation*}
$$

Exercise 3

There are a few different ways to write the solution, depending on the choice of singular point for the expansion and various possible transformations of P -symbols.

Here I give one possible solution, giving a basis of solutions constructed around point $x=-1$. The equation has indices $\left(0,-\frac{1}{2}\right)$ relative to $x_{1}=-1,\left(0, \frac{1}{2}\right)$ relative to $x_{2}=2$, and $\left(\frac{1}{3}, \frac{2}{3}\right)$ relative to $x_{3}=3$.

With a conformal map we map them to $0,1, \infty$ and relate the equation to the P -symbol:

$$
y=P\left\{\begin{array}{cccc}
& 0 & 1 & \infty \tag{0.6}\\
\frac{(x+1)}{3(3-x)} & 0 & 0 & \frac{1}{3} \\
& -\frac{1}{2} & \frac{1}{2} & \frac{2}{3}
\end{array}\right\}
$$

From this we extract two solutions:

$$
\begin{equation*}
y_{1}={ }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3} ; \frac{3}{2} ; \frac{(x+1)}{3(3-x)}\right) \tag{0.7}
\end{equation*}
$$

and the second independent solution is (obtained with transformations of the P-symbol):

$$
\begin{equation*}
y_{2}=\left(\frac{(x+1)}{3(3-x)}\right)^{-\frac{1}{2}}{ }_{2} F_{1}\left(-\frac{1}{6}, \frac{1}{6} ; \frac{1}{2} ; \frac{(x+1)}{3(3-x)}\right) . \tag{0.8}
\end{equation*}
$$

Exercise 4

We should use the polar decomposition of Laplace equation in 2D. The solution is

$$
\begin{equation*}
T(r, \theta)=\left(\frac{r}{2}\right)^{\frac{5}{3}} \sin \left(\frac{5}{3} \theta\right)+2\left(\frac{r}{2}\right)^{5} \sin (5 \theta) \tag{0.9}
\end{equation*}
$$

