
Exercises on ODEs part 2

NOTE: typo corrected in (0.22).

0.1 Series expansions solutions

Exercises

Ex 1. Discuss the possible singularities of the ODE

x4y′′ + y = 0, (0.1)

and in particular the form of the solution at x ∼ 0 and x ∼ ∞.

Ex. 2 - Classification of singular points. Study the singular points of the following
equations and discuss what form the solution can take around these points, and the radius of
convergence of the possible expansions.

a)
x2y′′ + xy′ + (x2 − a2)y = 0.

(Bessel equation) In this case, compute the form of the series expansion around x = 0. (This
was done in class).

b)
(1− x2)y′′ − 2xy′ + a(a+ 1)y = 0.

(Legendre equation).

c)
xy′′ + (1 + a− x)y′ + by = 0

(Laguerre equation),

where a, b ∈ C.

Ex. 3 Study the equation:
x2(x− 2)y′′ + xy′ − y = 0.

Notice that it has only 3 singularities, all Fuchsian. The singularities are: 0, 2,∞, with indices
(1, 1

2), (0, 1
2), (0,−1), respectively. Use the P-symbol method to write a basis of solutions

around x = 2.

Ex 4. Consider the example of this ODE:

x(x+ 1)y′′ − (x− 1)y′ + y = 0 (0.2)

• Discuss the possible singular points, and their type.

• Find explicitly the first two terms of two independent series solutions around x = 0.

• Write a solution around x = 0 with the P-symbol method and check the above result.
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Solutions

Ex. 1 x = 0 is an irregular singularity, so there is no series solution around x = 0 with
finitely many negative terms . The solution will have an essential singularity and a Laurent
series with infinitely many negative powers.

x = ∞ is a regular singular point. In fact, writing the equation as y′′ + p(x)y + q(x) = 0,
q(x) ∼ O(1/x4), and p(x) ∼ 0/x at infinity. Since 0 6= 2, infinity is a Fuchsian singularity and
not a regular point.

Plugging in the equation x−ρ, for x → ∞ we find ρ(ρ + 1) = 0. So the indices at infinity
are {0,−1} and the form of the solutions around infinity are

y1(x) =
∞∑
n=0

anx
−n, y2(x) = A log(x)y1(x) + x

∞∑
n=0

bnx
−n, (0.3)

with A a constant to be fixed. To determine A we must plug the solution into the ODE at large
x. We notice that y2(x) ∼ A log(x)(1 + a1/x+ a2/x

2 + . . . ) + b0x+ b1 + b2/x+ . . . . Plugging
this expansion into the ODE and matching orders at x→∞, we find that we must have A = 0.
So we find simply y2(x) = x

∑∞
n=0 bnx

−n, where we can assume b0 = 1, b1 = 0, and the other
coefficients are fixed by recursion.

Ex. 2 (a) - Bessel equation In this case there are two singular points (for generic para-
meter a): x = 0 is a Fuchsian singularity, and x =∞ is an irregular singularity.

The solution cannot be found around infinity with the series expansion method.

We can write the solution as a series of the form:

y(x) = xρ
∞∑
n=0

cnx
n, (0.4)

Plugging this expansion in the ODE we find at leading order:[
(ρ− 1)ρ+ ρ− a2

]
c0 = 0, (0.5)

so ρ = ±a.
The following orders give in general:

cn
[
(a+ n)(a+ n− 1) + (a+ n)− a2

]
+ cn−2 = 0, (0.6)

where c−1 = c−2 = 0. For n = 0, this is automatically satisfied. For n = 1, it gives c1 = 0, the
next orders give

cn = −cn−2
1

n(n+ 2a)
, n ≥ 2. (0.7)
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This implies that all odd coefficients are zero (since c1 = 0 ):

c2k+1 = 0. (0.8)

For the even ones, we can iterate the previous equation to lower the index until we find:

c2k = (−1)kc0
1

(2k)!! [(2k + 2a)(2k + 2a− 2) . . . (2a+ 2)]
. (0.9)

Noting that (2k)!! ≡ (2k)(2k − 2) . . . 4 · 2 = 2k(k!), and that

(2k + 2a)(2k + 2a− 2) . . . (2a+ 2) = 2k (a+ 1)(a+ 2) . . . (a+ k) = (a+ 1)k =
Γ(a+ 1 + k)

Γ(a+ 1)
,

then we can write the solution as

y(x) = xa
∑
k=0

c2kx
2k = xac0

∑
k=0

(−1)k
(x

2

)2k 1

(k!)(a+ 1)k
(0.10)

= xac0

∑
k=0

(−1)k
(x

2

)2k Γ(a+ 1)

(k!)Γ(a+ 1 + k)
. (0.11)

This solution (normalised with c0 = 1
Γ(a+1)2a ) is denoted as

Ja(x) ≡
∑
k=0

(−1)k
(x

2

)2k+a 1

(k!)Γ(a+ 1 + k)
(0.12)

(Bessel function of the first kind), for generic a ∈ C. If a is not integer, the two independent
solutions as J±a(x). If a ∈ N, then the solution Ja(x) still has the same form. The other
solution will in general also contain a log contribution and can be obtained as a limit of the
situation with a /∈ N.

Notice also that we can recognise the form above as a special kind of generalised hypergeometric:

Ja(x) ∝ 0F1( ; a+ 1;−x
2

). (0.13)

Ex. 2 (b) - Legendre

• x = 1 is a Fuchsian singularity with indices ρ = {0, 0}. The solution could have the form:

y1(x) =
∑
n≥0

an(x− 1)n, y2(x) =
∑
n≥0

bn(x− 1)n +A log (x− 1) y1(x). (0.14)

• x = −1 is a Fuchsian singularity with indices ρ = 0, 1. The solution could have the form:

y1(x) =
∑
n≥0

an(x+ 1)n, y2(x) =
∑
n≥0

bn(x+ 1)n +A log (x+ 1) y1(x). (0.15)

• x =∞ is a Fuchsian singularity with indices ρ = a+ 1,−a. The solution could have the
form:

y1(x) = x−a−1
∑
n≥0

anx
−n, y2(x) = xa

∑
n≥0

bnx
−n. (0.16)
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Ex. 2 (c) - Laguerre

• x =∞ is an irregular singularity.

• x = 0 is a Fuchsian singularity with indices ρ = 0,−a. So the solution could have the
form:

y1(x) =
∑
n≥0

anx
n, y2(x) = x−a

∑
n≥0

bnx
n. (0.17)

Ex. 3 The solution can be represented in the P-symbol notation as

y(x) = P


2 0 ∞

x 0 1 −1
1
2

1
2 0

 . (0.18)

Since we are interested in behaviour around x = 2, first we map the points z1 = 2, z2 = 0,
z3 =∞ to the canonical positions 0,1,∞. This is done with the fractional linear transformation:

x→ 2− x
2

, (0.19)

so we have

y(x) = P


0 1 ∞

2−x
2 , 0 1 −1

1
2

1
2 0

 . (0.20)

Now we want to bring it to canonical form, i.e. we must have one zero index in column 1 and
one in column 2. We are not there yet. So we use another property to redefine the indices:

y(x) =

(
2− x

2
− 1

)
P


0 1 ∞

2−x
2 , 0 0 0

1
2 −1

2 1

 . (0.21)

(Notice how we wanted to change the indices for the point 1, but they get automatically
redefined also at infinity!)

This is now in canonical form, so from here we can read one solution:∗†

y1(x) =
(
−x

2

)
2F1(0, 1; 1/2; 1− x

2
) = −x

2
. (0.22)

We denoted this as y1 since it has the leading behaviour at x ∼ 2.

The second independent solution with the leading behaviour (x− 2)
1
2 is found by starting with

the equation written as (i.e., we swap the two indices for z1).

y(x) = P


0 1 ∞

2−x
2 , 1

2 1 −1
0 1

2 0

 . (0.23)

∗Check the relevant formula in the notes or in the “UsefulEquations” file.
†(Note: actually in this case, since (0)i = δi,0, the hypergeometric reduces to 1 and the solution is simply

∝ x. This is just a coincidence of the data of the problem).
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Then, using the property to redefine the indices:

y(x) =

(
2− x

2

) 1
2
(

2− x
2
− 1

)
P


0 1 ∞

2−x
2 , 0 0 1

2
−1

2 −1
2

3
2

 . (0.24)

From this canonical form we read the other independent solution:‡

y2(x) =

(
2− x

2

) 1
2
(

2− x
2
− 1

)
2F1(

1

2
,
3

2
;
3

2
;
2− x

2
). (0.25)

Ex. 4

• The singularities are z1 ≡ 0, z2 ≡ −1, z3 ≡ ∞. We can check that they are all Fuchsian.

The behaviour of solutions around z1 (x = 0) is y ∼ xα, plugging in the ODE we find the
indicial equation α2 = 0.

Solutions around z2 (x = −1) behave like y ∼ (x + 1)α, plugging in the ODE we find
the indicial equation α(α− 2) = 0 (which is again a resonant case since they differ by an
integer).

Around z3 (infinity), taking the form y ∼ x−α and expanding the ODE for x → ∞ we
find α2 + 2α+ 1 = 0, so the indices are both −1.

• Around x = 0, since the indices are 0 and 0 (degenerate case), we can take two solutions
of the form: y1(x) = a0 +a1x+ . . . and y2(x) = (b0 +b1x+ . . . )+log(x)A(a0 +a1x+ . . . ).
We can normalize a0 = 1 without loss of generality.

Plugging these expansions in the ODE, at the leading order from the equation for y1 we
find a0 + a1 = 0, so we can take y1(x) = 1− x+O(x2).

From the equation for y2(x) we then find, at leading order, 4A− b0− b1 = 0. Subtracting
a quantity proportional to y1, we can assume without loss of generality b0 = 0. The-
refore, we find y2(x) = A log x

(
1− x+O(x2)

)
+ 4Ax + O(x2) (we can set A = 1 for

normalisation).

• With the P-symbol notation the generic solution is written as

y(x) = P


0 −1 ∞

x 0 0 −1
0 2 −1

 (0.26)

‡In this case it turns out this is a simple algebraic function (again, a coincidence of the data of the problem
which produce a “simple” hypergeometric function).
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(Notice the subtlety that the solution behaves like ∼ x1 at x ∼ ∞, but this corresponds
to index −1, not +1, because the “distance” from infinity is 1/x, not x).

Using the fractional linear transformation x→ x′ = −x, we rewrite this in the canonical
form:

y(x) = P


0 1 ∞

−x 0 0 −1
0 2 −1

 . (0.27)

This is in canonical form with c = 1, a = b = −1, so we can read one solution immediately:

y(x) =2 F1(−1,−1; 1;−x). (0.28)

This is given by a power series around x = 0, starting as 1− x+ . . . , so indeed it agrees
with one of the solutions above.§

It is a bit trickier to describe the second solution with the P-symbol method because of
the degeneracy, although it can also be done by introducing regularising parameters.

§Note: in fact, since a ∈ Z<0, the solution truncates and it is just a polynomial y1(x) = 1− x.
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