Complements of Mathematical Methods for Physics, written exam 18/01/2023

The threshold to be admitted to the oral exam is 17/32 points.
Duration: 2h
You can use your own collection of notes prepared at home (2 page ${ }^{*}$ maximum).
Exercise 1. (10 points)
Consider the heat equation for the temperature along a one-dimensional bar of length 3 :

$$
u_{t}-\alpha u_{x x}=0, \quad x \in[0,3], \quad t \geq 0
$$

with the initial condition:

$$
u(x, t=0)=x^{2}(3-x)^{2}+1, \quad x \in[0,3],
$$

and with the endpoints kept at constant temperature $T=1$:

$$
\begin{aligned}
& u(x=0, t)=1, \quad t \geq 0, \\
& u(x=3, t)=1, \quad t \geq 0 .
\end{aligned}
$$

Compute the time evolution of the solution for $t \geq 0$ using the Fourier method. Fourier coefficients should be expressed explicitly as integrals, but it is NOT necessary to evaluate the integrals.

Suggestion: Divide $u(x, t)=u_{0}+v(x, t)$, where u_{0} is a constant and $v(x, t)$ satisfies homogeneous boundary conditions. Compute $v(x, t)$ with the Fourier method.

Exercise 2. (10 points)

Find the general solution of the following partial differential equation for the function $u(x, y)$:

$$
u_{x}+((1+y) \cos x) u_{y}=1 .
$$

[^0]
Exercise 3. (6 points)

Consider the differential equation:

$$
y^{\prime \prime}(x)+\left(\frac{4}{3(x-2)}+\frac{1}{2(x-4)}\right) y^{\prime}(x)+\left(-\frac{11}{36(x-2)}+\frac{11}{36(x-4)}-\frac{1}{2(x-4)^{2}}\right) y(x)=0
$$

Using the Papperitz-Riemann method, find the particular solution of the equation which is regular for $x \rightarrow 2$ and normalized as

$$
\lim _{x \rightarrow 2} y(x)=A
$$

with A a constant. The solution should be expressed explicitly in terms of special functions.
Note: To shorten the calculations, you can use the information that the indices of the equation in the Fuchsian singular point $x=2$ are $\left\{0,-\frac{1}{3}\right\}$, while the indices in the Fuchsian singular point $x=\infty$ are $\left\{\frac{2}{3}, \frac{1}{6}\right\}$.

Suggested steps:

- Compute the indices in the remaining Fuchsian point;
- write the generic solution in terms of the P-symbol;
- using appropriate transformations, bring the P-symbol to a canonical form which is convenient to extract explicitly the solution of interest.
- Normalize the solution appropriately.

Exercise 4. (6 points)

Consider a square drum. Let us assume that the transverse displacement of the membrane, denoted as $u(x, y, t)$ for $(x, y) \in[0, L] \times[0, L]$ and time $t \in \mathbb{R}$, satisfies the wave equation with propagation speed c.

Taking the initial condition:

$$
\begin{aligned}
u(x, y, t=0) & =\sin \left(\frac{\pi}{L} x\right) \times \sin \left(\frac{3 \pi}{L} y\right) \\
\left.\partial_{t} u(x, y, t)\right|_{t=0} & =\sin \left(\frac{4 \pi}{L} x\right) \times \sin \left(\frac{\pi}{L} y\right)
\end{aligned}
$$

compute the evolution of $u(x, y, t)$ for $t \geq 0$.

[^0]: *Two sides, not 4 sides!

