
Modellazione di Processi Amministrativi e Compliance
Normativa
8c.BPMN - analytic modeling

Matteo Baldoni
A.Y. 2022/2023

Università degli Studi di Torino - Dipartimento di Informatica

1



Si noti che
qesti lucidi sono basati su quelli di Marco Montali, KRDB Research Centre for Knowledge and
Data Faculty of Computer Science, Free University of Bozen-Bolzano e su quelli di Andrea
Marrella.

2



BPMN Level 2: Analytic Modeling

• Level 1: each step of the process is triggered by the completion of the previous step.
• Level 2: expansion of level 1 with reaction to events.

Event
Something that happen in a process, at a specific point in time.

Reaction to events
Depends on whether the process is throwing or catching the event.

• Reaction to throwing an event: how the process generates a signal that something
happened.

• Type of signal represents the trigger.
• Reaction to catching an event: how the process responds to a signal that something

happened.
• Type of signal represents the result.

The type of signal is shown as an icon inside the event circle.
3



About Events

Event Types
• Start event (thin line): indicates where the process starts.
• End event (thick line): indicates where a path of the process ends.
• Intermediate event (double ring): indicates that something happens during the execution

of the process.

It is now possible to model:

• Reaction to external events.
• Exception handling.
• Parallel event handlers.
• Complex indirect interactions between different process parts, where one triggers an event

and the other catches it.
• Cancelations and compensations.
• . . .

4



Question
Why do people fear BPMN?

5



6



First Step in the World of Events

Out from the 104 possible combinations (only half of which are accepted by the standard), we
first focus on:

7



Intermediate Events

Events occurring after the start of a process level, but before its end. Four basic contexts of
use:

1. Throw an intermediate event.
2. Catch an intermediate event.
3. Catch an intermediate event in a specific process level, by interrupting it.
4. Catch an intermediate event in a specific process level, without interrupting it.

8



Throwing Intermediate Event

Intermediate event with a black icon inside.

Semantics
1. As soon as the sequence flow reaches the event, the corresponding signal is thrown.
2. The process continues immediately.

Supported only by few event types.

• Typical usage: throwing a message event.

send message

9



Token Game: Throw Intermediate Events1

• A token arriving at a throw Intermediate
Event would immediately fire the trigger.
It would then leave immediately and
travel down the outgoing Sequence Flow

• A Throwing Intermediate Event can not
be attached to the boundary of an
Activity

1Credits: Andrea Marrella “Modeling Business Processes with BPMN"

10



Token Game: Throw Intermediate Events1

• A token arriving at a throw Intermediate
Event would immediately fire the trigger.
It would then leave immediately and
travel down the outgoing Sequence Flow

• A Throwing Intermediate Event can not
be attached to the boundary of an
Activity

1Credits: Andrea Marrella “Modeling Business Processes with BPMN"

10



Catching Intermediate Event

Intermediate event with a white icon inside.

Semantics
1. As soon as the sequence flow reaches the event, the process waits for the corresponding

trigger signal.
2. When the trigger signal is caught, the process resumes immediately.

Supported by many event types, but not error events.

receive message

11



Token Game: Catch Intermediate Events2

• When a token arrives at a catching
Message Intermediate Event, the Process
pauses until a message arrives

• When a token arrives at a throwing
Message Intermediate Event, it
immediately triggers the Event, which
sends the message to a specific
participant

• If the token is waiting at the Intermediate
Event and the message arrives, then the
Event triggers

2Credits: Andrea Marrella “Modeling Business Processes with BPMN"

12



Token Game: Catch Intermediate Events2

• When a token arrives at a catching
Message Intermediate Event, the Process
pauses until a message arrives

• When a token arrives at a throwing
Message Intermediate Event, it
immediately triggers the Event, which
sends the message to a specific
participant

• If the token is waiting at the Intermediate
Event and the message arrives, then the
Event triggers

2Credits: Andrea Marrella “Modeling Business Processes with BPMN"

12



Token Game: Catch Intermediate Events2

• When a token arrives at a catching
Message Intermediate Event, the Process
pauses until a message arrives

• When a token arrives at a throwing
Message Intermediate Event, it
immediately triggers the Event, which
sends the message to a specific
participant

• If the token is waiting at the Intermediate
Event and the message arrives, then the
Event triggers

2Credits: Andrea Marrella “Modeling Business Processes with BPMN"

12



Token Game: Catch Intermediate Events2

• When a token arrives at a catching
Message Intermediate Event, the Process
pauses until a message arrives

• When a token arrives at a throwing
Message Intermediate Event, it
immediately triggers the Event, which
sends the message to a specific
participant

• If the token is waiting at the Intermediate
Event and the message arrives, then the
Event triggers

2Credits: Andrea Marrella “Modeling Business Processes with BPMN"

12



Boundary Event

Catching intermediate event drawn on the boundary of an activity.

Semantics
1. While the activity is running, it listens to the signal attached to the event.
2. If the activity completes without the occurrence of the boundary event signal, the process

continues on the standard execution path (normal flow).
3. If the signal occurs before the activity completes, the sequence flow out of the event is

triggered (exception flow).
How this is actually done depends on the type of the boundary event.

Activity

message boundary event

normal flow

exception flow

13



Token Game: Boundary Events3

• The token leaves the previous flow object and arrives at
the Activity with the attached Intermediate Event

• he token enters the Activity and starts the work of the
Activity. At the same time, another token is created and
resides in the Intermediate Event on its boundary

• If the Activity finishes before the trigger occurs, then the
token from the Activity moves down the normal outgoing
Sequence Flow of the Activity and the additional token is
consumed

• However, if the attached Intermediate Event triggers
before the Activity finishes, then the Activity is
interrupted (all work stops). In this case, the token from
the Event moves down its outgoing Sequence Flow. The
token that was on the Activity is consumed

3Credits: Andrea Marrella “Modeling Business Processes with BPMN"
14



Token Game: Boundary Events3

• The token leaves the previous flow object and arrives at
the Activity with the attached Intermediate Event

• he token enters the Activity and starts the work of the
Activity. At the same time, another token is created and
resides in the Intermediate Event on its boundary

• If the Activity finishes before the trigger occurs, then the
token from the Activity moves down the normal outgoing
Sequence Flow of the Activity and the additional token is
consumed

• However, if the attached Intermediate Event triggers
before the Activity finishes, then the Activity is
interrupted (all work stops). In this case, the token from
the Event moves down its outgoing Sequence Flow. The
token that was on the Activity is consumed

3Credits: Andrea Marrella “Modeling Business Processes with BPMN"
14



Token Game: Boundary Events3

• The token leaves the previous flow object and arrives at
the Activity with the attached Intermediate Event

• he token enters the Activity and starts the work of the
Activity. At the same time, another token is created and
resides in the Intermediate Event on its boundary

• If the Activity finishes before the trigger occurs, then the
token from the Activity moves down the normal outgoing
Sequence Flow of the Activity and the additional token is
consumed

• However, if the attached Intermediate Event triggers
before the Activity finishes, then the Activity is
interrupted (all work stops). In this case, the token from
the Event moves down its outgoing Sequence Flow. The
token that was on the Activity is consumed

3Credits: Andrea Marrella “Modeling Business Processes with BPMN"
14



Token Game: Boundary Events3

• The token leaves the previous flow object and arrives at
the Activity with the attached Intermediate Event

• he token enters the Activity and starts the work of the
Activity. At the same time, another token is created and
resides in the Intermediate Event on its boundary

• If the Activity finishes before the trigger occurs, then the
token from the Activity moves down the normal outgoing
Sequence Flow of the Activity and the additional token is
consumed

• However, if the attached Intermediate Event triggers
before the Activity finishes, then the Activity is
interrupted (all work stops). In this case, the token from
the Event moves down its outgoing Sequence Flow. The
token that was on the Activity is consumed

3Credits: Andrea Marrella “Modeling Business Processes with BPMN"
14



Types of Boundary Events

Interrupting boundary event

If the trigger signal occurs during the activity execution:
• The activity is immediately terminated.
• The exception flow is activated.

Drawn with a solid double ring.

Activity

message 
boundary event

normal flow

exception flow

Non-interrupting boundary event
If the trigger signal occurs during the activity execution:

• The activity is normally continues.
• The exception flow is activated (with a new parallel

thread).
Drawn with a dashed double ring.

Activity

message 
boundary event

normal flow

exception flow

15



Timer Event

Normal Catching timer
Indicates to:

• wait for a specific duration, or
• wait until a specific timepoint is reached.

Example
The process checks whether data have been uploaded. If so, the process goes on. If not, the
process waits for ten minutes and then repeats the check.

Figure7-5. Delay using Timer event

Check for
uploaded data

Available?

10 min

Continue
process

Check for
uploaded data

15th or 30th
of month

Continue
process

Search for
internal

candidates
Screen resumes

Engage external
search firm

Receive request

Perform service Send invoce

Notify manager

Take order Collect money

Prepare fries

Prepare burger

Prepare drink

Deliver to
customer

Order complete

Take order Deliver to
customer

Order complete

New process

5 min

Refund money

Cu
st

om
er

Receive application

Verify
completeness

Info complete?

Request info

Process
application

Receive
response

Card issued

Cu
st

om
er

Receive application

Verify
completeness

Info complete?

Request info

Process
application

Receive
response

Card issued

7 days Rejected

yes

no

Ap
pl

ic
at

io
n

no

In
fo

 r
eq

ue
st

In
fo

 r
es

po
ns

e

Cr
ed

it 
ca

rd

yes

Ap
pl

ic
at

io
n

no

In
fo

 r
eq

ue
st

In
fo

 r
es

po
ns

e

Cr
ed

it 
ca

rd

yes

Re
je

ct
io

n
no

tic
e

16



Timer Event

Normal Catching timer
Indicates to:

• wait for a specific duration, or
• wait until a specific timepoint is reached.

Example
After the payment is approved, the process waits until the end of the month, and then checks
whether the payment has been actually done.

16



Timer Event

Normal Catching timer
Indicates to:

• wait for a specific duration, or
• wait until a specific timepoint is reached.

Warning
Don’t use timer events to represent the duration of activities.

16



Exercise

• Design a a sample expense reimbursement process. This process provides for
reimbursement of expenses incurred by employees for the company. For example buying a
technical book, office supplies or software. In a normal day there are several hundreds of
instances of this process created. Concentrate on the basic flow of the Process...

• After the reception of a meeting remainder, a new account must be created if the
employee does not already have one. The report is then reviewed for automatic approval.
Amounts under $200 are automatically approved, whereas amounts equal to or over $200
require approval of the supervisor. In case of rejection, the employee must receive a
rejection notice by email. The reimbursement goes to the employee’s direct deposit bank
account. If the request is not completed in 7 days, then the employee must receive an
“approval in progress” email If the request is not finished within 30 days, then the process
is stopped and the employee

17



Exercise

18



Timer Event

Timer boundary event
Combination of stopwatch and alarm.

• When the activity is reached by an incoming flow (start event), the stopwatch starts.
• If the activity is still running when the stopwatch expires, an alarm is triggered and the

exception flow is immediately activated.
The reaction then depends on whether the timer is interrupting on not.

19



Timer Event: Examples

Example
A hiring process starts by searching for internal candidates. If the search is still running after 3
weeks, the search is interrupted and an external search firm is engaged. In both cases, the
collected CVs are then screened.

Figure7-5. Delay using Timer event

Check for
uploaded data

Available?

10 min

Continue
process

Check for
uploaded data

15th or 30th
of month

Continue
process

Search for
internal

candidates
Screen resumes

Engage external
search firm

Receive request

Perform service Send invoce

3 days

Notify manager

Take order Collect money

Prepare fries

Prepare burger

Prepare drink

Deliver to
customer

Order complete

Take order Deliver to
customer

Order complete

New process

5 min

Refund money

Cu
st

om
er

Receive application

Verify
completeness

Info complete?

Request info

Process
application

Receive
response

Card issued

Cu
st

om
er

Receive application

Verify
completeness

Info complete?

Request info

Process
application

Receive
response

Card issued

7 days Rejected

3 weeks

yes

no

Ap
pl

ic
at

io
n

no

In
fo

 r
eq

ue
st

In
fo

 r
es

po
ns

e

Cr
ed

it 
ca

rd

yes

Ap
pl

ic
at

io
n

no

In
fo

 r
eq

ue
st

In
fo

 r
es

po
ns

e

Cr
ed

it 
ca

rd

yes

Re
je

ct
io

n
no

tic
e

20



Timer Event: Examples

Example
If the delivery of an order takes more than 3 days, the customer is informed of the delay.

20



Timed Interval

Example
The food delivery process starts when an order is received from the customer. The money is
then collected from the customer. Next, drink and food are prepared. Once both food and
drink are ready, the order is delivered to the customer.

A policy of the food company is that if the time-to-delivery exceeds 5 minutes, then half of the
money must be returned to the customer.

Figure7-5. Delay using Timer event

Check for
uploaded data

Available?

10 min

Continue
process

Check for
uploaded data

15th or 30th
of month

Continue
process

Search for
internal

candidates
Screen resumes

Engage external
search firm

Receive request

Perform service Send invoce

3 days

Notify manager

Take order Collect money

Prepare fries

Prepare burger

Prepare drink

Deliver to
customer

Order complete

Take order Deliver to
customer

Order complete

Refund money

Cu
st

om
er

Receive application

Verify
completeness

Info complete?

Request info

Process
application

Receive
response

Card issued

Cu
st

om
er

Receive application

Verify
completeness

Info complete?

Request info

Process
application

Receive
response

Card issued

7 days Rejected

3 weeks

Collect money

Prepare fries

Prepare burger

Prepare drink

5 min

yes

no

Ap
pl

ic
at

io
n

no

In
fo

 r
eq

ue
st

In
fo

 r
es

po
ns

e

Cr
ed

it 
ca

rd

yes

Ap
pl

ic
at

io
n

no

In
fo

 r
eq

ue
st

In
fo

 r
es

po
ns

e

Cr
ed

it 
ca

rd

yes

Re
je

ct
io

n
no

tic
e

21



Timed Interval

Strategy
• Wrap the “time interval” of interest into a subprocess.
• Attach a timer boundary event to the subprocess.

Figure7-5. Delay using Timer event

Check for
uploaded data

Available?

10 min

Continue
process

Check for
uploaded data

15th or 30th
of month

Continue
process

Search for
internal

candidates
Screen resumes

Engage external
search firm

Receive request

Perform service Send invoce

3 days

Notify manager

Take order Collect money

Prepare fries

Prepare burger

Prepare drink

Deliver to
customer

Order complete

Take order Deliver to
customer

Order complete

Refund money

Cu
st

om
er

Receive application

Verify
completeness

Info complete?

Request info

Process
application

Receive
response

Card issued

Cu
st

om
er

Receive application

Verify
completeness

Info complete?

Request info

Process
application

Receive
response

Card issued

7 days Rejected

3 weeks

Collect money

Prepare fries

Prepare burger

Prepare drink

5 min

yes

no

Ap
pl

ic
at

io
n

no

In
fo

 r
eq

ue
st

In
fo

 r
es

po
ns

e

Cr
ed

it 
ca

rd

yes

Ap
pl

ic
at

io
n

no

In
fo

 r
eq

ue
st

In
fo

 r
es

po
ns

e

Cr
ed

it 
ca

rd

yes

Re
je

ct
io

n
no

tic
e

22



Can You Tell the Difference?

Prepare 
order

Receive order
Deliver 
order

Register 
delivery 

time

Order delivered

Notify delay

> 3 days?

yes

no

Prepare 
order

Receive order
Deliver 
order

Register 
delivery 

time

Order delivered

Notify delay

3 days

23



More on Messages

BPMN definition for “message”
The content of a communication between two participants.

• Could represent even material flow, i.e., the delivery of a physical object.
A message has an item definition that specifies the message payload, i.e., an information or
physical object.

Warning
Consider “send” and “receive” as BPMN keywords that denote the exchange of a message
from the point of view of the emitter or destination.

Location of a message
A message could correspond to many distinct message flows, representing the message in
different situations of the process.

24



Who Can Send a Message?

• A black-box pool.
• A throwing message event.
• Any type of activity (optional send).

• A send task.
Send Task

Send task
A task consisting in the immediate emission of a message (certain send). Difference with an
intermediate throwing message event:

• The task has a performer.
• Conventionally, the performer of a throwing event can be understood as the lane containing

that event.
• The task can have boundary events attached to it.
• The task can have special decorators indicating forms of repetitions (see later).

25



“Sending” within a Process

Error
Message flow cannot be used to forward work to a downstream task within the same process.

NO!!

Figure 7-12. Don't use a Send Task

Bu
dg

et
 p

ro
ce

ss

M
an

ag
er

Review budget

Em
pl

oy
ee

Prepare budget Send to
manager

Bu
dg

et
 p

ro
ce

ss

M
an

ag
er

Review budget

Em
pl

oy
ee

Prepare budget

Bu
dg

et
 p

ro
ce

ss

M
an

ag
er

Review budget

Em
pl

oy
ee

Prepare budget Forward budget
materials

Budget
materials

26



“Sending” within a Process

Solution: Work forwarded implicitly via control-flow.

Figure 7-12. Don't use a Send Task

Bu
dg

et
 p

ro
ce

ss

M
an

ag
er

Review budget

Em
pl

oy
ee

Prepare budget Send to
manager

Bu
dg

et
 p

ro
ce

ss

M
an

ag
er

Review budget

Em
pl

oy
ee

Prepare budget
Bu

dg
et

 p
ro

ce
ss

M
an

ag
er

Review budget

Em
pl

oy
ee

Prepare budget Forward budget
materials

Budget
materials

27



“Sending” within a Process

Solution: Forwarding of work encapsulated in a specific activity (without using the word
“send”).

In case: Forwarded work explicitly shown as a data object.

Figure 7-12. Don't use a Send Task

Bu
dg

et
 p

ro
ce

ss

M
an

ag
er

Review budget

Em
pl

oy
ee

Prepare budget Send to
manager

Bu
dg

et
 p

ro
ce

ss

M
an

ag
er

Review budget

Em
pl

oy
ee

Prepare budget

Bu
dg

et
 p

ro
ce

ss

M
an

ag
er

Review budget

Em
pl

oy
ee

Prepare budget Forward budget
materials

Budget
materials

27



“Sending” within a Process

Solution: Notification typically handled through a user task in the lane responsible for the
notification.

• Not the one “receiving” the notification.

Figure 7-12. Don't use a Send Task

Bu
dg

et
 p

ro
ce

ss

M
an

ag
er

Review budget

Em
pl

oy
ee

Prepare budget Send to
manager

Bu
dg

et
 p

ro
ce

ss

M
an

ag
er

Review budget

Em
pl

oy
ee

Prepare budget

Bu
dg

et
 p

ro
ce

ss

M
an

ag
er

Review budget

Em
pl

oy
ee

Prepare budget Forward budget
materials

Budget
materials

Bu
dg

et
 p

ro
ce

ss

M
an

ag
er

Review budget

Em
pl

oy
ee

Prepare budget

Notify manager

1 week

27



Who Can Receive a Message?

• A black-box pool.
• A catch message event.
• Any type of activity (optional receive).

• A receive task.
Receive 

Task

Receive task
A task only responsible for waiting for a message (blocking receive). Difference with an
intermediate catching message event:

• The task has a performer.
• Conventionally, the performer of a catch event can be understood as the lane containing

that event.
• The task can have boundary events attached to it.

• Timers are particularly interesting here.
28



Synchronous vs Asynchronous Communication

Synhronous Communication
Whenever a message is sent by a process, the process waits for a response message before
continuing.

Natively, BPMN message events account for asynchronous communication: the emission of
a message does not interrupt the emitter process.

How to support synchronous communication?

• Short-running synchronous communication: service task.
• Implicitly sends a message and then waits for a response to complete.

• Long-running synchronous communication: sequence of send and receive.
• Possibly inserting other activities inbetween.

29



Message Boundary Event

Management of unsolicited messages.

Example
An order management process starts when a customer places an order. The order is fulfilled,
then shipped, and finally invoiced. The customer may cancel the placed order while it is being
fulfilled or shipped. In the first case, the process immediately terminates by notifying to the
customer that the cancelation has been correctly handled. In the second case, the process does
not interrupt its normal course of execution (it is too late). However, an additional task is
required to be executed, whose purpose to to authorize the return for credit to the customer.

30



Message Boundary Event

Management of unsolicited messages.

NO!!

Figure 7-12. Don't use a Send Task

Bu
dg

et
 p

ro
ce

ss

M
an

ag
er

Review budget

Em
pl

oy
ee

Prepare budget Send to
manager

Bu
dg

et
 p

ro
ce

ss

M
an

ag
er

Review budget

Em
pl

oy
ee

Prepare budget

Bu
dg

et
 p

ro
ce

ss

M
an

ag
er

Review budget

Em
pl

oy
ee

Prepare budget Forward budget
materials

Budget
materials

Bu
dg

et
 p

ro
ce

ss

M
an

ag
er

Review budget

Em
pl

oy
ee

Prepare budget

Notify manager

1 week

Fullfil order

Check credit Pick order Pack for
shipment

Receive order

Check credit Pick order Pack for
shipment

Customer cancel Customer cancel

Cancelled

Receive order

Cancelled

Customer cancel

Customer cancel

31



Message Boundary Event

Management of unsolicited messages.

Strategy
• Identify the maximal fragments of a process level for which the management of an event is

the same.
• Surround these fragments with subprocesses, using boundary events and exception flow to

capture how the event is managed when it occurs in that specific process part.

Figure 7-12. Don't use a Send Task

Bu
dg

et
 p

ro
ce

ss

M
an

ag
er

Review budget

Em
pl

oy
ee

Prepare budget Send to
manager

Bu
dg

et
 p

ro
ce

ss

M
an

ag
er

Review budget

Em
pl

oy
ee

Prepare budget

Bu
dg

et
 p

ro
ce

ss

M
an

ag
er

Review budget

Em
pl

oy
ee

Prepare budget Forward budget
materials

Budget
materials

Bu
dg

et
 p

ro
ce

ss

M
an

ag
er

Review budget

Em
pl

oy
ee

Prepare budget

Notify manager

1 week

Fullfil order

Check credit Pick order Pack for
shipment

Receive order

Check credit Pick order Pack for
shipment

Customer cancel Customer cancel

Cancelled

Receive order

Cancelled

Customer cancel

Customer cancel

32



Event-Driven Choices

Example
An credit card generation process starts when a customer sends an application to the bank. An
employee of the bank then verifies the completeness of the application. If the application is
complete, it is processed (complex activity), and then the card is issued. If the application is
not complete, before processing it an additional interaction with the customer is required. In
particular, the bank requests the additional required info to the customer, and then waits for an
answer. If the customer refused to provide the requested information, then the process ends by
sending a rejection to the customer. If instead the customer positively replies to the request,
the application is fixed considering the newly requested infromation, then processing the
application.

33



Event-Driven Choices

Figure7-5. Delay using Timer event

Check for
uploaded data

Available?

10 min

Continue
process

Check for
uploaded data

15th or 30th
of month

Continue
process

Search for
internal

candidates
Screen resumes

Engage external
search firm

Receive request

Perform service Send invoce

3 days

Notify manager

Take order Collect money

Prepare fries

Prepare burger

Prepare drink

Deliver to
customer

Order complete

Take order Deliver to
customer

Order complete

New process

5 min

Refund money

Cu
st

om
er

Receive application

Verify
completeness

Info complete?

Request info

Process
application

Receive
response

Card issued

Cu
st

om
er

Receive application

Verify
completeness

Info complete?

Request info

Process
application

Receive
response

Card issued

7 days Rejected

3 weeks

yes

no

Ap
pl

ic
at

io
n

no

In
fo

 r
eq

ue
st

In
fo

 r
es

po
ns

e

Cr
ed

it 
ca

rd

yes

Ap
pl

ic
at

io
n

no

In
fo

 r
eq

ue
st

In
fo

 r
es

po
ns

e

Cr
ed

it 
ca

rd

yes

Re
je

ct
io

n
no

tic
e

Need for regaining control
What happens if the customer decides not to answer at all to the bank’s request? Timeout
needed!

34



Event-Driven Choices

Figure7-5. Delay using Timer event

Check for
uploaded data

Available?

10 min

Continue
process

Check for
uploaded data

15th or 30th
of month

Continue
process

Search for
internal

candidates
Screen resumes

Engage external
search firm

Receive request

Perform service Send invoce

3 days

Notify manager

Take order Collect money

Prepare fries

Prepare burger

Prepare drink

Deliver to
customer

Order complete

Take order Deliver to
customer

Order complete

New process

5 min

Refund money

Cu
st

om
er

Receive application

Verify
completeness

Info complete?

Request info

Process
application

Receive
response

Card issued

Cu
st

om
er

Receive application

Verify
completeness

Info complete?

Request info

Process
application

Receive
response

Card issued

7 days Rejected

3 weeks

yes

no

Ap
pl

ic
at

io
n

no

In
fo

 r
eq

ue
st

In
fo

 r
es

po
ns

e

Cr
ed

it 
ca

rd

yes

Ap
pl

ic
at

io
n

no

In
fo

 r
eq

ue
st

In
fo

 r
es

po
ns

e

Cr
ed

it 
ca

rd

yes

Re
je

ct
io

n
no

tic
e

Need for regaining control
What happens if the customer decides not to answer at all to the bank’s request? Timeout
needed!

34



Event-driven Choices

Sometimes, a choice in a process depends on which event triggers first among a set of possible
alternatives:

• Alternative messages (possibly from different participants).
• Timeouts.

Warning
This cannot be captured, in general, by using a normal choice gateway: the decision cannot be
taken before the event triggers!

Case of alternative messages from same participant
• Alternative messages compacted into a unique message with an extended payload.
• Subsequent gateway checks the extended payload to internally decide how to continue.

General case
Event gateway.

35



Event Gateway

Choice point whose outcome depends on the first received event, not on an internal decision of
the orchestration.
Semantics
1. When the process reaches the event gateway, it waits.
2. The first triggering event attached to the gateway determines which path is taken (race

conditions).
3. The process istantanteously reacts by moving accordingly.
4. If other signals are triggered later on, they are ignored.

36



Token Game: Event gateway4

• The tokens will wait there until one of
the Events is triggered

• The Intermediate Events that are part of
the Gateway configuration become
involved in a race condition. Whichever
one finishes first (fires) will win the race
and take control of the Process with its
token

• Then the token will immediately continue
down its outgoing Sequence Flow, by
disabling the other paths

4Credits: Andrea Marrella “Modeling Business Processes with BPMN"

37



Token Game: Event gateway4

• The tokens will wait there until one of
the Events is triggered

• The Intermediate Events that are part of
the Gateway configuration become
involved in a race condition. Whichever
one finishes first (fires) will win the race
and take control of the Process with its
token

• Then the token will immediately continue
down its outgoing Sequence Flow, by
disabling the other paths

4Credits: Andrea Marrella “Modeling Business Processes with BPMN"

37



Event-driven Choices

Event gataway waits for response or timeout, whichever occurs first

Figure7-5. Delay using Timer event

Check for
uploaded data

Available?

10 min

Continue
process

Check for
uploaded data

15th or 30th
of month

Continue
process

Search for
internal

candidates
Screen resumes

Engage external
search firm

Receive request

Perform service Send invoce

3 days

Notify manager

Take order Collect money

Prepare fries

Prepare burger

Prepare drink

Deliver to
customer

Order complete

Take order Deliver to
customer

Order complete

New process

5 min

Refund money

Cu
st

om
er

Receive application

Verify
completeness

Info complete?

Request info

Process
application

Receive
response

Card issued

Cu
st

om
er

Receive application

Verify
completeness

Info complete?

Request info

Process
application

Receive
response

Card issued

7 days Rejected

3 weeks

yes

no

Ap
pl

ic
at

io
n

no

In
fo

 r
eq

ue
st

In
fo

 r
es

po
ns

e

Cr
ed

it 
ca

rd

yes

Ap
pl

ic
at

io
n

no

In
fo

 r
eq

ue
st

In
fo

 r
es

po
ns

e

Cr
ed

it 
ca

rd

yes

Re
je

ct
io

n
no

tic
e

38



Error event

Error
An exception end state of an activity (business or technical error).

Interrupting error boundary event
Indicates an error code and how that error is handled if the activity execution experiences that
error.

• On a task: represents the exception flow to be followed when the task completes
unsuccessfully.

• On a subprocess: same meaning, but requires that the inner specification of a descendant
subprocess explicitly mentions the corresponding error end state.

Error end state
End state marking an error termination of the process level (with a certain error code).
We assume that the label corresponds to its error code.

39



Throw-Catch Pattern

Semantics of Error Handling
When the current process level reaches an error end state:
1. All active parallel threads within the same process level are immediately terminated (∼

termination end state).
2. The corresponding error signal is generated, and propagated to the parent level.
3. If the parent level defines an error boundary event with matching error code, the signal is

caught and the exception flow is activated.
4. Otherwise, the signal is recursively propagated to the ancestors, until the nearest ancestor

able to handle the error finally catches it.

40



Throw-Catch Pattern
Figure 7.26. Error throw-catch

Order complete

Contact
customer

Order reject

Receive order

Check credit Fulfill order

Bad credit

Check account
history

Check credit
score

Credit ok

Bad credit scoreBad account
history

Update
customer info

Order complete

Contact
customer

Order reject

Receive order

Check credit Fulfill order
Credit ok?

Check account
history

Check credit
score

Credit ok

Bad credit scoreBad account
history

Update
customer info

Bad credit Bad credit

yes

no

Observation
The boundary error event is not really “interrupting”, since it is triggered when the inner
activity terminates in an error end state.

41



Correspondence with Level 1 Exceptions

Business exceptions handled by the immediate parent process level can be equivalently
modeled:

• Using the methodology seen in level 1.
• Different end termination states.
• Gateway used in the parent process to test which termination state has been reached.

• Using throw-catch patterns: more emphasis on the fact that we are handling errors.

42



Escalation Event

Represented with an upward arrow inside.

Escalation event
Used to handle a “mild” exception. Differently from errors:

• An escalation can be triggered in the middle of a process level, not just in an end state.
• An escalation is typically caught without interrupting the current process level.

• But can also be interrupting when needed.

Semantics
Identical to the throw-catch pattern for error events, considering that in this case the inner
process does not necessarily terminate upon escalation.

Typically used to handle ad-hoc exceptions in user tasks.

43



Managing Exception Synchronization

Example
Whenever a request is received, the process handles it by entering its details. If a configuration
issue arises, a specialist from the IT department is consulted. Once this phase is properly
completed, the request is fulfilled.

Usage of subprocess boundaries to introduce a “dynamic” synchronization point.

• We will see another construct to handle this issue later on.
Figure 7-29. Joining non-interrupting exception

Enter order

Consult tech
specialist

Configuration issue

Receive order

Fulfill order

Order complete

44



BPMN - Order Example (Main Process)

!"#$%&'()"*&*()+,%&-).#&)/.$-)%/&)0$'%.!&-)'1"2')3+"%"#4)+#5)0+66')%/&)7&#5.-()+'1"#4),.-)%/&)2"88+*)9&)#.3)+''$!&)%/+%)

%/&)06&-1)2-.!"'&')%/&)2"88+)%.):&)5&6"7&-&5)'..#()+#5)%/&)0$'%.!&-')3+"%'),.-)%/&)2"88+)+4+"#()+'1"#4)+4+"#)+,%&-)%/&)#&;%)

<=)!"#$%&'()+#5)'.).#*)>&%?')/+7&)+)06.'&-)6..1)+%)%/&)7&#5.-)2-.0&'')#.3*)@%)"')%-"44&-&5):A)%/&).-5&-).,)%/&)0$'%.!&-()+')

'/.3#)3"%/)%/&)!&''+4&)'%+-%)&7&#%)+#5)%/&)!&''+4&),6.3)4."#4),-.!)B.-5&-)+)2"88+C)%.)%/+%)&7&#%*)D,%&-):+1"#4)%/&)

2"88+()%/&)5&6"7&-A):.A)3"66)5&6"7&-)%/&)2"88+)+#5)-&0&"7&)%/&)2+A!&#%()3/"0/)"#06$5&')4"7"#4)+)-&0&"2%)%.)%/&)0$'%.!&-*

@#)%/"')&;+!26&()3&)$'&)!&''+4&).:E&0%')#.%).#6A),.-)"#,.-!+%".#+6).:E&0%'()+')%/&)2"88+).-5&-():$%)+6'.),.-)2/A'"0+6)

.:E&0%'()6"1&)%/&)2"88+).-)%/&)!.#&A*)9&)0+#)5.)%/"'():&0+$'&)%/.'&)2/A'"0+6).:E&0%')+0%$+66A)+0%)+')"#,.-!+%".#+6).:E&0%')

"#/&-&#%6AF)9/&#)%/&)2"88+)+--"7&')+%)%/&)0$'%.!&-?')5..-()'/&)3"66)-&0.4#"8&)%/"')+--"7+6)+#5)%/&-&,.-&)1#.3)%/+%)%/&)2"88+)

/+')+--"7&5()3/"0/)"')&;+0%6A)%/&)2$-2.'&).,)%/&)+00.-5+#%)!&''+4&)&7&#%)"#)%/&)0$'%.!&-?')2..6*)G,)0.$-'&()3&)0+#).#6A)

$'&)%/&)!.5&6)"#)%/+%)3+A):&0+$'&)%/"')&;+!26&)"')#.%)!&+#%)%.):&)&;&0$%&5):A)+)2-.0&'')&#4"#&*

!"# $%&'%()*+,-++.'/0(1/&(2%34*%'.'/0

H/"').-5&-),$6,"66!&#%)2-.0&'')'%+-%')+,%&-)-&0&"7"#4)+#).-5&-)!&''+4&)+#5)0.#%"#$&')%.)0/&01)3/&%/&-)%/&).-5&-&5)+-%"06&)

"')+7+"6+:6&).-)#.%*)D#)+7+"6+:6&)+-%"06&)"')'/"22&5)%.)%/&)0$'%.!&-),.66.3&5):A)+),"#+#0"+6)'&%%6&!&#%()3/"0/)"')+)0.66+2'&5)

'$:I2-.0&'')"#)%/"')5"+4-+!*)@#)0+'&)%/+%)+#)+-%"06&)"')#.%)+7+"6+:6&()"%)/+')%.):&)2-.0$-&5):A)0+66"#4)%/&)2-.0$-&!&#%)'$:I

2-.0&''*)J6&+'&)#.%&)%/+%)%/&)'/+2&).,)%/"')0.66+2'&5)'$:I2-.0&'')"')%/"016A):.-5&-&5)3/"0/)!&+#')%/+%)"%)"')+)0+66)+0%"7"%A*)

@%)"')6"1&)+)3-+22&-),.-)+)46.:+66A)5&,"#&5)%+'1).-()6"1&)"#)%/"')0+'&()'$:I2-.0&''*

D#.%/&-)0/+-+0%&-"'%"0).,)%/&)2-.0$-&!&#%)'$:I2-.0&'')+-&)%/&)%3.)+%%+0/&5)&7&#%'*)KA)$'"#4)+%%+0/&5)&7&#%')"%)"')2.''":6&)

%.)/+#56&)&7&#%')%/+%)0+#)'2.#%+#&.$'6A).00$-)5$-"#4)%/&)&;&0$%".#).,)+)%+'1).-)'$:I2-.0&''*)H/&-&:A)3&)/+7&)%.)

5"'%"#4$"'/):&%3&&#)"#%&--$2%"#4)+#5)#.#I"#%&--$2%"#4)+%%+0/&5)&7&#%'*)K.%/).,)%/&!)0+%0/)+#5)/+#56&)%/&).00$--"#4)

&7&#%'():$%).#6A)%/&)#.#I"#%&--$2%"#4)%A2&)L/&-&)"%)"')%/&)&'0+6+%".#)&7&#%)B6+%&)5&6"7&-ACM)5.&')#.%)+:.-%)%/&)+0%"7"%A)"%)"')

+%%+0/&5)%.*)9/&#)%/&)"#%&--$2%"#4)&7&#%)%A2&)%-"44&-'()%/&)&;&0$%".#).,)%/&)0$--&#%)+0%"7"%A)'%.2')"!!&5"+%&6A*

!"#$%&'(%)*%+,-./012%3145678%9'(%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!

)-5*%'(!"#6($%&'%()*+,-++.'/0

:4;14

41<16=1;

>?1<@%

-=-60-)606A*

B4A6<01

-=-60-)01

"47<C41.18A

87

D?6/%-4A6<01*15

E-A1%;106=14*

F8G74.%

<C5A7.14

>C5A7.14%68G74.1;

%

H68-8<6-0%

51AA01.18A

"-*.18A%41<16=1;

C8;106=14-)01

F8G74.%

<C5A7.14

I1.7=1%-4A6<01%

G47.%<-0-A7JC1

B4A6<01%41.7=1;

From BPMN 2.0 by Example - http://www.bpmn.org/ 45

http://www.bpmn.org/


BPMN - Order Example (Procurement Sub-Process)

!"#$%&'(#))$*'&$+"#$)+'(,$-./0+#0.0(#$/)$+&/11#&#2$34$.$('02/+/'0.5$)+.&+$#6#0+7$8+$-#.0)$+".+$+"#$%&'(#))$/)$/0)+.0+/.+#2$/0$

(.)#$+".+$+"#$('02/+/'0$3#(.-#$+&9#:$)'$/0$+"/)$#;.-%5#$<"#0$+"#$)+'(,$5#6#5$1'#)$3#5'<$.$(#&+./0$-/0/-9-7$80$'&2#&$+'$

/0(&#.)#$+"#$)+'(,$5#6#5$.0$.&+/(5#$".)$+'$3#$%&'(9&#27$!"#&#*'&#$<#$9)#$+"#$).-#$=&'(9&#-#0+$%&'(#))$.)$/0$+"#$'&2#&$

*95*/55-#0+$.02$&#*#&$+'$/+$34$+"#$(.55$.(+/6/+4$>=&'(9&#-#0+>:$/02/(.+#2$34$+"#$+"/(,$3'&2#&7$?/-/5.&$+'$+"#$$'&2#&$

*95*/55-#0+$%&'(#))$$+"/)$%&'(#))$".025#)$+"#$#&&'&$#;(#%+/'0$34$&#-'6/01$+"#$.&+/(5#$*&'-$+"#$(.+.5'17$@9+$/0$+"/)$)+'(,$

-./0+#0.0(#$%&'(#))$+"#&#$.%%#.&)$+'$3#$0'$0##2$*'&$+"#$".025/01$'*$.$>5.+#$2#5/6#&4>$#)(.5.+/'0$#6#0+7$!".+A)$<"4$/+$/)$

5#*+$'9+$.02$0'+$".025#27$8*$+"#$%&'(9&#-#0+$)93B%&'(#))$*/0/)"#)$0'&-.554:$+"#$)+'(,$5#6#5$/)$.3'6#$-/0/-9-$.02$+"#$

?+'(,$C./0+#0.0(#$%&'(#))$#02)$</+"$+"#$#02$#6#0+$D.&+/(5#$%&'(9&#2E7

F#$0'<$G''-$/0+'$+"#$15'3.5$)93B%&'(#))$D%&'(9&#-#0+E$+".+$/)$9)#2$34$3'+"$'&2#&$*95*/55-#0+$.02$)+'(,$-./0+#0.0(#7$

@#(.9)#$+"/)$/)$.$)93B%&'(#)):$+"#$)+.&+$#6#0+$/)$%5./0:$/02/(.+/01$+".+$+"/)$%&'(#))$/)$0'+$+&/11#&#2$34$.04$#;+#&0.5$#6#0+$39+$

+"#$&#*#&#0(/01$+'%B5#6#5B%&'(#))7$$

!"#$*/&)+$+.),$/0$+"/)$)93B%&'(#))$/)$+"#$("#(,$<"#+"#&$+"#$.&+/(5#$+'$%&'(9&#2$/)$.6./5.35#$.+$+"#$)9%%5/#&7$8*$0'+:$+"/)$)93B

%&'(#))$</55$+"&'<$+"#$D0'+$2#5/6#&.35#EB#;(#%+/'0$+".+$/)$(.91"+$34$3'+"$'&2#&$*95*/55-#0+$.02$)+'(,$-./0+#0.0(#:$.)$<#$

.5&#.24$2/)(9))#27

80$(.)#$+".+$+"#$2#5/6#&4$/0$+"#$=&'(9&#-#0+$%&'(#))$5.)+)$-'&#$+".0$H$2.4)$.0$#)(.5.+/'0$#6#0+$/)$+"&'<0$34$+"#$)93B

%&'(#))$+#55/01$+"#$&#*#&#0(/01$+'%B5#6#5B%&'(#))$+".+$+"#$2#5/6#&4$</55$3#$5.+#7$?/-/5.&$+'$+"#$#&&'&$#6#0+:$+"#$#)(.5.+/'0$

#6#0+$".)$.5)'$.0$#)(.5.+/'0I'2#$<"/("$/)$0#(#)).&4$*'&$+"#$('00#(+/'0$3#+<##0$+"&'</01$.02$(.+("/01$#)(.5.+/'0$#6#0+)7$

I'0+&.&4$+'$+"#$+"&'</01$#&&'&$#6#0+:$$(9&&#0+54$.(+/6#$+"&#.2)$.&#$0#/+"#&$+#&-/0.+#2$0'&$.**#(+#2$34$+"#$+"&'</01$

!!"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"#$%!&'(!)*!+,-./012!3145678!9'(!

#$%&'(!)*+,!-./01!23$4.(4340(!5'/0(66

:;7<=!01>10!

)107?!.686.@.

#47<@41.18;

A4;6<01!/47<@41B

@8B106>14-)01

C1.7>1!-4;6<01!

D47.!<-;-07E@1

A4;6<01!41.7>1B

#$%&'(!)*),!!7'/0&'(2(4.!6&895'/0(66

FG1<=!

->-60-)606;*!?6;G!

5@//0614

H106>14-)01I

J-;1!B106>14*

A4;6<01!

/47<@41B

K!&!B-*5

L!M!&!B-*5

@8B106>14-)01

87

-4;6<01!41<16>1B

N4B14!D47.!

5@//0614

From BPMN 2.0 by Example - http://www.bpmn.org/ 46

http://www.bpmn.org/


Signal Event

Represented with a triangle inside.

Signal event
Event broadcasted to all active threads in a process, and all (external) active participants.

• Intra-process: loose coupling between thrower and catchers, with the possibility of
reaching parallel threads.

• A correlation mechanism is assumed to target the right process instance.
• Inter-process: Publish-subscribe paradigm (signal broadcasted to all interested

participants).
• Any process interested in the signal could trigger a new instance using a signal start event.

47



Signal Event and Flexibility

More flexible mechanism than for other events.
• Flexible catchers.

• Errors/escalations: only target ancestor process levels.
• Messages: only target other pools.

• Flexbile reaction.
• Terminate/error are only able to terminate and entire process level.
• Signal can selectively induce termination of some activities within the current process level.

Selective termination
Negotiate 
contract

Prepare 
paperwork

Negotiation fails

Stop work

Stop work 48



Conditional Event

Represented using a list inside.

Conditional event
Continuous monitoring of a data condition/business rule.

• Event triggered every time the condition becomes true.
• Used as a starting, catching intermediate and boundary event.

49



Differences and Similarities

Replenishing stock when inventory is low. . .

• Internal condition evaluation.
Replenish 

stock

Low inventory

• External condition evaluation (by anybody).
Replenish 

stock

Low inventory

• External condition evaluation by the mentioned participant.

Replenish 
stock

receive
replenish

In
ve

nt
or

y 
co

nt
ro

l
Replenish stock

50



Event Subprocess

Exception flow can be thought as the handler of an event.

Event subprocess
An event handler whose trigger is active during the whole execution of a process level.
Features:

• Subprocess with a triggered start event: message, timer, or error.
• Interrupting vs non-interrupting.
• Graphically: dashed subprocess, plus:

• Collapsed: has a start event icon in the corner to show the type of trigger it listens to
• Expanded: uses the start event icon to start.

• Start event: solid/dashed for interrupting/non-interrupting subprocess.

The event subprocess may trigger errors/escalations: they will be managed by the parent
process in the usual way.

51



Notes for Architects

• Event subprocesses more easily map to BPEL.
• Event subprocess can access the context of its process level (data and state values).

• This is not possible when a boundary exception flow is used, because in that case the
handler belongs to the parent level.

52



Handling Timeout

Example
Upon a service request, the process enters into a “perform service” subprocess. This subprocess
is meant to run within 4 hours at most. If this time is exceeded, then the subprocess continues,
but two notifications have to be sent: one to the manager, and one to the customer.

Figure 7-29. Joining non-interrupting exception

Enter order

Consult tech
specialist

Configuration issue

Receive order

Fulfill order

Order complete

Receive service
request

Perform service

Service details

Handle timeout

4 hrs

Notify manager Notify customer

53



Activity Decorators

Basic task.

Compensation task.

Loop task (looping information attached to the activity).

Multi-instance task with parallel composition (expression attached to the
activity to calculate the number of instances).

Multi-instance task with sequential composition.

For sub-processes only: ad-hoc (tilde marker) - flexible execution of the inner activities, without
a complete specification of the process.

54



Loop Activity

An activity with a loop marker.

Loop activity
An activity possibly repeated multiple times. A Loop condition indicates whether the activity
must be repeated or whether the process must continue on the outgoing flow.

• Loop condition “Until X” is captured by gate “If not X”.
• A text annotation used to graphically show the loop condition.
• Iterations are performed sequentially.
• Number of iterations dynamically established.

Warning
Corresponds to a normal activity followed by a gateway that connects back to the activity if the
loop condition is true.

• Do not mix the two notations!

55



Example: Loops

56



Example: Loops

56



Multi-Instance Activity

An activity marked by three parallel bars.

MI activity
Activity instantiated multiple times, one per element in a collection.

• Number of iterations depends on the case and is known when the activity is reached.
• Design time or dynamically, but before the activity starts.

• Text annotation of the form “for each X” is useful if the activity label does not clarify the
MI nature.

• Execution can be:
• Sequential (horizontal bars).
• Parallel (vertical bars).

• Default termination of the activity: all-complete.
• A terminate/interrupting boundary event can be used to stop all running instances.

57



Example: Multi-Instances

Note that: the number of items in the collection determines the number of activity instances to
be created. After all quotes have been received, they are evaluated and the best quote is
selected.

58



Example: Multi-Instances

Note that: Basically, a multi-instance activity can be modeled through AND gateways. There
are two problems with this model: (1) Readability (2) Updating 59



Exercise

• After a car accident, a statement is required from two witnesses out of the five that were
present, in order to lodge the insurance claim

• As soon as the first two statements are received, the claim can be lodged with the
insurance company without waiting for the other statements

60



Exercise

61



One-To-Many

Example
Consider a hiring process that starts autonomously by posting information about a new job.
The process continues by accepting applications (from an “Applicant” pool), interviewing
candidates, ultimately hiring one of them.

Refine the process considering that only 5 selected candidates are interviewed.

Warning
Process at two different granularities:

• Case: a job.
• Portion of the process: applicant (one job, many applicants).

The “many” part requires forms of synchronization.

62



One-To-Many

Example
Consider a hiring process that starts autonomously by posting information about a new job.
The process continues by accepting applications (from an “Applicant” pool), interviewing
candidates, ultimately hiring one of them.

Refine the process considering that only 5 selected candidates are interviewed.

Warning
Process at two different granularities:

• Case: a job.
• Portion of the process: applicant (one job, many applicants).

The “many” part requires forms of synchronization.

62



One-To-Many

A common beginner mistake

Figure 8-3 A common beginner mistake

Ap
pl

ic
an

t

Post job

Receive
application

Screen and
interview Make offer

Ap
pl

ic
an

t

Post job Make offer

Process
applications

Receive
application

Screen and
interview

Until ready to
make offer

Ap
pl

ic
an

t

Post job Make offer

Until 5 viable

InterviewReceive and
Screen

Ap
pl

ic
an

t
Ev

al
ua

te
 C

an
di

da
te

Evaluate Candidate

Receive
resume

Check job
status

Open?

Screen and
interview

Position
closed

Make offer?

Rejected

Make offer
Accept? Accepted

Offer rejected

Cancel
Evaluation

H
ir

in
g 

Pr
oc

es
s

Hiring Process

Post job

3 months

Receive acceptance

Update job
status Filled

Update job
status

Abandoned

Position filled

Position unfilled

Signal cancels in-
fight instances of
Evaluate
Candidate

Job status

Ap
pl

ic
at

io
n

Re
je

ct
io

n 
no

tic
e

In
te

rv
ie

w
 in

vi
ta

tio
n

O
ff

er

O
ff

er
 r

es
po

ns
e

Ap
pl

ic
at

io
n

In
te

rv
ie

w
 in

vi
ta

tio
n

O
ff

er

O
ff

er
 r

es
po

ns
e

Re
je

ct
io

n 
no

tic
e

In
te

rv
ie

w
 in

vi
ta

tio
n

O
ff

er

O
ff

er
 r

es
po

ns
e

Rejection noticeAp
pl

ic
at

io
n

Re
su

m
e

yes

no

Po
si

tio
n

cl
os

ed

Re
je

ct
io

n
no

tic
e

yes

O
ff

er

no

Re
sp

on
se

yes

no

Po
si

tio
n 

cl
os

ed

Acceptance

63



One-To-Many

A valid but impratical solution

Figure 8-3 A common beginner mistake

Ap
pl

ic
an

t

Post job

Receive
application

Screen and
interview Make offer

Ap
pl

ic
an

t

Post job Make offer

Process
applications

Receive
application

Screen and
interview

Until ready to
make offer

Ap
pl

ic
an

t

Post job Make offer

Until 5 viable

InterviewReceive and
Screen

Ap
pl

ic
an

t
Ev

al
ua

te
 C

an
di

da
te

Evaluate Candidate

Receive
resume

Check job
status

Open?

Screen and
interview

Position
closed

Make offer?

Rejected

Make offer
Accept? Accepted

Offer rejected

Cancel
Evaluation

H
ir

in
g 

Pr
oc

es
s

Hiring Process

Post job

3 months

Receive acceptance

Update job
status Filled

Update job
status

Abandoned

Position filled

Position unfilled

Signal cancels in-
fight instances of
Evaluate
Candidate

Job status

Ap
pl

ic
at

io
n

Re
je

ct
io

n 
no

tic
e

In
te

rv
ie

w
 in

vi
ta

tio
n

O
ff

er

O
ff

er
 r

es
po

ns
e

Ap
pl

ic
at

io
n

In
te

rv
ie

w
 in

vi
ta

tio
n

O
ff

er

O
ff

er
 r

es
po

ns
e

Re
je

ct
io

n 
no

tic
e

In
te

rv
ie

w
 in

vi
ta

tio
n

O
ff

er

O
ff

er
 r

es
po

ns
e

Rejection noticeAp
pl

ic
at

io
n

Re
su

m
e

yes

no

Po
si

tio
n

cl
os

ed

Re
je

ct
io

n
no

tic
e

yes

O
ff

er

no

Re
sp

on
se

yes

no

Po
si

tio
n 

cl
os

ed

Acceptance

64



One-To-Many

A more practical process model

Figure 8-3 A common beginner mistake

Ap
pl

ic
an

t

Post job

Receive
application

Screen and
interview Make offer

Ap
pl

ic
an

t

Post job Make offer

Process
applications

Receive
application

Screen and
interview

Until ready to
make offer

Ap
pl

ic
an

t

Post job Make offer

Until 5 viable

InterviewReceive and
Screen

Ap
pl

ic
an

t
Ev

al
ua

te
 C

an
di

da
te

Evaluate Candidate

Receive
resume

Check job
status

Open?

Screen and
interview

Position
closed

Make offer?

Rejected

Make offer
Accept? Accepted

Offer rejected

Cancel
Evaluation

H
ir

in
g 

Pr
oc

es
s

Hiring Process

Post job

3 months

Receive acceptance

Update job
status Filled

Update job
status

Abandoned

Position filled

Position unfilled

Signal cancels in-
fight instances of
Evaluate
Candidate

Job status

Ap
pl

ic
at

io
n

Re
je

ct
io

n 
no

tic
e

In
te

rv
ie

w
 in

vi
ta

tio
n

O
ff

er

O
ff

er
 r

es
po

ns
e

Ap
pl

ic
at

io
n

In
te

rv
ie

w
 in

vi
ta

tio
n

O
ff

er

O
ff

er
 r

es
po

ns
e

Re
je

ct
io

n 
no

tic
e

In
te

rv
ie

w
 in

vi
ta

tio
n

O
ff

er

O
ff

er
 r

es
po

ns
e

Rejection noticeAp
pl

ic
at

io
n

Re
su

m
e

yes

no

Po
si

tio
n

cl
os

ed

Re
je

ct
io

n
no

tic
e

yes

O
ff

er

no

Re
sp

on
se

yes

no

Po
si

tio
n 

cl
os

ed

Acceptance

65



One-To-Many within a Pool

Guideline
1. Identify all N:1 activities.
2. Surround them in a loop or MI activity or a combination thereof.

Main issues:
• If in a process phase we do not know the number of instances in advance, we can only use

loop.
• Pipelining impossible.

• If in a process phase we know the number of instances in advance, we can use MI.
• Pipelining still impossible across phases.

Example
• Do we know the number of applicants in advance?
• Shall we keep “screen” and “interview” within the same loop?
• What if we want to interview only 5 candidates?
• Is it possible to pipeline “screen” and “interview”? 66



Multipool Process

Observation
BPMN recommends to associate a process to a pool.
However, this cannot be done in general if activity instances within a process are not aligned,
i.e., there is no 1:1 correspondence between them.

Multipool process
In general a process consist of many coordinated pools, each grouping activities that are
aligned with each other.

• N:1 situation: avoids looping + MIs with the corresponding pipelining issues.
• N:M situation: the only viable solution.

67



Multipool Hiring Process

Example
Consider again the hiring process.

• “Post a job” is 1:1 with the job (case).
• “Evaluate a candidate” is 1:1 with an applicant.

What is the relationship between applicant and job?
• N:1 (isolation): each applicant sends CV for a specific job.

• Single pool solution requires looping + MIs, with pipelining issues.
• Multipool solution avoids this.

• N:M (sharing): each applicant sends CV, and the company looks whether there are
matching jobs for that CV.

• Multipool separation necessary.

68



Multipool Process: Needs and Issues

• Harder to understand.
• The process is actually split into independent processes: this requires coordination to

synchronize the states of such processes and suitably reconstruct the overall process.
• Data store, using data objects and their states for indirect synchronization/decision making.
• Signals, to broadcast a control-flow state and implicitly trigger multi-pool synchronization.
• Messages, to exchange data, hand-over work, and handle “selective” synchronization

between two pools.
• Particularly useful to model batch processes.

69



Hiring Process and Multipool Coordination

Example
We revisit the hiring process using one external pool for the applicant, and two process pools:
Evaluate Candidate and Hiring Process.
The Hiring process starts autonomously by posting a job. If the job is successfully assigned to
someone, it is marked as “filled”. If this is not the case within 3 months, the job is marked as
“abandoned”.
The Evaluate candidate process starts when a resume is received by the company from an
applicant. We assume that the resume is for a specific job. If the job is not currently offered,
the process terminates by notifying this to the applicant. If it is open, a subprocess “screen and
interview” is invoked. Then the company decides whether to make an offer to the candidate or
not. If not, this is notified to her. If so, then the offer is made to the candidate, who can then
accept or reject the offer. As soon as the job is filled, the evaluation of candidates must be
interrupted.

70



Hiring Process and Multipool Coordination

Guideline
Hiring process could be organized as follows:

• 1 external pool for the Applicant, two process pools: Hiring Process and Evaluate
Candidate.

• Job Status data store to synch on the job lifecycle.
• Message exchange to send data around and take decisions in agreement with the other

pools.
• Signal event + event subprocess to interrupt sibling cases running in the other pools (e.g.,

to stop evaluating people when the job has been filled).

71



One-To-Many

Multi-pool solution to the hiring process problem

Figure 8-3 A common beginner mistake

Ap
pl

ic
an

t

Post job

Receive
application

Screen and
interview Make offer

Ap
pl

ic
an

t

Post job Make offer

Process
applications

Receive
application

Screen and
interview

Until ready to
make offer

Ap
pl

ic
an

t

Post job Make offer

Until 5 viable

InterviewReceive and
Screen

Ap
pl

ic
an

t
Ev

al
ua

te
 C

an
di

da
te

Evaluate Candidate

Receive
resume

Check job
status

Open?

Screen and
interview

Position
closed

Make offer?

Rejected

Make offer
Accept? Accepted

Offer rejected

Cancel
Evaluation

H
ir

in
g 

Pr
oc

es
s

Hiring Process

Post job

3 months

Receive acceptance

Update job
status Filled

Update job
status

Abandoned

Position filled

Position unfilled

Signal cancels in-
fight instances of
Evaluate
Candidate

Job status

Ap
pl

ic
at

io
n

Re
je

ct
io

n 
no

tic
e

In
te

rv
ie

w
 in

vi
ta

tio
n

O
ff

er

O
ff

er
 r

es
po

ns
e

Ap
pl

ic
at

io
n

In
te

rv
ie

w
 in

vi
ta

tio
n

O
ff

er

O
ff

er
 r

es
po

ns
e

Re
je

ct
io

n 
no

tic
e

In
te

rv
ie

w
 in

vi
ta

tio
n

O
ff

er

O
ff

er
 r

es
po

ns
e

Rejection noticeAp
pl

ic
at

io
n

Re
su

m
e

yes

no

Po
si

tio
n

cl
os

ed

Re
je

ct
io

n
no

tic
e

yes

O
ff

er

no

Re
sp

on
se

yes

no

Po
si

tio
n 

cl
os

ed

Acceptance

72



Batch Process

Common situation where the process must be captured via multiple pools.

Batch process
A process operating over a batch of items, which are handled separately in another process
(i.e., the other process treats them as cases).

• Typically, batch processing is triggered by a time event.
• There are cases in which the result of batch processing is needed also in the “item-level”

process.

Whenever the batch-level process needs to interact with the item-level process, the same forms
of coordination seen before can be used.

73



Batch Posting of Orders

Example
Once an order is received from the customer, it is registered in the “Orders” DB. Orders are
posted on a daily basis: at 8am in the morning, all the orders issued during the previous 24
hours are posted. As a consequence of the posting, each order is automatically assigned to an
agent, storing this information into the DB. Then the agent takes care of fulfilling the order.

74



Solution?

Orders

Update 
Orders DB

Receive order 8 am

Post Batch Assign Agents Fulfill Order

• Green: one order.
• Red: many orders.
• Orange: all known orders.

75



Solution?

Orders

Update 
Orders DB

Receive order 8 am

Post Batch Assign Agents Fulfill Order

• Green: one order.
• Red: many orders.
• Orange: all known orders.

75



Solution?!?

Data-store provides a suitable loose coupling mechanism.

Po
st

 o
rd

er
 b

at
ch

Orders

Update 
Orders DB

Receive order

8 am

Post Batch Assign Agents

Fulfill Order

Who fulfills the order? The order is fulfilled without waiting for the agent assignment: race
conditions.

76



Solution?!?

Data-store provides a suitable loose coupling mechanism.

Po
st

 o
rd

er
 b

at
ch

Orders

Update 
Orders DB

Receive order

8 am

Post Batch Assign Agents

Fulfill Order

Who fulfills the order? The order is fulfilled without waiting for the agent assignment: race
conditions. 76



Solution 1: Stopwatch + Data-Store Synchronization

Po
st

 o
rd

er
 b

at
ch

Orders

Update 
Orders DB

Receive order

8 am

Post Batch Assign Agents

Fulfill Order

Set Agent

for each Order

Get Agent

9 am

Wait until batch ends

77



Solution 2: Message-Based Synchronization

Po
st

 o
rd

er
 b

at
ch

Orders

Update 
Orders DB

Receive order

8 am

Post Batch Assign Agents

Fulfill Order

Return Agent

for each Order

Receive agent

If the fact that an agent is set must be broadcasted: throw signal event!

78



Advanced Splitting and Merging

BPMN provides advanced splitting/merging behavior.

• Conditional flows.
• OR split/join.
• Complex gateway: discriminator, n-out of-m, . . .

79



An Interesting Example

Claim handling
When a claim is received, it is registered. After registration, the claim is classified leading to
two possible outcomes: simple or complex. If the claim is simple, the policy is checked. For
complex claims, both the policy and the damage are checked independently.

Questions
• Can we model the example using the constructs seen so far?
• Can we model it in a compact way?
• Is this a decision? Or an AND-split?

80



Another Interesting Example

Contract Check
After a contract is drafted, it is subject to different checks. If it is a technical contract, a
technical review is done. If it involves a financial transaction of more than 10K Euros, then a
financial check is carried out. If the contract involves a premium customer, then a quality
check is executed. If none of these special conditions applies, then a quick check suffices.

Questions
• Can we model the example using the constructs seen so far?
• Can we model it in a compact way?
• Is this a decision? Or an AND-split?

81



Conditional Flow

Sequence flow taken only if a certain condition is true. Multiple conditional flows departing
from the same activity can be used to model inclusive choice. BPMN supports conditional
flows in two ways.

OR-split (gateway decorated with an “O”)
Inclusive gateway whose gates are independent choices.

• At least one condition must be true.
• If more than one is true, corresponding gates are followed in parallel.
• Default flow (barred) can be used to model “otherwise”.
• Can be used to model optional work.

• Use label “always” for the path that must be always taken.

Conditional flow (Sequence flow + diamond-on-the-tail + condition)
Reflects the general intuition above. (1) Can only be used if the source is an activity. (2) Same
properties mentioned for the OR-split.

82



Claim Handling with OR-Split

Example
When a claim is received, it is registered. After registration, the claim is classified leading to
two possible outcomes: simple or complex. If the claim is simple, the policy is checked. For
complex claims, both the policy and the damage are checked independently.

83



Contract Check with Conditional Flow

Example
After a contract is drafted, it is subject to different checks. If it is a technical contract, a
technical review is done. If it involves a financial transaction of more than 10K Euros, then a
financial check is carried out. If the contract involves a premium customer, then a quality
check is executed. If none of these special conditions applies, then a quick check suffices.

84



Token Game: OR split5

• Inclusive gateways support decisions
where more than one outcome is possible
at the decision point

• Inclusive gateway with multiple outgoing
sequence flows creates one or more paths
based on the conditions on those
sequence flow

5Credits: Andrea Marrella “Modeling Business Processes with BPMN"

85



Token Game: OR split5

• In terms of token semantics, this means
that the OR-split takes the input token
and generates a number of tokens
equivalent to the number of output
conditions that are true

• Every condition that evaluates to true will
result in a token moving down that
sequence flow

• At least one of those conditions must
evaluate to true

5Credits: Andrea Marrella “Modeling Business Processes with BPMN"

85



Token Game: OR join6

• When the first token arrives at the
gateway, the gateway will “look"
upstream for each of the other incoming
sequence flow to see if there is a token
that might arrive at a later time

• Thus, the gateway will hold the first
token that arrived in the upper path until
the other token from the lower path
arrives.

6Credits: Andrea Marrella “Modeling Business Processes with BPMN"

86



Token Game: OR join6

• When all the expected tokens have
arrived at the gateway, the process flow is
synchronized (the incoming tokens are
merged) and then a token moves down
the gateway’s outgoing sequence flow

6Credits: Andrea Marrella “Modeling Business Processes with BPMN"

86



How to Join?

Receive
claim

Register claim Classify claim

Check policy

Check damage

Receive
contract
request

Draft contract

Do technical
review

Do quick check

Do financial
check

Do quality check

Handle request

add late
features

Handle addition
a

lw
a

ys

is
 t

e
ch

n
ic

a
l 
co

n
tr

a
ct

in
vo

lve
s >

 1
0K €

involves

prem
ium

custom
er

co
m

p
le

x
cl

a
im

?

?

?

87



Useless Attempts

Two answers

Register 
claim

Receive claim

Classify 
claim

Check 
policy

Check 
damage

always

complex claim

Prepare 
answer . . .

No answer

Register 
claim

Receive claim

Classify 
claim

Check 
policy

Check 
damage

always

complex claim

Prepare 
answer . . .

88



Useless Attempts

Two answers

Register 
claim

Receive claim

Classify 
claim

Check 
policy

Check 
damage

always

complex claim

Prepare 
answer . . .

No answer

Register 
claim

Receive claim

Classify 
claim

Check 
policy

Check 
damage

always

complex claim

Prepare 
answer . . .

88



OR-Join

OR-Join
Selectively synchronizes conditionally enabled parallel threads.

• Non-local semantics: needs to know which parallel threads actually exist and will need
to be synchronized in the future.

• Decides to wait or forward work depending on the presence or absence of remaining
threads to be synchronized.

Typical usages:

• Selective synch corresponding to an inclusive choice.
• Synch in case of interrupting exceptional flow.
• Synch in case of non-interrupting exceptional flow.

Big Question
How to determine such threads?

89



OR-Join for Non-Interrupting Exceptional Flow

Handle 
request ?

Handle 
additions

add late features

A B

B executed only if the request is completed, possibly including additions.

• Remember: additions are only handled if the message is received in the proper process
phase. We cannot know in advance whether this will be indeed the case.

90



OR-Join for Interrupting Exceptional Flow

Draft 
contract

Do 
financial 

check

Do 
technical 

review

needs revision

Revise 
financial 

terms

Finalize 
contract

We do not know in advance whether the technical review will need to synch with the financial
review or the revision of financial terms.

91



Exercise

• A company has two warehouses that store different products: Amsterdam and Hamburg
• When an order is received, it is distributed across these warehouses: if some of the

relevant products are maintained in Amsterdam, a sub-order is sent there; likewise, if some
relevant products are maintained in Hamburg, a sub-order is sent there.

• Afterwards, the order is registered and the process completes

92



Exercise

Note:
Some activities represented in the process model have to be duplicated!

93



Exercise

Note:
This process works also for empty orders (i.e., for orders that do not contain neither
Amsterdam nor Hamburg products).

94



Exercise

A third solution with OR gateways.

95



Exercise

What type should we assign to this join?

96



Exercise

• AND-join: If activity “D” is not executed, the AND-join will wait indefinitely for that
token, with the consequence that the process instance will not be able to progress any
further. This behavioral anomaly is called deadlock and should be avoided

• XOR-join: we may execute activity “F” once or twice, depending whether the preceding
XOR-split routes the token to “E” (in this case “F” is executed once) or to “D” (“F” is
executed twice). While this solution may work, we have the problem that we do not know
whether activity “F” will be executed once or twice, and we may actually not want to
execute it twice. Moreover, if this is the case, we would signal that the process has
completed twice, since the end event following “F” will receive two tokens. And this,
again, is something we want to avoid

97



Exercise

• OR-join: An OR-join will wait for all incoming active branches to complete. If the
XOR-split routes control to “E”, the OR-join will not wait for a token from the branch
bearing activity “D”, since this will never arrive. Thus, it will proceed once the token from
activity “C” arrives. On the other hand, if the XOR-split routes control to “D”, the
OR-join will wait for a token to also arrive from this branch, and once both tokens have
arrived, it will merge them into one and send this token out, so that “F” can be executed
once and the process can complete normally

98



Block-Structured Process Model - Intuition

The graph structure can be understood as composition of blocks.

99



Block-Structured Process Model

A process model obtained via recursive composition of SESE blocks.

SESE block
A process fragment that has a single input and a single output, and can be abstracted as a
subprocess. Block types:

• end-to-end process.
• Single task.
• Sequence block.
• Choice block (X).
• Parallel block (+).
• Inclusive block (O).
• Loop block.

This is just a guideline, we typically need at least some exceptions for end points and exception
handling. 100



SESE Blocks

Task

Task

Choice

B1

B2

Bn

...
X X

Sequence

B1 B2

Parallel

B1

B2

Bn

...
+ +

101



SESE Blocks

Inclusive

B1

B2

Bn

...
O O

Loop

X XB

End-to-end process

Process

102



OR-Join Semantics for SESE Block

Quite simple:

1. When the OR-split of the block is reached, the enabled gates are determined.
2. Each enabled gate has a 1:1 correspondence with a sequence flow entering into the

OR-join of the block.
3. The OR-join therefore knows which execution threads need to be synchronized, and where

they are located.
4. It can be then realize as a simple variant of an AND-join.

This can be generalized to non-block-structured processes, provided that they do not contain
loops indirectly producing work that goes back into the OR-join.

103



OR-Join in the General Case

Do you like paradoxes?

Vicious circle (adapted from van der Aalst et. al)

A1

B1 B2

A2

104



General Execution Semantics for OR-Join

From the BPMN official documentation. . .

An Inclusive Gateway is activated if:

• At least one incoming Sequence Flow has at least one token and
• For every directed path formed by sequence flow that

• starts with a Sequence Flow f of the diagram that has a token,
• ends with an incoming Sequence Flow of the inclusive gateway that has no token,
• does not visit the Inclusive Gateway

then there is also a directed path formed by Sequence Flow that
• starts with f ,
• ends with an incoming Sequence Flow of the inclusive gateway that has a token, and
• does not visit the Inclusive Gateway.

105



When should we use an OR-join?

• Since the OR-join semantics is not simple, the presence of this element in a model may
confuse the reader

• Thus, we suggest to use it only when it is strictly required

Clearly, it is easy to see that an OR-join must be used whenever we need to synchronize control
from a preceding OR-split. Similarly, we should use an AND-jointo synchronize control from a
preceding AND-split and an XOR-join to merge a set of branches that are mutually exclusive.

106



When should we use an OR-join?

• Since the OR-join semantics is not simple, the presence of this element in a model may
confuse the reader

• Thus, we suggest to use it only when it is strictly required

Clearly, it is easy to see that an OR-join must be used whenever we need to synchronize control
from a preceding OR-split. Similarly, we should use an AND-jointo synchronize control from a
preceding AND-split and an XOR-join to merge a set of branches that are mutually exclusive.

106



Other Forms of Synchronization

Consider another variant of the contract example seen before.

Example
Once a contract is drafted, a financial and technical reviews are conducted in parallel. As soon
as one of the two ends, an executive review must be conducted as well. When all reviews are
finished, the contract is finalized.

Question
How to enable an activity as soon as the first among two other activities completes?

• A simple merge does not work, because it would be triggered multiple times!

107



Discriminator

Discriminator
Passes the first incoming sequence flows and blocks all those that arrive later.

• It resets when all incoming flows arrive.

It does not have a specific symbol in BPMN. There is however the notion of “complex gateway”
(∗ decoration) to represent advanced forms of synchronization like the discriminator one.

Generalization
N-out of-M join.

108



Contract Drafting with Discriminator

Example
Once a contract is drafted, a financial and technical reviews are conducted in parallel. As soon
as one of the two ends, an executive review must be conducted as well. When all reviews are
finished, the contract is finalized.

Draft 
contract

Do 
financial 

check

Do 
technical 

review

Revise 
financial 

terms

Finalize 
contract

Whichever completes first

109



Contract Drafting with Discriminator

Example
Once a contract is drafted, a financial and technical reviews are conducted in parallel. As soon
as one of the two ends, an executive review must be conducted as well. When all reviews are
finished, the contract is finalized.

Draft 
contract

Do 
financial 

check

Do 
technical 

review

Revise 
financial 

terms

Finalize 
contract

Whichever completes first

109



BPMN - Hardware Retailer Example

! "#$%%&'($#)%*+&,-./0123,-4&50/*&50-3*).+

!"#$%&"'()*+%#,)+-./&*$%)"*%&-+*%&-,&*()$%-0%(+-&*$$%1-.*2#,3%4#)"%56789%:*%4#22%,-)%*;(2'#,%*<*+=%$#,32*%$=1>-2%=-/%

&',%0#,.%#,%)"*%.#'3+'1$?%>/)%$"-4%"-4%(+-&*$$%1-.*2#,3%#,%5678%#$%>'$#&'22=%.-,*?%"-4%4*%&',%/$*%(--2$%',.%1*$$'3*%

02-4$%0-+%*;(2#&#)2=%1-.*2#,3%&-22'>-+')#-,$%>*)4**,%('+)#&#(',)$?%',.%"-4%4*%&',%@.*AB&-1(-$*%(+-&*$$%1-.*2$%4#)"%

$/>A(+-&*$$*$%',.%&'22%'&)#<#)#*$9%!"-$*%*;'1(2*$%.-%,-)%&-,)'#,%*;*&/)'>2*%(+-&*$$%1-.*2$?%>/)%+*(+*$*,)%(+-&*$$%1-.*2$%

0-&/$#,3%-,%-+3',#C')#-,'2%'$(*&)$%-0%>/$#,*$$%(+-&*$$*$9%

!"# $%&'()*+,-./0)11,/2,3,43.563.),7)+3&8).

%

D,%E#3/+*%F9G%=-/%&',%0#,.%)"*%(+*('+#,3%$)*($%'%"'+.4'+*%+*)'#2*+%"'$%)-%0/20#22%>*0-+*%)"*%-+.*+*.%3--.$%&',%'&)/'22=%>*%

$"#((*.%)-%)"*%&/$)-1*+9%

D,%)"#$%*;'1(2*?%4*%/$*.%-,2=%-,*%(--2%',.%.#00*+*,)%2',*$%0-+%)"*%(*-(2*%#,<-2<*.%#,%)"#$%(+-&*$$?%4"#&"%'/)-1')#&'22=%

1*',$%)"')%4*%>2',H%-/)%)"*%&-11/,#&')#-,%>*)4**,%)"-$*%(*-(2*I%:*%J/$)%'$$/1*%)"')%)"*=%'+*%&-11/,#&')#,3%4#)"%

*'&"%-)"*+%$-1*"-49%D0%4*%"'.%'%(+-&*$$%*,3#,*%.+#<#,3%)"#$%(+-&*$$?%)"')%*,3#,*%4-/2.%'$$#3,%/$*+%)'$H$%',.%)"*+*0-+*%

>*%+*$(-,$#>2*%0-+%)"*%&-11/,#&')#-,%>*)4**,%)"-$*%(*-(2*9%D0%4*%.-%,-)%"'<*%$/&"%'%(+-&*$$%*,3#,*?%>/)%4',)%)-%1-.*2%

)"*%&-11/,#&')#-,%>*)4**,%)"*%(*-(2*%#,<-2<*.%*;(2#&#)2=?%4*%4-/2.%"'<*%)-%/$*%'%&-22'>-+')#-,%.#'3+'1%'$%#,%)"*%,*;)%

&"'()*+9

!"*%(2'#,%$)'+)%*<*,)%K3--.$%)-%$"#(L%#,.#&')*$%)"')%)"#$%(+*('+')#-,%$"-/2.%>*%.-,*%,-49%M#3")%'0)*+%)"*%#,$)',)#')#-,%-0%

)"*%(+-&*$$?%)"*+*%'+*%)4-%)"#,3$%.-,*%#,%('+'22*2?%'$%)"*%('+'22*2%3')*4'=%#,.#&')*$I%:"#2*%)"*%&2*+H%"'$%)-%.*&#.*%4"*)"*+%

)"#$%#$%'%,-+1'2%(-$)'2%-+%'%$(*&#'2%$"#(1*,)%@4*%.-%,-)%.*0#,*%)"*%&+#)*+#'%"-4%)-%.*&#.*%)"#$%#,$#.*%)"*%(+-&*$$%1-.*2B?%

)"*%4'+*"-/$*%4-+H*+%&',%'2+*'.=%$)'+)%('&H'3#,3%)"*%3--.$9%!"#$%&2*+HN$%)'$H?%4"#&"%#$%0-22-4*.%>=%)"*%*;&2/$#<*%

3')*4'=%K1-.*%-0%.*2#<*+=L?%#$%'%3--.%*;'1(2*%0-+%&2'+#0=#,3%)"*%+*&-11*,.*.%/$'3*%-0%'%3')*4'=I%!"*%3')*4'=%#$%,-)%

+*$(-,$#>2*%0-+%)"*%.*&#$#-,%4"*)"*+%)"#$%#$%'%$(*&#'2%-+%'%(-$)'2%$"#(1*,)9%D,$)*'.?%)"#$%.*&#$#-,%#$%/,.*+)'H*,%#,%)"*%

'&)#<#)=%>*0-+*9%%!"*%3')*4'=%-,2=%4-+H$%'$%'%+-/)*+?%4"#&"%#$%>'$*.%-,%)"*%+*$/2)%-0%)"*%(+*<#-/$%)'$H?%',.%(+-<#.*$%

'2)*+,')#<*%(')"$9%O%)'$H%+*(+*$*,)$%',%'&)/'2%/,#)%-0%4-+H?%4"#2*%'%3')*4'=%#$%-,2=%+-/)#,3%)"*%$*P/*,&*%02-49%

!"#$%3')*4'=%#$%&'22*.%K*;&2/$#<*L?%>*&'/$*%-,2=%-,*%-0%)"*%0-22-4#,3%)4-%>+',&"*$%&',%>*%)+'<*+$*.I%D0%4*%,**.%'%$(*&#'2%

$"#(1*,)?%)"*%&2*+H%+*P/*$)$%P/-)*$%0+-1%.#00*+*,)%&'++#*+$?%)"*,%'$$#3,$%'%&'++#*+%',.%(+*('+*$%)"*%('(*+4-+H9%5/)%#0%'%

,-+1'2%(-$)%$"#(1*,)%#$%0#,*?%)"*%&2*+H%,**.$%)-%&"*&H%#0%',%*;)+'%#,$/+',&*%#$%,*&*$$'+=9%D0%)"')%*;)+'%#,$/+',&*%#$%

!"#$%&'(%)*%+,-./012%3145678%9'(%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%9

:&;<.),!"#=,$%&'()*+,-./0)11,/2,3,%3.563.),.)+3&8).

:
-
4;
<
-
41
%=
1
>-
601
4

?
7
@
65
>6
A
5
%

#
-
8
-
@
1
4

B
01
4C

D
-
41
E
7
F
5
1

D
7
4C
1
4

G77;5%

>7%5E6/

H1A6;1%6I%

874.-0%/75>%74%

5/1A6-0%

5E6/.18>

"-AC-@1%

@77;5

#7;1%7I%;106J14*

=1KF15>%

KF7>15%I47.%

A-446145

L556@8%-%

A-44614%M%

/41/-41%

/-/14<74C

N600%68%-%"75>%

0-)10

BE1AC%6I%1,>4-%

685F4-8A1%65%

81A155-4*

O-C1%7F>%1,>4-%

685F4-8A1

L;;%/-/14<74C%

-8;%.7J1%

/-AC-@1%>7%

/6AC%-41-

P/1A6-0%B-44614

$74.-0%"75>

1,>4-%685F4-8A1

41KF641;

L0<-*5

G77;5%-J-60-)01%

I74%/6AC
Q85F4-8A1%65%

68A0F;1;%68%A-44614%

514J6A1

From BPMN 2.0 by Example - http://www.bpmn.org/
110

http://www.bpmn.org/


BPMN - Pizza Example

!"#$%!"&'()*"(+,-%.)%/.(0121-"!(*1.(),()13"(,$)()*1)(%2.$!12/"4(52(126(/1."'()*"(/+"!3(*1.(),(7%++(%2(1(8,.)1+(+19"+(7,!()*"(

.*%80"2)4(:,!()*%.(./"21!%,'()*"(.*,;2(%2/+$.%<"(-1)";16(%.(*"+87$+'(9"/1$."(;"(/12(.*,;()*1)(,2"(9!12/*(%.(1+;16.(

)13"2'(;*%+"()*"(,)*"!(,2"(,2+6(%7()*"("=)!1(%2.$!12/"(%.(!"#$%!"&'(9$)(5:(%)(%.()13"2'()*%.(/12(*188"2(%2(81!1++"+(),()*"(7%!.)(

9!12/*4(>"/1$."(,7()*%.(81!1++"+%.0'(;"(2""&()*"(.62/*!,2%?%2-(%2/+$.%<"(-1)";16(!%-*)(9"*%2&(@:%++(%2(1(A,.)(+19"+B(12&(

@C13"(,$)("=)!1(%2.$!12/"B4(52()*%.(./"21!%,'()*"(%2/+$.%<"(-1)";16(;%++(1+;16.(;1%)(7,!(@:%++(%2(1(A,.)(+19"+B(),(9"(

/,08+")"&'(9"/1$."()*1)(%.(1+;16.(.)1!)"&4(57(12("=)!1(%2.$!12/"(;1.(!"#$%!"&'()*"(%2/+$.%<"(-1)";16(;%++(1+.,(;1%)(7,!(

@C13"(,$)("=)!1(%2.$!12/"B(),(9"(7%2%.*"&4(:$!)*"!0,!"'(;"(1+.,(2""&()*"(.62/*!,2%?%2-(81!1++"+(-1)";16(9"7,!"()*"(+1.)(

)1.3(@1&&(818"!;,!3(12&(0,<"(81/31-"(),(8%/3(1!"1B'(9"/1$."(;"(;12)(),(013"(.$!"()*1)("<"!6)*%2-(*1.(9""2(7$+7%++"&(

9"7,!"()*"(+1.)()1.3(%.("="/$)"&4

!"# $%&'()**+',-..+/-0+1)-2

C*%.("=108+"(%.(19,$)(>$.%2"..DC,D>$.%2"..DE,++19,!1)%,24(>"/1$."(;"(;12)(),(0,&"+()*"(%2)"!1/)%,2(9");""2(1(8%??1(

/$.),0"!(12&()*"(<"2&,!("=8+%/%)+6'(;"(*1<"(/+1..%7%"&()*"0(1.(@81!)%/%812).B'()*"!"7,!"(8!,<%&%2-()*"0(;%)*(&"&%/1)"&(

8,,+.4(A+"1."(2,)"()*1)()*"!"(%.(2,(&"71$+)(."012)%/.(%2()*%.()68"(,7(0,&"+%2-'(;*%/*(0"12.(6,$(/12(0,&"+(/,++19,!1)%,2(

&%1-!10.(),(.*,;()*"(%2)"!1/)%,2(9");""2(9$.%2"..(81!)2"!.'(9$)(1+.,(?,,0(%2),(,2"(/,08126'(0,&"+%2-()*"(%2)"!1/)%,2(

9");""2(&%77"!"2)(&"81!)0"2).'()"10.(,!("<"2(.%2-+"(;,!3"!.(12&(.,7);1!"(.6.)"0.(%2(/,++19,!1)%,2(&%1-!10.4(5)(%.(),)1++6(

$8(),()*"(8$!8,."(,7()*"(0,&"+(12&()*"!"7,!"(1(&"/%.%,2()*"(0,&"+"!(*1.(),(013"'(;*")*"!(1(/,++19,!1)%,2(&%1-!10(;%)*(

&%77"!"2)(8,,+.(%.($."7$+'(,!(;*")*"!(,2"(.*,$+&(.)%/3(),(,2"(8,,+(;%)*(&%77"!"2)(+12".'(1.(.*,;2(%2()*"(8!"<%,$.(/*18)"!4(

57(;"(.)"8()*!,$-*()*"(&%1-!10'(;"(.*,$+&(.)1!)(;%)*()*"(8%??1(/$.),0"!'(;*,(*1.(2,)%/"&(*"!(.),01/*(-!,;+%2-4(C*"(

/$.),0"!()*"!"7,!"(."+"/).(1(8%??1(12&(,!&"!.(%)4(F7)"!()*1)'()*"(/$.),0"!(;1%).(7,!()*"(8%??1(),(9"(&"+%<"!"&4(C*"("<"2)(

91."&(-1)";16(17)"!()*"()1.3(@,!&"!(1(8%??1B(%2&%/1)".()*1)()*"(/$.),0"!(1/)$1++6(;1%).(7,!();,(&%77"!"2)("<"2).()*1)(/,$+&(

*188"2(2"=)G(H%)*"!()*"(8%??1(%.(&"+%<"!"&'(1.(%2&%/1)"&(;%)*()*"(7,++,;%2-(0"..1-"("<"2)'(,!()*"!"(%.(2,(&"+%<"!6(7,!(IJ(

''3''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"#$%!&'(!)*!+,-./012!3145678!9'(!

4)560&'!"#7'809&0)25'+29'9&.):&0)25';)**+

#
6:
:
-
!;
<
5
=7
.
1
4

><8?4*

@74!/6::-

A101B=!-!/6::- C4D14!-!/6::-

/6::-

41B16E1D

F(!.68<=15

G5H!@74!=I1!

/6::-

#-*!=I1!/6::- +-=!=I1!/6::-

><8?14

5-=65@61D

#
6:
:
-
!E
1
8
D
7
4

/
6:
:
-
!B
I
1
@

D
1
06E
1
4*
!)
7
*

C4D14

41B16E1D

"-H1!=I1!/6::-

J106E14!=I1!

/6::-

K1B16E1!

/-*.18=

/6::-!74D14

41B16/=

.781*

/6::-

B
01
4H

LMI141!65!.*!

/6::-NO

;-0.

B<5=7.14

From BPMN 2.0 by Example - http://www.bpmn.org/

111

http://www.bpmn.org/

