t Organization

4 Projec

14

BAR[ puUR ‘suxaned “TIAN SuIs))
SULIUISUY 3IBM)JOS PIIIUIILIN-1[qO



Laws of Project Management

¢ Projects progress quickly until they are 90% complete.
Then they remain at 90% complete forever.

¢+ When things are going well, something will go wrong.
When things just can’t get worse, they will. When things
appear to be going better, you have overlooked something.

¢+ If project content is allowed to change freely, the rate of
change will exceed the rate of progress.

¢ Project teams detest progress reporting because it
manifests their lack of progress.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java



How it should go
Rexuir ments
nalysis ! j
[Design ] ! )
[Implementatio@ ! j
[System Testi ng] %

[Delivery and Installation]

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3



How it often goes

Requirements
nalysis

Y

<Vapo rware)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java



Outline

¢ Organizational Structures

* Functional, Project and Matrix Organizations
¢+ Key project roles in organizational structures

* Project Manager, Team members, upper management, ...
¢ Relationships between roles
¢ Information flows between roles

¢ Decision making, status reporting, communication
¢ Identifying people

* Audience List, Drivers, Supporters, Observers

¢ Involvement of audience members during the lifetime of a project
¢ Properties of roles:

¢ Responsibilities, Authority and Delegation

¢ And if time permits:
¢ Micromanagement (and how to avoid it)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5



Organizational Structures

¢ Types of Organization
* Functional organization
* Project-based organization
¢ Matrix organization

¢ Parameters for each organization type
¢ Organizational Unit
¢ Key players
* Roles and Responsibilities
¢ Structure: Information flow between roles
* Benefits and Challenges (‘“‘pros and cons”)

¢ Heuristics

¢ Let’s start with an example and a few definitions....

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java



Toy Project with 3 Teams

Subsystem decomposition

UserInterface
/ RS
/
/
%/ Control
~
Database Z

Bernd Bruegge & Allen H. Dutoit

~

Team organization

UserInterface

:SubsystemTeam

~
~

/

N

N

/

Control
:SubsystemTeam

y

Database
:SubsystemTeam

Object-Oriented Software Engineering: Using UML, Patterns, and Java

-

=

—



Groups, Teams and Committees

¢ Group: A set of people who are assigned to a common task
and who work individually to accomplish their assignment.

¢+ Team: A small group of people working on the same problem
or subproblem 1n a project. The team members depend on one
another to do their tasks.

* Project Team: Based on the premise that every member can and
must make a valuable contribution to the project.

¢+ Committee: Comprised of people who come together to
review and critique issues, propose recommendations for
action.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8



Organization

¢ Definition Organization: A set of organizational units and
their different relationships with each other.

¢ Organizational units can be organized according to many
different categories, for example by function or by project type.
Typical examples of organizational units:

* Functional organization: Research, Development, Marketing, Sales
* Project organization: Project 1, Project 2, ....
¢ An organization usually has 3 different types of relationships
between organizational units.
* Reporting structure: To report status information
¢ Decision structure: To propagate decisions
¢ Communication structure: To exchange information

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9



Roadmap for the lecture

¢+ We will first discuss different organization forms.
* Functional organization
* Project organization
¢ Matrix organization
¢+ Then we talk about the different roles played by people in these
organizations
* Project manager, team member, upper management, ....

¢ Then we discuss relationships between the roles

* Hierarchical organizations
* Nonhierarchical organizations

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10



Functional Organization

¢ Definition: In a functional organization participants are
grouped into so-called departments, each of which addresses a

function.

¢ Examples of departments:

¢ Traditional businesses: Research, development, production, sales,
finance.

* In software companies the departments correspond to the activities in
the software process: Analysis, design, integration, testing
departments.

¢ Key properties:

¢ Projects are usually pipelined through the departments of a
functional organization. The project starts in research, then it moves
to development, then it moves to production, ....

¢ Only a few participants are involved in the complete project.

¢ Separate departments often address the same cross-functional needs
(Examples: configuration management, I'T infrastructure)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11



Example of a Functional Organization

Executive Office

Finance Production Sales Marketing
Regionl Regionl Regionl Regionl
Region2 Region2 Region2 Region2

IT IT IT IT

Line organization of a ,,traditional business*

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12



Properties of Functional Organizations

¢+ Advantages:

¢ Members of a department have a good understanding of the functional area they
support.

¢ Departments don‘t compete with another to get the support of their support
teams
¢ Disadvantages:

¢ Because each department has its own support team, different work procedures
and reporting systems are the rule.

¢ It is difficult to make major investments in equipment and facilities.

¢ Example: Two departments with a budget of 50,000 Euro each need a printer that costs
100,000 Euro.

¢ Both need only 50% of the maximum capacity.
¢ Neither department can buy it, because they don‘t have sufficient funds.

¢ High chance for overlap or duplication of work among departments
¢ Conflicts between departments with different objectives

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13



Project Organization

¢ In a project organization participants are grouped into
projects, each of which has a problem to be solved within time
and budget.

¢+ Key properties:

¢ Teams are assembled for a project as it is created. Each project has
a project leader.

¢ All participants are involved in the complete project.
* Teams are disassembled when the project terminates

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14



Properties of Project Organizations

¢+ Advantages

* Very responsive to new project requests (because the project is
newly established and can be tailored around the problem)

* New people can be hired/selected who are very familiar with the
problem or who have special capabilities.

* There is no waste of staff workload

¢ Disadvantages:

* Teams cannot be assembled rapidly. Often it is difficult to manage
the staffing/hiring process.

* Because there are ,,no predefined lines*‘, roles and responsibilities
need to be defined at the beginning of the project

* What people will do after project completion?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15



Matrix Organization

¢ In a matrix organization, participants from different departments of the
functional organization are assigned to work on projects as they are created.

¢ The project manager and team members may be assigned to the project for
less than 100 % of their time

Executive Office

Finance Production

Sales

Marketing

Project A wnm of Project A

\,/_\/_\

— =

Project B

[ —

[ —

Bernd Bruegge & Allen H. Dutoit

\,/_\/_\

Project C — Participants of Project B

Object-Oriented Software Engineering: Using UML, Patterns, and Java

N
>

16



Properties of Matrix Organizations

¢+ Advantages:
* Teams for projects can be assembled rapidly
* Scarce expertise can be applied to different projects as needed

* Consistent work and reporting procedures can be used for projects of
the same type.

2

Disadvantages:
* Team members usually are not familiar with each
* Team member have different working styles
¢ Team members must get used to each other
* Conflicts between functional and project manager

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17



New Challenges in Matrix Organizations

¢+ Team members must respond to two different bosses with different focus:

¢ Focus of the functional manager: Assignments to different projects,
performance appraisal

¢ Focus of the project manager: Work assignments, project team support
¢+ Team members working on multiple projects have competing demands for
their time

¢ Team members working on more than one project have even more project
members to report to

* Some people who have claim on the team member‘s time may be at similar
levels in the organization‘s hierarchy

¢+ Multiple work procedures and reporting systems are used by different team
members

¢ Development of common procedures needs to be addressed at project
Kickoff time

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18



When to use a Functional Organization

¢ Projects with high degree of certainty, stability, uniformity and
repetition.
* Requires little communication
* Role definitions are clear

¢ When?

¢ The more people on the project, the more need for a formal
structure

* Customer might insist that the test team be independent from the
design team

* Project manager insists on a previously successful structure

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19



When to Use a Project or Matrix Organization

¢ Project with degree of uncertainty
* Open communication needed among members

* Roles are defined on project basis

¢+ When?

* Requirements change during development
* New technology develops during project

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

20



Metamodel for Organizations

Functional
Organization

AN

Project
Organization

/\

Bernd Bruegge & Allen H. Dutoit

Matrix
Organization

Object-Oriented Software Engineering: Using UML, Patterns, and Java

21



Roadmap for the Lecture

v  We discussed different organization forms.
* Functional organization
* Project organization
¢ Matrix organization
— Now we will talk about the different roles played by people in
these organizations
* Project manager, team member, upper management, ....
¢+ Then we discuss different types of relationships between the
roles
¢ Hierarchical organizations
* Nonhierarchical organizations

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22



Definition: Role

¢ A role is a set of responsibilities

¢ A role 1s instantiated during a project and assigned to one or
more persons.

¢ Instances of roles are often also called players or stakeholders

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23



Key Roles in Organizations

¢ Project Manager: The person ultimately responsible for the
successful completion of the project

¢ Project Team Member: Participants who are responsible for
performing individual activities and tasks (in a project or
matrix organization)

¢ Functional Manager: The team member‘s supervisor in the
department (in a functional organization)

¢+ Upper management: People in charge of the departments or
projects

In the following we focus only on roles in project and matrix
organizations

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24



Responsibilities of the Project Manager

Determine objectives, schedule and resource budgets
Design a software project management plan (SPMP)
Create and sustain focused and motivated teams

*® & oo o

Determine the team‘s work procedures, reporting systems and
communication infrastructure.

Accomplish project objective within time and budget
Monitor performance against the plan

Resolve technical conflicts and interpersonal conflicts
Control changes in the project

Report on project activities to upper management
Keep the client informed and committed

® & & o o oo o

Contribute to the team members performance approval

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25



General Responsibilities of Team Members

¢ Technical responsibilities:
¢ Perform assigned tasks within time and budget
¢ Acquire technical skills and knowledge needed to perform the work

¢ People responsibilities

* Identify situations and problems that might affect your team
members‘s tasks

¢ Keep your team members informed of your progress and problems
you encounter

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26



Other Team Member Roles

¢ Project Management ¢+ Development
* Coach ¢ Analyst
¢ Team leader * Designer (Software
* API Liaison Architect)
* Planner ¢ Programmer
¢ Tester

¢+ Meeting Management
¢ Minute Taker

* Scribe

* Primary facilitator

* Maintainer
* Trainer
* Document Editor

* Web Master
* Configuration Manager

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java



Responsibilities of the Coach

¢ Listen to gripes from individual team members

¢ Attend weekly project meetings

¢+ Review weekly team status reports

¢ Schedule and prepare meetings with project manager
¢ Insist that project guidelines are followed

¢ Assign presentations to team members (in-class project
meetings, client review, client acceptance test)

¢ Resolve team member conflicts if they cannot be resolved
otherwise

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28



Responsibilities of the Team Leader

¢ Responsible for intra-team communication
¢ Run the weekly project meeting
¢ Post the agenda before the meeting

* Define and keep track of action items assigned to team members
(who, what, when)

* Measure progress (Enforce milestones)
¢ Deliver work packages for the tasks to the project manager
* Present team status to project manager

¢ Heuristics: The team leader should to be rotated among
members of the team.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29



Team Leader: Create an Agenda

¢ Purpose of Meeting

¢ Desired Outcome

¢ Information Sharing T rwow

Agenda for Database Group

¢ Information Processing Date: "06/19/96

R . o Location: © Primary Facilitator: ©Bernd Brusgge |
¢+ Meeting Critique P—
End Time: ©12:00 PM Time Keeper:

Action Items
(Check Previous
Meeting) Ry

To eucdude Action hems, choose ‘No' and press ‘Update Action tem Text';
To include Action fems, chooss "Yes' and press ‘Update Action hem Text'.
These two fields form a toggle switch for induding Action ftems in this Agenda

The ‘Update Action ftem Text' button can dso be used to reresh the Action herms in an Agenda

of the Meeting

r
|

r
-

4. Information Processing (" 40 | Minutes)
I

Include |ssue Text:  Yes | »| Wil (ot Ut

To eucdude bsues, choose 'Mo' and press ‘Update Esue Teat’

To include Esuss, choose "Yes' and press ‘Update Bsus Teat'.
S S l l e S These two fields form a toggle switch for induding ksugs in this Agenda
The ‘Update Bsus Text’ button can dso be used to refiesh the set of Bsues in an Agenda
(Check Previ
t & BB d )

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30



Responsibilities of the API Liaison

¢ Responsible for inter-team communication

* API Liaison: Make available public definitions of
subsystem developed by the team to the architecture
teams (ensure consistency, etc)

* Coordinate tasks spanning more than one group with
other teams

¢ Responsible for service negotiations

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31



Responsibilities of the Planner

¢ Plans the activities of an individual team

¢ Define project plan for team:
* Work Breakdown Structure
* Dependency graph and schedule showing work packages

¢+ Make project plan available to management

¢ Report team project status to team leader

No explicit planner in many teams. Responsibility
usually assumed by team leaders or project manager

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32



Responsibilities of the Document Editor

¢ Collect, proofread and distribute team documentation
¢ Submit team documentation to documentation team
¢ Collect agendas

¢ Take minutes at meetings

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33



Responsibilities of the Web Master

¢ Maintain team home page
¢ Keep track of meeting history
¢ Keep track of design rationale

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

34



Web Master

¢ Publish Meeting Information on Team Homepage
¢ Should contain agenda, minutes, action items and issues
¢ Possibilities:

¢ One HTML document per meeting, with anchors (maintained by one
role)

¢ Separate HTML documents for Agenda, Minutes, etc (maintained by
several roles)

Date Agenda Minutes Action Items Issues
9/9/96 Agenda Minutes Action Items Issues

9/16/96 Agenda Minutes Action Items Issues

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35




Assigning Responsibilities To People
Project To Do List

(from your project template) Role 1
. ltern 1\ > ltem 1 Person A
¢ ltem 2 —ltem 2
« ltem 4 Role 2 Role 2
* ltem 5
* ltem 6
«ltem7 ~ K Person B
- ltem 8~/
* ltem 9
— Role 3
Bindings made During Bindings made during
Project-Initiation Phase Hiring, Initial Planning phase

Irst, feam meeting, etc ..,)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Pgtl_z'ns, and Java



Mapping Responsibilities to People

¢ One-to-One
* Ideal but often not worth to be called a project
¢+ Many-to-Few
¢ Each project member assumes several roles (''hats'’)
* Danger of over-commitment
* Need for load balancing
¢ Many-to-"Too-Many"
* Some people don't have significant roles

¢ Bystanders
* People loose the touch with project

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

37



Towards A Project Role Taxonomy

¢+ Management roles

¢ Organization and execution of the project within constraints. Examples:
project manager, team leader.

¢ Development roles

¢ Specification, design and construction of subsystems. Examples: Analyst,
software architect, prgrammer.

¢ Cross functional roles
¢ Execute project functions. Example: API Liasion, configuration manager

¢ Consultant roles

¢ Supports in areas where the project participants lack expertise. Examples:
End user, client, application domain specialist ( problem domain), technical
consultant (solution domain).

¢ Promoter roles

¢ Deals with change in the organization, application/solution domain or
process.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38



Promoter Roles

¢ Promoter are self appointed individuals who identity
themselves with the outcome of the project.

* They are member of the corporate organization and may not
necessarily be directly involved with the project.

* Instead, they are the interface to the rest of the corporate
organization.

¢+ Because of their power, knowledge of technology, or
familiarity with the project’s processes, they are able to
promote and push specific changes through an existing
organization which are needed to make the project a success.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39



Power Promoter

¢ Also called executive champion or project champion

¢ Pushes the change through the existing organizational hierarchy.

* not necessarily at the top of the organization, but must have
protection from top level management, otherwise project
opponents might be able to prevent the success of the project.

¢ Tasks:

¢ Constantly 1dentify difficulties, resolve 1ssues, and
communicate with the project members, especially with the
developers.

+ Example at project level: Project Leader.
+ Example at corporate level: Chief Executive Officer (CEO).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 40



Knowledge Promoter

¢ Also called the technologist

¢+ Promotes change arising in the application domain or the
solution domain. Usually closely associated with the power
promoter.

¢ Tasks: Acquire information iteratively, understand the benefits
and limitations of new technologies, and argue its adoption with
the other developers.
+ Example at project level: System architect.
¢ Reports to project manager
* Does not have any direct subordinate in the reporting hierarchy
¢ Has final say over all technical decisions in the system.

+ Example at corporate level: Chief Technical Officer (CTO).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 41



Process Promoter

¢ The process promoter has intimate knowledge of the projects
processes and procedures.

¢ The process promoter 1s 1n constant interaction with the power
promoter to get consensus on the overall goals.

¢ Tasks: Bridge between the power and knowledge promoters,
who often do not speak or understand the same language.

+ Example at project level: Development lead. Responsible for
the administrative aspects of a project, including planning,
milestones definition, budgeting and communication
infrastructure.

+ Example at corporate level: Chief Information Officer (CIO

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 42



Roadmap for the Lecture

v We first discussed different organization forms.
* Functional Organization
* Project Organization
¢ Matrix Organization
v Then we talked about the different roles played by people in
these organizations

* Project Manager, Team Member, Upper Management,
....Promoters

= Now we discuss different types of relationships between the
roles

¢ Hierarchical Organizations
* Nonhierarchical Organizations

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 43



Relationships between Roles

¢ Organizations can have many different types of associations
between roles

¢ The three most important associations for project organizations
are: Reporting, decision making and communicating

¢ Reporting association:
¢ Used for reporting status information

¢ Decision association

¢ Used for propagating decisions

¢ Communication association

¢ Used for exchanging information needed for decisions (e.g.,
requirements, design models, issues).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 44



An Organization with a Reporting and Decision
Structure

¢+ The developers make local decisions and reports them via a status report to the leader
(team leader, project manager)

¢+ The team leader, who has a local overview of the subsystem, can override these
decisions. She reports them to the project manager.

¢+ The project manager, who has a global view of the project, can virtually override
any decision.

Management
L : Team o
decision decision
« © O—pp

status status

O—pp» - O
UserInterface Control
: SubsystemTeam Database : SubsystemTeam

:SubsystemTeam

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 45



An Organization with Distinct Reporting, Decision
and Communication Structures

¢+ Developers communicate with each other without having to communicate with the
team leader or project leader.

¢+ Developers make local decisions and report them to the leader

¢ The team leader, who has a local overview of the subsystem, can override
these decisions. She reports them to the project manager.

¢ The project manager, who has a global view of the project, can virtually
override any decision.

Management
reports to :Team reports to
reports to reports to
reports td
. l £ . £
UserInterface Control
:SubsystemTeam :SubsystemTeam
Database
:SubsystemTeam

communicates with

Architecture:
CrossFunctionalTeam

Documentation:
CrossFunctionalTeam

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 46



Hierarchical Organization

¢ Often also called centralized organization. Examples: Military, church,
traditional businesses.

¢+ Key property: The organization has a tree structure. Decisions are made at
the root and communicated to the leaf nodes. The decision association is
also used for reporting and communication.

¢+ Advantages:
¢ Centralized control over project selection

¢ One set of management and reporting procedures for all project
participants across all projects

¢ Established working relationships among people

¢ Clearly established lines of authority to set priorities and resolved conflicts
¢ Authority to pressure people to honor their action items

¢ Clearly defined career path

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 47



Hierarchical Project Organization

Chief Executive

First Level Manager
(“Front-Line Manager”)

Project Members

A wants to talk to B: Complicated Information Flow 1nterdipendenza
B wants to make sure A does a certain change: Complicated Controlflow

Basis of organization:

Complicated information and control flow
across hierarchical boundaries

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 48



Example of a Hierarchical Organization:
Chief Programmer Team [Brooks 1995]

Chief Programmer

Assistant

Chief Programmer

Administration

Senior Programmer
Junior Programmer

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 49




Disadvantages of Hierarchical Organizations

¢ Slow response time

* The process of evaluating and approving change requests often
takes too long because of long reporting/decision lines.

¢ Difficult to manage the workload of the people:

* People are assigned fulltime to the organization, but projects don’t’
come in a smooth stream.

* Project request might not require the people who are available or
their expertise.

¢ Unfamiliarity with application or solution domain area

* People are usually hired for their technical proficiency in a
specialty that the organization normally performs.

* They often have only limited experience, if the problem to be solved
is outside of their field of expertise.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 50



Nonhierarchical Organizations

¢+ Key property: The organization has a general graph structure
with different edges for the decision, reporting and
communication flows. Decisions can be made at various nodes
in the graph.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 51



Nonhierarchical Project Organization

Project
Leader

Coaches

Team
Members

A wants to talk to B: Communication Flow
B wants to make sure A does a certain change: Decision Flow

Basis of organization:

Nonlinear information flow across dynamically formed units

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 52



A Nonhierarchical Organization:
Egoless Programming [Weinberg 1971]

Programmer

Designer Librarian

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 53



Observations on Organizational Structures

¢ Hierarchical structure

¢ “Reports”, “Decides” and ‘“Communicates-With” all mapped on the
same association

¢ Does not work well with iterative and incremental software
development process

¢ Manager is not necessarily always right
¢ Innovative proposals can be lost at any level

¢ Project-based structures

¢ “Reports”, “Decides” and ‘“Communicates-With”are different
associations

¢ Cuts down on bureaucracy

* Reduces development time

* Decisions are expected to be made at each level
¢ Hard to manage

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 54



Flexibility of Organizations

¢+ An organization is flexible, if it allows “late” or “dynamic”
bindings between roles and people and information flows

between roles.

¢ Late binding (Cannot be changed after project kickoff):

* Organizational units and information flows are established for the
project. (Example: The top level design influences the team
structure: At Kickoff each subsystem is assigned to a team)

¢+ Dynamic binding (Can be changed anytime):

* The organizational relationship changes over time (Example: We
start with a hierarchical organization at project kickoff and end
with a nonhierarchical organization at project finish time.)

* We recognize the fact that organizational units change over time
¢ New teams can be formed

¢ Existing teams can be merged
¢ An existing team can be removed from the organization

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 55



Heuristics for Project Managers

1. Create team 1dentity
¢ Clarify team vision and working relationships

* Define team procedures (meeting management, configuration management, system
integration strategy)

Clarify each participant‘s authority
Make sure your team is functioning
Be sure only one person is assigned as project manager

2. Create team membery buy-in
* Get commitment to the project goals (tough in matrix environment)
* Get to know other people‘s style

3. Get support from the environment
* Get a project champion (for example a power promoter)

4. Develop general procedures for

¢ Conflict resolution

¢ Communication between teams and project leaders, communication with upper
management and for communication with the client

L 2

L 2

2

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 56



Outline of this class

v Organizational Structures
¢ Functional, Project and Matrix Organizations

v Key project roles in organizational structures

¢ Project Manager, Team members, upper management, ...
v Relationships between roles
v Information flows between roles

¢ Decision making, status reporting, communication

" Identifying people
¢ Audience List, Drivers, Supporters, Observers
¢ Involvement of audience members during the lifetime of a project

* Properties of roles
¢ Responsibilities, Authority and Delegation

¢+ Micromanagement (and how to avoid it)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 57



Identifying People

¢ As soon as you start thinking about a project, you should start
an audience list.

¢ Project Lists:
* Project Audience Lists
¢ Stakeholder lists
¢ Distribution lists

* Team Member lists

¢ Audience List: A list of people or groups of people that
support, 1s affected by or 1s interested in the project.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 58



Other Project Lists

¢ Stakeholder list : Identifies people and groups who support or
are affected by your project. This list does not include people
outside of the organization or those who are merely interested
in the project.

+ Distribution Lists: Identifies people who receive copies of
written project communication. The presence of people on
distribution lists does not ensure that they actually suport the
project (Often out of date)

¢+ Team member lists: People whose work 1s directed by the
project manager.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 59



Categories for an Audience List Template

¢ Internal
¢ Upper Management
* Project Manager
¢ Team members

¢ Support Groups
¢ Human Resources
¢ Legal services
¢ Contracting

¢ People with special knowledge * Finances

¢ External:
¢ (lients or customers
¢ Collaborators

¢ Security
* Computing Facilities

¢ End users of your project‘s

* Vendors, suppliers and deliverables

contractors
¢ Regulators
¢ The Public

Bernd Bruegge & Allen H. Dutoit

¢+ People who will maintain or
support your deliverables

Object-Oriented Software Engineering: Using UML, Patterns, and Java

60



Guidelines for Establishing the Audience List

¢ Develop your audience list from a template that worked well in a previous
project

¢ Eventually instantiate instances from each category with position and name
¢+ When in doubt, ADD a person‘s name

¢+ Separately include a person‘s name for every different role played by him
or her

¢+ Speak with a wide range of people

¢+ Allow sufficient time to developing your audience list (mainly during
project initiation time)

¢ Continue to maintain the audience list during the project (remove names,
add names)

¢+ Encourage project participants to identify new candidates

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 61



Another Categorization of the Audience List

¢ Drivers:

* People who have some say in defining the results of the project

¢ Supporters:

¢ People who help to perform the activities and tasks of the project.
Supporters include those who authorize resources for the project as
well as those who work on it.

¢ Observers:

* People who are interested in the activities and results of the project.
Observers have no say in the project and they are not actively
involved. However, the project may affect them at some point in the
future.

¢ Project Champion (Power Promoter):

* A Person who strongly supports the project, advocates it in
disputes, takes whatever is necessary to help ensure the succesful
completion of the project.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 62



Key Concepts for Mapping Roles to People

¢ Authority:

* The ability to make binding decisions between people and roles
¢ Responsibility:

¢ The commitment to achieve specific results.

¢ Accountability: (rispondere di, rendere conto)
* Tracking a task performance to a participant.

¢ Delegation:

* Binding a responsibility assigned to one person (including yourself)
to another person.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 64



Authority vs Responsibility vs Accountability

¢ Authority vs Responsibility

* They are similar: Both are upfront agreements. Before you start a project,
you agree on who can make decisions and who will ensure that particular
results are achieved.

* They are different: Authority focuses on process such as activities and tasks,
responsibility focuses on outcome such as work products and deliverables

* Good leaders delegate authority; they never delegate responsibility

¢ Responsibility vs Accountability:
¢ Similarity: Both focus on results

* Difference: Responsibility is a before-the-fact agreement, accountability is an
after-the-fact process.

¢ If you are responsible you should be held accountable.
¢ If you are not responsible you should not be held accountable.

* Scapegoating: Making somebody accountable who was not responsible

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 65



Delegation

¢ Delegation: Rebinding a responsibility assigned to one
participant (including yourself) to another project participant.
¢ Three reasons for delegation:
* Time Management: To free yourself up to do other tasks
* Expertise: To have the most qualified person make decisions

¢ Training: To develop another person’s ability to handle additional
assignments.

¢ You can delegate authority, but not responsibility

¢ You can share responsibility

¢ Shared relationship between activities and roles can be described in
a linear responsibility chart

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 66



For successful Lean leadership we need to separate responsibility and
authority. This seems strange because we normally think that authority and
responsibility are linked together. Could this be another Lean thinking
paradox!

The focus in a Lean organisation has shifted from “who has the authority” to
“what 1s the right thing to do”. This is achieved by getting each person to take
initiative to actually solve problems that improve his or her job, by placing
individual responsibility at the lowest possible level where the work is
actually done. and ensuring that every person’s job is aligned with providing
value for the customer that ultimately leads to prosperity for the company.

Our job as a Lean leader 1s to help expose problems and then make sure
people have the skills and the tools to solve these problems. It is more a
philosophy of “let’s figure this out together” and creating an environment
where learning from mistakes is an accepted part of our continuous
improvement process.

To help expose problems we must spend more time in the process asking why,
and then focus on giving people the responsibility and ownership for
developing and implementing the solution. Lean leaders avoid relying on
authority, instead leading by influence and example, as if they have no
authority.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 67



Linear Responsibility Chart

¢ A linear responsibility chart is a matrix that depicts the role
that each project participant will play in different activities
identified 1n the work breakdown structure.

¢+ Rows: Project activities
¢ Columns: Roles/Project participants
¢ Entries: Type of responsibility

¢ P (Primary responsibility): You have committed to ensure that the desired
result is achieved

* S (Secondary responsibility): You have committed to some portion of the
result

* A (Approval): You are not doing the work, but you will approve what has been
done

* R (Review): You will review and comment on the work product of an activity
* O (Output): You will receive the work product of an activity
¢ I (Input): You will provide input for a task or activity

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 68



Example of a

Responsibility Chart

Project Team Team Team
Manager Leader  Member A Member B

Develop SPMP

P
Run weekly A P S
meeting
Write SDD P S S S
Legend.:

P = Primary responsibility
S = Secondary responsibility)
A = Approval

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java 69




Another Example of a
Responsibility Chart

Project Team Team Team
Manager Leader  Member A Member B
Develop SPMP A P S
o

e Project Manager has delegated the
SPMP to Team Member A
he delegation bypasses the team leader.

Is that a problem?
\0\1’&?«m Member B helps by writing a

section.

AN

Y

W

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java

70




Analysing Responsibility Charts identifies Risks

¢ Problem: Somebody is heavily committed.

¢ Possible Project Management Issues: Not enough time to handle all
duties, making too many key decisions, What if this person leaves
during the project

¢ Problem: The project manager has no direct responsibilities

¢ Issues: Will the project manager fully understand status reports?

¢ Problem: An activity requires many approvals

* Issue: Does anyone else have to approve the activity. Are there too
many people involved approvals? Is your estimated duration of the
activity too optimistic, because the approval is out of your hands?

¢ After you i1dentify an 1ssue, you should address it in your risk
management plan.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 71



Micro Management

¢+ Micromanagement is the excessive involvement of a manager
in the details of a task assigned to a team member.

¢+ Micromanagement is inefficient use of the time and energy of
all project participants.

¢ It leads to tension and low morale among all project members.

¢+ Why do people micromanage?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 72



Reasons for Micro Management

¢

¢

¢

¢

The manager 1s interested in and enjoys the work

The manager 1s a technical expert and feels he/she can do the
job best.

The manager may feel they did not explain the assignment
clearly.

The manager 1s looking for a way to stay involved with the
person and or the team.

The manager feels threatended because you have more
technical knowledge.

The manager does not have a clear understanding on how to
spend project time.

The manager wants to stay up-to-date in case somebody else
asks about the work.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 73



Overcoming Micro Management

¢ Don‘t be defensive when the manager asks questions.

* Doing so make it appear as if you are hinding something and the
manager will worry even more.

¢ Thank the micromanager for the interest and time.

¢ Complaining about micromanagement will cause the
micromanager to do it even more.

¢ Offer to explain to the micromanager how you will approach
your tasks

¢+ Work with the micromanager to develop a scheme for sharing
progress and accomplishments.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 74



Summary

¢ Organization: A graph with nodes (organizational units) and different type
edges (information structures

¢ Functional Organization: Organizational units are business functions or
software process activities (,,functional model of the organization®)

¢ Project Organization: Organizational units are teams. (,,object model of the
organization*)

¢ Matrix Organization: Organization that inherits the properties of both,
functional and project organizations.

¢ Hierarchical organization: Tree with only one type of information structure
used for everything (decisions, status, communication).

¢+ Project roles in project organizations

¢ Authority, Responsibility, Accountability, Delegation (,,dynamic model
of the organization®)

¢ Flexible organization: Dynamic binding of responsibilities to people

¢ Linear Responsibility Chart: Shows team roles and responsibilities. Can
help to identify and avoid potential difficulties during a project

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 75



	14.4 Project Organization
	Slide 2
	Slide 3
	Slide 4
	Outline
	Organizational Structures
	Toy Project with 3 Teams
	Groups, Teams and Committees
	Organization
	Roadmap for the lecture
	Functional Organization
	Example of a Functional Organization
	Properties of Functional Organizations
	Project Organization
	Properties of Project Organizations
	Matrix Organization
	Properties of Matrix Organizations
	New Challenges in Matrix Organizations
	When to use a Functional Organization
	When to Use a Project or Matrix Organization
	Metamodel for Organizations
	Roadmap for the Lecture
	Definition: Role
	Key Roles in Organizations
	Responsibilities of the Project Manager
	General Responsibilities of Team Members
	Other Team Member Roles
	Responsibilities of the Coach
	Responsibilities of the Team Leader
	Team Leader: Create an Agenda
	Responsibilities of the API Liaison
	Responsibilities of the Planner
	Responsibilities of the Document Editor
	Responsibilities of the Web Master
	Web Master
	Assigning Responsibilities To People
	Mapping Responsibilities to People
	Towards A Project Role Taxonomy
	Promoter Roles
	Power Promoter
	Knowledge Promoter
	Process Promoter
	Slide 43
	Relationships between Roles
	An Organization with a Reporting and Decision Structure
	An Organization with Distinct Reporting, Decision and Communication Structures
	Hierarchical Organization
	Hierarchical Project Organization
	Example of a Hierarchical Organization: Chief Programmer Team [Brooks 1995]
	Disadvantages of Hierarchical Organizations
	Nonhierarchical Organizations
	Nonhierarchical Project Organization
	A Nonhierarchical Organization: Egoless Programming [Weinberg 1971]
	Observations on Organizational Structures
	Flexibility of Organizations
	Heuristics for Project Managers
	Outline of this class
	Identifying People
	Other Project Lists
	Categories for an Audience List Template
	Guidelines for Establishing the Audience List
	Another Categorization of the Audience List
	Key Concepts for Mapping Roles to People
	Authority vs Responsibility vs Accountability
	Delegation
	Slide 67
	Linear Responsibility Chart
	Example of a Responsibility Chart
	Another Example of a Responsibility Chart
	Analysing Responsibility Charts identifies Risks
	Micro Management
	Reasons for Micro Management
	Overcoming Micro Management
	Summary

