
Causal diagrams for the design and analysis
of epidemiological studies

Costanza Pizzi
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Motivation

The field of causal inference consists of three main parts:
1 A formal language for unambiguously defining causal

concepts.
2 Causal diagrams: a tool for clearly displaying our causal

assumption, useful for both design and analyses of
epidemiological studies.

3 Statistical methods to draw more reliable conclusions
from the data at hand.

In this lecture, we focus on 2.



Motivation

Much work in epidemiology aims at identifying biological
and behavioral causes of diseases

From a public health perspective is also vital the
assessment of causal effects of interventions, e.g.
changing health policy, approving new drugs...

B ...so that optimal prevention strategies can be devised.



Motivation

Causal inference is the science of inferring the presence
and magnitude of cause-effect relationships from data.

Association = causation() if there are no source of
bias.

Thus RCTs represent the ideal study design to provide
estimates that can be endowed with a causal interpretation

However for ethical and practical reasons we often use
observational studies to answer etiological questions
=) confounding



Motivation

Thus the goal is to identify a set of covariates that
minimizes confounding
This requires background subjects-matter knowledge
Causal diagrams help us to organize this knowledge
and identify whether or not confounding is present.
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Motivating example

Consider an observational study to investigate whether
smoking during pregnancy (Exposure) causes
malformations (Outcome) in newborns

For a large number of pregnancies, we collect data on both
exposure and outcome

We record information on four additional covariates:
mothers age at conception
mothers socioeconomic status at conception
family history of birth defects
indicator of whether the baby was liveborn or stillborn



Motivating example

We observe an unadjusted inverse association between
smoking and malformations (RR=0.8)

We suspect that this observed risk ratio cannot be given a
causal interpretation

We want to evaluate whether there is confounding and
then adjust for a set of observed covariates to reduce
confounding bias



How to construct a causal diagram (1)

Smoking Malformations 

Step 1

Write down the exposure and the outcome of interest,
with an arrow from the exposure to the outcome

This arrow represents the causal effect we aim to estimate



How to construct a causal diagram (2)

Smoking Malformations 

Age 

Step 2

If there is any common cause of the exposure and the
outcome we must write it in the diagram
We must include this common cause irrespective of
whether or not it has been measured in our study
We continue in this way adding to the diagram any variable
(observed or unobserved) which is common cause of two
or more variables already included in the diagram



How to construct a causal diagram (2)

Smoking Malformations 

Age 

Step 2

If there is any common cause of the exposure and the
outcome we must write it in the diagram
We must include this common cause irrespective of
whether or not it has been measured in our study
We continue in this way adding to the diagram any variable
(observed or unobserved) which is common cause of two
or more variables already included in the diagram



How to construct a causal diagram (3)

Step 3

We can choose to include variables that are not common
cause of other variables in the diagrams
For example birth status
Suppose we finish at this point. The variables and arrows
NOT in our diagram represent our causal assumptions

Smoking Malformations 

Age 

Birth status 

Family 
history 

SES 
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Underlying assumptions

Smoking Malformations 

Age 

Smoking Malformations 

Age 

Smoking Malformations 

Age 

Smoking Malformations 

Assumption are encoded by:
B the direction of arrows
B the absence of arrows
B the absence of common causes



Directed Acyclic Graphs

Smoking Malformations 

Age 

Each arrow represents a causal influence

The graph is
B Directed, since each connection between two variables

consists of an arrow;
B Acyclic, since the graph contains no directed cycles. We

impose this since a variable can’t cause itself; however we
can depict time varying processes adding one realization of
each variable per time unit.



Some terminology

A B 

C 

E D 

F 

Children, descendants,
colliders, paths

E is a child of A.
A is a parent of E
F is a descendant of A
A is an ancestor of F
F is a collider along
E! F D
E A! C! D! F
is a path from E to F



Paths

A path is a route between two variables, not necessarily
following the directions of arrows

A causal path is a route between two variables, following
the directions of arrows

Paths are either open (association-transmitting) or blocked



Exercise

Smoking Malformations 

Age 

Birth status 

Family 
history 

SES 

1 Identify a collider in the route between smoking and
malformations

2 Identify an ancestor of smoking

3 Identify the non causal path between smoking and
malformations

4 Which are the causal paths between smoking and
malformations?



Association in the population

Exposure Outcome Exposure Outcome 

C 

Exposure Outcome 

If the exposure and the outcome are associated in the
population (marginal association) then at least one of the
above must be true
Conditioning on C in the third example removes the
association (block the Exposure-C-Outcome path)
! removes the confounding due to C



Association in the population

Exposure Outcome Exposure Outcome 

C 

Exposure Outcome 

If the exposure and the outcome are associated in the
population (marginal association) then at least one of the
above must be true
Conditioning on C in the third example removes the
association (block the Exposure-C-Outcome path)
! removes the confounding due to C



Association in a sub-population

F 

Exposure Outcome 

F 

Exposure Outcome 

Even if the exposure and the outcome are independent in
the population (marginally independent) the two variables
will be associated within strata of the common effect F

Conditioning on F - denoted by the box around F in the
second example - introduces a conditional association
(spurious association) - denoted by the dashed line in
the second example

B ..we will come back to this later when discussing selection bias



Conditioning on a collider
Example

F 

Exposure Outcome 

F 

Exposure Outcome 

Let F be studying at Harvard, Exposure being a basketball
player and Outcome IQ score. Assume exposure and
outcome are independent in the population.
Acceptance to Harvard is positively influenced by both
exposure and outcome; you’re accepted either if your are a
good at basketball or if you have a high IQ.
Among Harvard students, if you have a low IQ you’re likely
to be good at basket! Exposure and Outcome become
negatively associated.



Graphical rules to understand whether two variables
are independent (d-separation)

Two variables are independent if all paths between the two
variables are blocked.

1 If there are no variables being conditioned on, a path is
blocked if and only if it contains a collider: a variable F that
sits in an inverted fork! F  

2 If somewhere along the path there is a variable C (a
non-collider) that sits in a chain! C ! or in a fork C !
the path is blocked if we adjust for C



Exercise

Smoking Malformations 

Age 

Birth status 

1 Which are the paths between smoking and malformations?

2 Identify the open paths between smoking and malformations

3 Identify the blocked paths between smoking and malformations



Motivating example

Smoking Malformations 

Age 

Birth status 

Family 
history 

SES 

Suppose we agree that the causal structure for our
example can be described by the DAG above
We have observed an unadjusted inverse association
between smoking and malformations (RR=0.8)
We can now proceed to determine whether the
smoking-malformation relationship is confounded
This is done by using the back-door criterion



The essence of the backdoor criterion

It looks to see whether exposure and outcome would be
associated in the absence of a causal effect (that is
presence of confounding)
If so, it checks whether conditioning on a certain set of
variables would remove the association (block all the
non-causal paths) and create conditional exchangeability
It does using the building blocks: (i) conditioning on a
variable along an association-trasmitting path (open path)
removes the association, (ii) conditioning on colliders,or
any of its descendents, induces associations.
Removing some spurious associations may create
others, so care is needed



The backdoor criterion

Precisely

1 Choose a candidate set of variables < which does not
contain any descendents of the exposure

2 Remove all arrows emanating from the exposure
3 Join with a dotted line any two variables that share a child

which is either itself in Re or has a descendant in <
4 Observe whether there is an open path (an open path

does not contain colliders) from the exposure to the
outcome that does not pass through a member of <

5 If NOT, then < is sufficient to control for the confounding



In other words

The backdoor criterion asks: after conditioning on <, and
in absence of a causal effect of the exposure on the
outcome, would we still see an association between the
exposure and the outcome?

If YES < is not sufficient and there is still confounding



Example

Smoking Malformations 

Age 

Birth status 

To estimate the causal effect of smoking on malformation,
which variable should we control for?



Exercise

Smoking Malformations 
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Birth status 

Family 
history 

SES 

To estimate the causal effect of smoking on malformation,
which variable should we control for?



Exercise

Visual 
impairment Death 

Onchocercal 
infection 

Area of 
residence 

Gender 

To estimate the causal effect of visual impairment on
death, which variable should we control for?



Exercise

Visual 
impairment Death 

Onchocercal 
infection 

Area of 
residence 

Gender 
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An application - Folic acid and neural tube defect

Case-control study on intake of folic acid during pregnancy and
risk of neural tube defects in the offspring.

Abortion

Folic acid Malformation

Is therapeutic abortion a confounder?

Hernan et al, Am J Epidemiol 2002;155:176-84



Traditional definition of confounding

A variable that, when adjusted for, change the point
estimate of interest with more than, say, 10%

It’s a variable which
1 Independently associated with the outcome

2 Is associated with the exposure

3 Not on the causal pathway from exposure to outcome



Problem with traditional strategies

They rely on statistical analyses of observed data, rather
than a priori knowledge about causal structures.

Cannot be used at the design stage

May lead to select non confounders, which may increase
bias if adjusted for



Example (1)

Smoking Malformations 

Age 

Some simple examples

Age is a confounder according to both the traditional and
causal diagram views



Example (2)

Smoking Malformations 

Birth status 

Some simple examples

Birth status is NOT a confounder according to the causal
diagram views (because it is a descendent of the
exposure) - controlling for it create bias
Birth status is a confounder according to the traditional
view (it is not on the causal pathway). In practice, would
epidemiologist control for it?



Example (3)

Exposure Outcome 

C 

A B 

The M-structures

C is NOT a confounder according to the causal diagram
views (controlling for it create bias)
C is a confounder according to the traditional view. Most
epidemiologist would probably control for it.



Relationship with traditional view

In summary, with the exception of the so-called
‘M’-structure, and related structures, the traditional and
causal diagram views agree in most situations in which
one confounder is being considered.



A complicated DAG

But in reality, life is more complicated!
The traditional view would not take us very far in this example..

Smoking Malformations 

Age 

Birth status 

Family 
history 

SES 

Diet 

BMI 



DAGs and Bias

An association between an exposure (E) and an outcome (D)
can be produced by 3 causal structure (Hernan et al, Epidemiology
2004; 15;615-25) :

1 Common causes: E and D share a common cause!
Confounding

2 Common effects: E and D share a child! Selection
Bias

3 Cause and effect: E causes D or D causes E? If the latter
! Information Bias



Selection bias
Case-control Study

Inappropriate selection of controls in Case-Control Study

A

DE

S

D! Myocardial Infarction
E! Postmenopausal estrogens
A! Hip fracture
S! Indicator of selection into the study



Sample selection in Cohort Studies

S D 

E 

R 

S D 

E 

R 

D! Outcome
E! Exposure of interest
R! Risk factor for the outcome
S! Indicator of selection into the sample

! Conditioning on S induce a spurious association
between E and R



Sample selection in Cohort Studies
Consequence of conditioning

If both E and R are associated with the selection, and R
unknown or unmeasured! the backdoor path E-R-D is
opened and the E-D association estimated in the
restricted cohort may be biased

But exposure is almost akways associated with some
disease risk factors in the general population

Thus bias depends on the net results of two components:
the induced E-R association and the true R-D association

The confounding pattern in the restricted cohort will
differ from that of the corresponding general
population



Selection bias
Sample selection in Occupational Cohort Studies

Healthy worker effect

D! Mortality
E! Exposure to Diesel exhaust
R! Health status
S! Being an active worker

R

E
DS



Information bias
Recall Bias

Case control study of malformation and drug use during
pregnancy:

Drug Malformation

Recall

! Subjects usually report the exposure information from
interviews after learning of their diagnosis, and diagnosis may
affect memory.



Information bias
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Case control study of malformation and drug use during
pregnancy:

Drug Malformation

Recall

! Subjects usually report the exposure information from
interviews after learning of their diagnosis, and diagnosis may
affect memory.



Information bias
Reverse Causality

1 Cross-sectional study of smoking status and asthma:

Smoking Asthma 

Change in 
life-style 

! Exposure and disease status are measured at the same time. It is likely that

subjects who have already experienced an asthma attack quit smoking.

2 Cohort study of BMI and colon cancer risk:

BMI Colon cancer

Altered
Metabolism

! Prevalent cases are enrolled in the cohort.



Limits

This approach does not take into account
Sampling variation
Problem of model complexity

Causal relationships between variables should be specified
! Different DAGs can lead to different models

The magnitude and the form of the associations are not
considered! Qualitative non parametric approach

It is difficult to specify effect modifications



Summary

Causal inference from observational data is challenging
but important!
Causal diagrams allow us to make our assumption explicit,
and help identify an analysis that will more likely lead to
causally interpretable results
They should be used when designing the study too, so that
anticipated confounders are measured

But our causal inferences are only as valid as the causal
diagram on which they rely.
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