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Prognosis is a prediction of the course of a disease following its onset: it refers
to the possible outcomes of a disease and the frequency with which they can be
expected to occur.

Prognostic factors can be identi�ed with the characteristics of a particular
patient and they can be used to predict outcome. Prognostic factors need not
necessarily cause the outcomes, just be associated with them strongly enough
to predict their development.

Prognostic factors can be any of several types, including:

I Demographic (e.g. gender, age, and so on)

I Disease-speci�c (e.g. tumour stage)

I Co-morbidities

I . . .



1. Prognosis is predicting the progress or outcome of the disease

2. A person who was just diagnosed with a disease would be interested in the
prognosis of the disease

3. Any measures used to quantify prognosis must be based on a set of people
with a speci�ed disease (denominator)

Potential end-points of interest:

I Death

I Recurrence

I Remission

I Cure

I . . .



Incidence proportion: measures the proportion of new cases during a speci�ed
period of time (number of new cases in time period / number of people at risk)

What is the probability that patient will fail from the �event of interest� within

a speci�ed time interval?

Risk: is the probability of an individual to fail from the event of interest in a
speci�ed time interval: P(Ti ≤ t)

The individual risk is estimated from averages taken from populations

⇓

Risk and incidence proportion are synonymous



The risk (R) is calculated dividing the number of new cases of an event
occurred in a population by the number of subjects at risk in the population at
the beginning of the observation

I Risk is also known as incidence proportion or cumulative incidence

I Uninterpretable without speci�cation of the time period to which it applies



Mortality in 800 cancer patients with or without metastasis
(5-year follow-up)



Number needed to treat(NNT): is the average number of patients who need to be

treated to prevent one additional bad outcome and is used in assessing the

e�ectiveness of a health-care intervention. It is de�ned as the inverse of the absolute

risk reduction. The higher the NNT, the less e�ective is the treatment



Risk di�erence(RD): is the di�erence between the observed risks (proportions
of individuals with the outcome of interest) in two groups

I risk di�erence for an individual describes the estimated di�erence in the
probability of experiencing the event

I risk di�erence can be calculated for any study, even when there are no
events in either groups

I the clinical importance of a risk di�erence may depend on the underlying
risk of events: a risk di�erence of 0.02 (or 2%) may represent a small,
clinically insigni�cant change from a risk of 58% to 60% or a
proportionally much larger and potentially important change from 1% to
3%

I although the risk di�erence provides more directly relevant information
than relative measures, it is important to be aware of the underlying risk of
events and consequences of the events when interpreting a risk di�erence



To calculate risk, everyone being studied has to be followed for the complete
speci�ed time, but somebody may fail from some other cause or be lost to
follow-up ⇒ the incidence can be expressed as a rate (λ)

Numerator: 2 deaths
Denominator: (?)

5 subjects at risk but 1 subject lost to follow-up (it is only know that the event

will happen but it is unknow the time)



Rate: number of cases per time of observation

Example: λ=2/13.5=0.15 ⇒ 15 deaths per 100 person-years

This calculation of the incidence rate assumes that incidence remains constant

during the period of study



The underlying model, assuming a constant rate over time, is an exponential
model:

The risk at time t is given by: F (t) = P(T ≤ t) = 1− exp(−λt)



Example:

λ=2/13.5=0.15 ⇒ 15 deaths per 100 person-years

4-year risk: F (4) = 1− exp(−0.15 ∗ 4) = 0.45

Approximated formula if the risk is low (say < 20%): F(t)=λ ∗ t

Rate of testicular cancer at age 20-24: 25 per 105 PY

5-year risk of testicular cancer for a men aged 20: 25*5 per 105 = 125 per 105



Mortality in 800 cancer patients with or without metastasis
(5-year follow-up)



I The risk (cumulative incidence) is de�ned as F (t) = P(T ≤ t)

I The incidence rate or hazard is de�ned as:

λ(t) = lim∆t→0

Pr(t≤T<t+∆t|T>t)
∆t

λ(t)∆t: probability that failure is between t and t + ∆t conditioned on
having survived until t

I By assuming constant rate: λ(t) = λ → F (t) = 1− exp(−λt)

I If a long period of study is used, the risk of failure may change over time
⇒ it becomes necessary to calculate incidence rates over shorter periods
of time (during which they are relatively constant) and then aggregating
them ⇒ survival analysis



Cohort study



Censoring occurrs when the value of an observation is only partially known

Right censoring: we do not know the time to event (subjects (2) and (3)), we
only know the true unobserved time is to the right of censoring time

Distribution of censoring times is usually assumed to be independent of the
distribution of times to the event of interest

The censoring is independent if the censored subject at a given time is
rapresentative of all subjects surviving to that time. If the subject drops out
from the study because of a cause associated to the event of interest, the
censoring is dependent



Survivor function: S(t) = P(T > t) = 1− F (t)

I In absence of censoring, S(t) is estimated as the ratio of the number of
survivors at time t to the number of subjects at risk at the beginning of
the observation

I In presence of censoring and by assuming constant rate over time, S(t)

can be estimated as: Ŝ(t) = 1− F̂ (t) = exp(−λ̂t)

I In presence of censoring, the survival function can be non-parametrically
estimated by Kaplan-Meier method



Cohort study



Survival proportion

1. Divide time into short bands

2. Calculate the period speci�c survival proportion (numbers survived/
numbers at risk)

3. Multiply the conditional probabilities



The following are times to death (days) for 13 women a�ected by breast cancer:

23 47 69 70+ 71+ 100+ 101+ 148 181 198+ 208+ 212+ 224+

(+ indicating right censoring)

Intuitively suppose to split the observed timespan of the study into intervals
de�ned by the failures/censoring times:

P(T > 80) = P(T > 23)P(T > 47|T > 23)P(T > 69|T > 47)P(T > 70|T >

69)P(T > 70|T > 69)P(T > 71|T > 70) = 13−1
13

12−1
12

11−1
11

10−0
10

9−0
9

8−0
8

=

0.77



Kaplan-Meier estimator: Ŝ(t) =
∏m

j=1
(1− dj

nj
)

I j = 1, . . . ,m are the short bands de�ned by failures/censoring times

I dj is the number of failures at time tj

I nj is the number of subjects at risk just prior of time tj



Example

Survival of 13 women a�ected by breast cancer

tj nj dj cj dj/nj 1− dj/nj S(tj )

23 13 1 0 1/13 12/13 12/13
47 12 1 0 1/12 11/12 12/13*11/12
69 11 1 0 1/11 10/11 11/13*10/11
70 10 0 1 0 10/10 10/13*1
71 9 0 1
100 8 0 1
101 7 0 1
148 6 1 0 1/6 5/6 10/13*5/6
181 5 1 0 1/5 4/5 10/13*5/6*4/5
198 4 0 1
208 3 0 1
212 2 0 1
224 1 0 1



I Ŝ(t) is a step function with steps corresponding to failure times

I Ŝ(t) is right continuous: Ŝ(t) = Ŝ(t+)

I censoring in�uences only the height of the steps, depending on the risk set
(denominator)

I Ŝ(t) goes to 0 only if the last observed event is a failure



Comparison between survival curves

I How can we compare individuals diagnosed at di�erent stages in terms of
survival

I How can we compare individuals with di�erent treatment or with di�erent
clinical/biological characteristics?

I Are the single time-point or the overlap between con�dence bands an
appropriate measures?



I Comparison of a single time point is not e�cient and mainly it is based on
an arbitrary choice (how much unstable are the tails of distribution?)

I Test based on the median survival: not always the median exists and often
precision of the estimates is low

Taking into account the total survival experience:

I The log-rank test (non-parametric hypothesis test)

I Point estimates: hazard ratio



Log-rank test

I Consider two treatment groups A and B

H0 : SA(t) = SB(t), H1 : SA(t) = (SB(t))θ

If 0 < θ < 1, SA(t) > SB(t), if θ > 1, SA(t) < SB(t), if θ = 1, SA(t) = SB(t)

I Order the distinct failure times observed in the two groups in ascending order



I At each t(j) consider a 2x2 contingency table

I Generate a 2x2 contingency table of expected under H0:



Observed deaths in A: O(djA) = OjA = djA

Expected deaths in A: E(djA) = EjA =
dj njA
nj

Observed deaths in B: O(djB) = OjB = djB

Expected deaths in B: E(djB) = EjB =
dj njB
nj

OA =
∑

j OjA,EA =
∑

j EjA

OB =
∑

j OjB ,EB =
∑

j EjB

X 2 = [(OA − EA)2/EA] + [(OB − EB)2/EB ]

I Under H0, X 2 is asymptotically distributed as a χ21

I The higher is X 2 the smaller is the probability that the sample is
consistent with H0



X
2 = ([5− 8.86]2/8.86) + ([14− 10.14]2/10.14) = 3.152

p = 0.07



Strati�ed log-rank test

The aim of the strati�ed analysis is to adjust for imbalances on important
confounders

Male patients usually have a worse prognosis then females for a given disease. If we
want to compare the e�ect of treatments A and B we should consider the gender
composition of the 2 groups treated with A and B. If it is di�erent the simple test is
not correct, because the result will be in�uenced not only by the treatment e�ect but
also by the gender e�ect

The test statistic is the same as the log-rank but is within strata of the potential

confounder, so that the comparison is within homogenous groups, then an average

measure, suitably weighted between strata, of the relative e�ect of the 2 treatments is

obtained.



Summary

I The choice of which test has to be done �a priori�, depending on the
alternative hypothesis in order to increase the power of the test

I The log-rank test gives equal weight to all time points irrespective of
numbers at risk at the time of failure

I Di�erent non-parametric tests have been proposed according to aim of the
study



Hazard (rate) ratio

I The hazard is the instantaneous probability of failure within next interval
of time, having already survived up to that time: λ(t)

I The hazard ratio (HR) is the relative hazard, when two groups are
compared: HR = 2 doubled risk of having the outcome at any point in
time during follow up

I The HR inherently assumes proportional hazards, that is constant ratio of
the hazards over time (note: the log-rank test also assumes proportional
hazards)

From previous example: HR = (O1/E1) / (O2/E2)= (8/13.43) / (14/8.57) =
0.35

By �tting Cox model: HR=0.35, 95% CI:0.15,0.85



Summary

In estimating a survival curve:

I Exposure status (e.g. treatment, no treatment)

I Follow-up time: Exit time entry time

I Outcome status upon exit (subject having outcome or censored)

I Confounders (age, sex, stage and grade of disease at entry, etc)

Statistical power is related to number of outcomes, not the number of subjects



Summary

In reading a survival curve:

I Observe the shape of the curve more than details (log-rank test and
hazard ratio are reliable under proportionality assumption)

I Not consider the curve when there are less then 10-20 subjects at risk left

I Keep in mind that we assumed that censored subject would not have a
survival experience di�erent from the others

I Consider the percentage of censoring



Incorrect survival analysis

I Mean survival time is useless, unless

1. all subjects are followed until outcome
2. no subjects are censored

I Median survival time is not sensible, unless it is derived from the
KM-curve (to take censoring into account)

I Survival proportion at a certain point in time

1. discards a lot of the available information on survival
2. is wrong, unless the time was speci�ed a priori



Some limits of K-M survival curve

I Confounding cannot be taken into account

I Predictors are categorical

I Cannot be used directly in case of competing risks


