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Simple Logistic Regression



Outline

I The case for Logistic Regression
I How logistic regression relates a function of the probability

(proportion) of a binary outcome through a linear relationship
I Interpret the resulting intercept and slope from a logistic

regression model



The case for Logistic Regression
Evidence status (CHD): 100 subjects selected from a hospital
population and screened for evidence CHD:

I average age 45 years, range 20 to 64
I 43% showed evidence of CHD

I Aim: to determine whether age is a risk factor for CHD and
estimate the magnitude of this outcome exposure



Outcome (response/dependent variable)

I Presence/absence of CHD evidence from screening result
I Y = 1 if there is CHD evidence
I Y = 0 if there is NOT CHD evidence

Y only takes on two values: - 1 (yes/presence) - 0 (no/absence)



Example: CHD and age

I Could we use linear regression?
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Example: CHD and age

I What about creating age intervals?



Example: CHD and age

I Beware, each of the age intervals contain very few observations



Example: CHD and age

I It seems to be some structure/pattern here (percentage with
CHD tends to increase with age)
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Logistic Regression

I Wouldn’t it be nice to model this relationship without having
to categorize age and compute proportions?

I Logistic regression allows for such a curve relating (equation)
the proportion with outcome to age



Objective of Logistic Regression

I Estimating a magnitude of outcome/exposure relationships
I To evaluate the association of a binary outcome with a set of

predictors

I Prediction
I Develop a model to determine the probability/likelihood that an

individual with Xs risk factors has the condition (Y = 1)



Different type of regression models

I Linear Regression model
I Outcome variable Y is continuous

I Proportional hazard (Cox) Regression model
I Outcome variable is time-to-event

I Logistic Regression model
I Outcome variable Y is binary (dichotomous)

I What does my outcome look like? is the only (data type)
question you need ask when choosing a regression method

I Either regression method allows for many X s (independent
variables)

I X s can be either continuous or discrete



Logistic Regression

I Linear regression: outcome variable Y is continuous

µY |X = α+ βx

I Logistic Regression: Outcome variable Y is binary
(dichotomous)

µY |X = P(Y = 1|x) = pY |X

1. pY |X = α+ βx

2. pY |X = eα+βx

3. pY |X = eα+βx

1+eα+βx



Logistic function
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Logistic Regression model

pY |X = eα+βx

1 + eα+βx

becomes
ln p

1− p = α+ βx

sometimes written as following:

log p
1− p = α+ βx

I where ln (or log) is the logarithm to base e, or natural
logarithms (e is the natural constant 2.718)

I The regression models the log odds of a binary outcome as a
function of the predictor X

I X can be binary, nominal, categorical or continuous



The odds

I The odds of an event is defined as following:

odds = p
1− p

I p is the probability (proportion) of Y = 1



Yet another example

I Bronchopulmonary dysplasia (BPD) gets measured on 223
premature infants at about age 29 days after birth

I 76 infants with BPD
I 147 infants without BPD



Yet another example
I The study was carried out on infants born weighing less than

1750 grams.
I Each child was categorized as 0 (no bpd), or 1 (bpd)
I Results are plotted above, as a function of birth weight



Yet another example

Birthweight BPD N Prop Odds

0-950 49 68 0.721 2.58
951-1350 18 80 0.225 0.29
1351-1750 9 75 0.120 0.14
Total 76 223 0.341 0.52



The logistic regression model

I For BPD-weight dataset:

ln p
1− p = α+ βx

I p: probability of BPD evidence (proportion of newborns with
BPD)

I x : weight
I α and β are called regression coefficients



The logistic regression model

I Recall, the higher the odds of an event, the larger the
probability of an event

I A predictor x that is positively associated with the odds will
also be positively associated with the probability of the event
(the estimated coefficient β will be positive)

I A predictor x that is negatively associated with the odds will
also be negatively associated with the probability of the event
(the estimated coefficient β will be negative)



The logistic regression model for BPD dataset

I Results from logistic regression of log odds of BPD evidence on
birthweight:

ln p
1− p = 4.03− 0.0042× X

- p is the estimated probability of evidence (i.e. the estimated
proportions of newborns with BPD evidence) among newbors of a
given birthweight



BPD and birthweight

I The estimated coefficient (β1) of birthweight X is negative
I a negative association between birthweight and log odds of BPD
I a negative association between birthweight and BPD evidence

I How can we actually interpret the value 0.0042?



BPD and birthweight

I Consider two groups of newborns who differ in birthweight by
100 gr

I group 1: birthweight = k gr
I group 2: birthweight = k+100 gr

I The resulting equation estimating the log odds of BPD in each
birthweight group is:

ln(odds of BPD; X = k + 100) = α+ β(k + 100)
ln(odds of BPD; X = k) = α+ βk

I Thus

100β = ln(odds of BPD; X = k+100)−ln(odds of BPD; X = k)



BPD and birthweight

100β = ln(odds of BPD; X = k + 100)− ln(odds of BPD; X = k)

I From the properties of logarithms:

100β = ln
(odds of BPD; X = k + 100

odds of BPD; X = k

)
= ln(OR)

I β, the estimated slope of X is the natural log of an estimated
odds ratio

I To get the estimated odds ratio, exponentiate β:

OR = eβ



BPD and birthweight

I In our example β = −0.0042 and 100β = log(OR)

I Here, OR = e100β = e−0.42 ≈ 0.96
I The estimated odds ratio of BPD evidence for 100 gr

birthweight difference is 0.96
I If we were to compare two groups of newborns who differ by

100 gr at birth, the estimated odds ratio for BPD evidence is
0.96

I 500 gr to 600 gr
I 950 gr to 1050 gr
I 1300 gr to 1400 gr
I This is valid for birthweight comparisons within our original

range of data, 450-1730 gr
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General interpretation: slope in Logistic regression

I β is the estimated change in the log odds of the outcome for a
one unit increase in X

I change in the log odds of BPD for 100gr increase in birthweight

I It estimates the log odds ratio for comparing two groups of
observations

I one group with x n-units higher than the other

I This estimated slope can be exponentiated to get the
corresponding estimated odds ratio



What about the Intercept

I The resulting equation

ln p
1− p = 4.03− 0.0042× X

I Here, the intercept estimate α is in just a place holder
I it is the estimated ln odds of BPD evidence for newborns of

birthweight 0
I The intercept is mathematically necessary to specify the entire

equation and use the entire equation to estimate the ln odds of
the outcome for any group given X



Coefficients estimate in Logistic Regression

I The estimated regression coefficients are not the true
population parameter regression coefficients

I We will need to estimate a range of plausible values which takes
into account error associated with an imperfect sample

I We will need to test for a statistical significant association in
the population

I We will need tools for doing inference



Example 2: Respiratory Failure and gestational age
I Respiratory Morbidity in Late Preterm Births: The Consortium

on Safe Labor, JAMA, 2010;304(4):419-25



Example 2: Respiratory Failure and gestational age

I Respiratory Morbidity in Late Preterm Births: The Consortium
on Safe Labor, JAMA, 2010;304(4):419-25

GestationalAge Prop Total

34 weeks 0.02 3700
35 weeks 0.03 5477
36 weeks 0.05 10157
37-40 weeks 0.90 165993



Example 2: Respiratory Failure and gestational age

I Gestational age categories are ordinal
I authors didn’t want to assume linearity of ln odds of respiratory

failure and gestational age

I There are four categories:
I make one category the reference and make binary X ’s indicators

for the others
I authors used 37-40 weeks as the reference category

X1 = 1 if gestational age = 34 weeks
X2 = 1 if gestational age = 35 weeks
X3 = 1 if gestational age = 36 weeks



Example 2: Respiratory Failure and gestational age

I Respiratory Morbidity in Late Preterm Births: The Consortium
on Safe Labor, JAMA, 2010;304(4):419-25

ln
( p
1− p

)
= α+ β1X1 + β2X2 + β3X3



Example 2: Respiratory Failure and gestational age

I Respiratory Morbidity in Late Preterm Births: The Consortium
on Safe Labor, JAMA, 2010;304(4):419-25

α = ln(odds of respiratory failure, gest age = 37− 40)

β1 = ln
(

odds of respiratory failure, gest age=34
odds of respiratory failure, gest age=37−40

)
β2 = ln

(
odds of respiratory failure, gest age=35

odds of respiratory failure, gest age=37−40

)
β3 = ln

(
odds of respiratory failure, gest age=36

odds of respiratory failure, gest age=37−40

)



Example 2: Respiratory Failure and gestational age

I Respiratory Morbidity in Late Preterm Births: The Consortium
on Safe Labor, JAMA, 2010;304(4):419-25

ln
( p
1− p

)
= −5.5 + 3.4X1 + 2.8X2 + 2.0X3

I β̂1 = 3.4→ e3.4 = 30
I β̂2 = 2.8→ e2.8 = 16.4
I β̂3 = 2.0→ e2.0 = 7.4



Example 2: Respiratory Failure and gestational age

I Respiratory Morbidity in Late Preterm Births: The Consortium
on Safe Labor, JAMA, 2010;304(4):419-25

ln
( p
1− p

)
= −5.5 + 3.4X1 + 2.8X2 + 2.0X3

I β̂1 = 3.4→ e3.4 = 30
I β̂2 = 2.8→ e2.8 = 16.4
I β̂3 = 2.0→ e2.0 = 7.4
I ln

(
p

1−p

)
= −5.5→ odds = e−5.5 = 0.004



Example 3: Risk of obesity and HDL

I Data from 2009-10 NHANES
I Sample of over 6,400 residents US, 16-80 years old
I HDL levels

I mean: 52.4 mg/dl
I sd = 16
I range = 11-144
I 15% of the sample is obese (by BMI)



Example 3: Risk of obesity and HDL

I Question: does a line reasonably describe the general shape of
the relationship between obesity and HDL?

I The line we estimate is in the form

ln
( p
1− p

)
= α+ βX

I p is the probability of being obese (proportion of individuals
who are obese) for a given value of HDL cholesterol X



Example 3: Risk of obesity and HDL

I This formulation makes a strong assumption about the nature
of the relationship between the ln(odds) of obesity and HDL
cholesterol

ln
( p
1− p

)
= α+ βX

I How to investigate this assumption?



Example 3: Risk of obesity and HDL



Example 3: Risk of obesity and HDL

I Equation of the regression line relating ln(odds) of obesity to
HDL

ln
( p
1− p

)
= −0.05− 0.033X



Example 3: Risk of obesity and HDL

I The OR = e−0.033 ≈ 0.97
I The OR of being obese for two groups of persons who differ by

one mg/dL in HDL levels is 0.97, higher to lower HDL
I higher HDL subjects have 3% lower odds (risk) of beig obese

when compared to lower (by 1 mg/dL) HDL subjects

I The estimate is for any two groups who differ by 1 mg/dL in
HDL in the population from which the sample was drawn

I 60 mg/dL to 59 mg/dL
I 44 mg/dL to 43 mg/dL
I . . .



Example 3: Risk of obesity and HDL

I What is the OR of being obese for persons with HDL of 100
mg/dL compared to persons with 80 mg/dL

I Using properties of logarithms

ln
(odds of obesity,X = 100

odds of obesity,X = 80

)
= ln(OR) = 20β

OR = e20β = e20×(−0.033) ≈ 0.51

I Beware:

OR = e20β = (eβ)20 = (e−0.033)20 = 0.9720 ≈ 0.51

I Why?



Summary

I Logistic regression is a method for relating a binary outcome to
a predictor X via a linear equation

I the predictor can be binary, categorical or continuous

I The resulting linear equation relates the ln(odds) of the binary
outcome to the predictor X

I Slopes from logistic regression have ln(odds) interpretation and
can be eponentiated to estimate odds ratios

I The intercept estimates the ln(odds) for the groups with X = 0



More Examples of Simple Logistic Regression



CHD and age

Variable Estimated
Coefficient Standard Error

Age (yrs) 0.135 0.036
Constant -6.54 1.73



CHD and Age

ln p
1− p = −6.54 + 0.135× X

I p is the estimated probability of evidence (i.e. the estimated
proportions of individuals with CHD evidence) among persons
of a given age



CHD and Age

I In our example β = 0.135
I Here, OR = eβ = e0.135 ≈ 1.14
I The estimated odds ratio of CHD evidence for a one-year age

difference is 1.14, older to younger
I If we were to compare two groups of people who differ by one

year of age, the estimated odds ratio for CHE evidence is 1.14
(this is valid for age comparisons within our original range of
data, 20-69 years)

I 60 years old to 59 years old
I 45 years old to 44 years old
I 27 years old to 26 years old



Death in the ICU: patients with sepsis

I Sample of 106 patients admitted to the ICU at a large U.S.
hospital (Pine. et al.)

I All patients in sample had sepsis (blood infection) at time of
admission to ICU

I information also on whether patient died while in ICU,
I patient’s age at admission (range 17-94 years)
I whether patient was in shock at time of admission

I Using age as predictor X , let’s use logistic regression to relate
death to patient age



Death in the ICU: patients with sepsis

Variable Estimated
Coefficient Standard Error

Age of Patients (yrs) 0.052 0.015
Constant -4.38 0.98

I β = 0.052 is the estimated ln odds ratio of death in ICU for
one year difference in age

I β = 0.052 is the estimated ln odds ratio of death in ICU for two
groups of patients who differ by one year in age, older to
younger

I The corresponding odds ratio estimate is
OR = eβ = e0.052 ≈ 1.05

I in this sample a one year difference in age is associated with a
5% higher odds of death, older to younger

I the older patients have 1.05 times the odds of death compared
to the younger patients



Death in the ICU: patients with sepsis

I We could also use logistic regression to estimate the association
between death and whether the patient was in shock at the
time of admission to ICU (9% of the sample was in shock)

Variable Estimated
Coefficient Standard Error

Shock (1 = yes) 2.61 0.75
Constant -1.77 0.29

I β = 2.61 is the estimated ln odds ratio of death in ICU for for
those in shock compared to those not in shock

I The corresponding odds ratio estimate is
OR = eβ = e2.61 ≈ 13.75



Incorporating Sampling Variability



Outline

I 95% Confidence intervals for the intercept and slope and 95%
Confidence intervals for OR

I Estimate p-values for testing the null H0 : β = 0 (and hence
OR = 1)



Coefficients estimate in Logistic Regression

I The estimated regression coefficients are not the true
population parameter regression coefficients

I We will need to estimate a range of plausible values which
takes into account error associated with an imperfect sample

I We will need to test for a statistical significant association in
the population

We will need tools for doing inference



Method of Estimation

I The method used to estimate the regression coefficients in
logistic regression is called the method of maximum
likelihood

I the resulting estimates of the slope and intercept are the values
that make the observed data most likely among all choices of
values for α and β

I This method is computationally intensive and is of course best
handled by computers

I Along with estimates of α and β this method yields estimates
of the standard errors

I standard errors can be used to create confidence intervals and
do hypothesis tests



Sampling Behavior of Logistic Regression Coefficients
I Random sampling behavior of estimated regression coefficients

is normal for large samples and centered at true population
value

I we can use standard statistical reasoning to derive 95% CI or
get p-values



Sampling Behavior of Logistic Regression Coefficients

I Beware the coefficients from logistic regression are on the
ln odds scale

I The sampling distribution of odds and odds ratios is not
necessarily normal, but the sampling distribution of the ln of
such quantities is

I We will create confidence intervals on the coefficient scale and
will need to exponentiate the results to get corresponding CIs
on the odds (ratio) scale

I Hypothesis testing and p-value will also be obtained on the
coefficient scale



Example CHD and Age

I Recall the results from logistic regression of log odds of CHD
evidence on age:

I β̂ = 0.135 is the estimated ln odds ratio of CHD evidence for
two groups who differ by one year in age

I the corresponding odds ratio is: OR = eβ̂ = e0.135 ≈ 1.14



Example CHD and Age

I How to get 95%CI of β, the population value of ln odds ratio?
I Same old approach: β̂ ± 1.96× SE(β̂)

I for this example: 0.135± 1.96× 0.036 = (0.06, 0.21)
I Notice, the 95% CI does not include 0, which would indicate no

relationship between CHD and age on the ln odds ratio

I To get the corresponding 95% CI for the odds ratio relating
CHD to age, exponentiate the endpoints of the 95%CI

I for this example: (e0.06, e0.21) = (1.06; 1.23)
I Notice, the 95% CI does not include 1, which would indicate no

relationship between CHD and age on the odds ratio scale



Example CHD and Age

I pvalue for testing

H0 : β = 0 H0 : eβ = 1 (OR = 1)
H1 : β 6= 0 H1 : eβ 6= 1 (OR 6= 1)

I Assume null true and compute the standardized distance of β̂
from 0

z = β̂ − 0
SE(β̂)

= β̂

SE(β̂)
= 0.135

0.036 ≈ 3.75

I p-value is the probability of being 3.75 or more standard errors
away from 0 on a normal curve: p < .001 (very low)



Example CHD and Age

I How about confidence intervals for the odds ratio when the
comparison is on two groups who differ by more than one unit
of X?

I What does the CHD/age results estimate as the odds ratio of
CHD evidence for 60 year olds compared to 50 olds? What is a
95% CI for this odds ratio?

I The estimated odds ratio is found by taking
e10β̂ = e10×0.135 = e1.35 ≈ 3.9

I it is the same as taking OR10 = 1.1410

I Properties of 95% CI similar on a coefficient scale: 95%CI for
10β̂:

10β̂ ± 1.96× SE(10β̂) =⇒ 10× [β̂ ± 1.96× SE(10β̂)]



95% Confidence Intervals

I On odds ratio scale, 95% CI for e10β̂ will be given by

e10×[β̂±1.96×SE(10β̂)] =
(
e10×[β̂−1.96×SE(10β̂)]; e10×[β̂+1.96×SE(10β̂)]

)
which can be written down as:

(
[eβ̂−1.96×SE(10β̂)]10; [eβ̂+1.96×SE(10β̂)]10

)
which is just (L10;U10) where L and U are the lower and upper
endpoints respectively for the 95% CU for eβ



Death in the ICU: Patients with Sepsis

I Recall the results from logistic regression of log odds of death
on shock status at the time of ICU admission:

I OR = eβ̂ = e2.61 ≈ 13.75



Death in the ICU: Patients with Sepsis

I How to get 95%CI of β, the population value of ln odds ratio?
I Same old approach: β̂ ± 1.96× SE(β̂)

I for this example: 2.61± 1.96× 0.75 = (1.11, 4.11)
I Notice, the 95% CI does not include 0, which would indicate no

relationship between CHD and age on the ln odds ratio

I To get the corresponding 95% CI for the odds ratio relating
CHD to age, exponentiate the endpoints of the 95%CI

I for this example: (e1.11, e4.11) = (3.0; 61.0)
I Notice, the 95% CI does not include 1, which would indicate no

relationship between CHD and age on the odds ratio scale



Death in the ICU: Patients with Sepsis

I pvalue for testing

H0 : β = 0 H0 : eβ = 1 (OR = 1)
H1 : β 6= 0 H1 : eβ 6= 1 (OR 6= 1)

I Assume null true and compute the standardized distance of β̂
from 0

z = β̂ − 0
SE(β̂)

= β̂

SE(β̂)
= 2.61

0.75 ≈ 3.5

- p-value is the probability of being 3.5 or more standard errors away
from 0 on a normal curve: p < .001 (very low)



Estimating Risk and Functions of Risk



Study Design and Allowable Estimates

I Because the associations given in logistic regression are
estimated odds ratios, this method can be used to analyze
results from all types of study designs, including randomized
studies, observational studies and case-control studies

I In randomized, or observational non case-control studies, we
are not limited to odds ratios as measures of association

I we can also estimate probability (proportions, risk), risk
differences, and relative risks

I can we get such association measures from logistic regression as
well?



Study Design and allowable estimates

I Recall the generic equation for simple logistic regression:

ln
( p
1− p

)
= α+ βX

I For any single value of x the equation estimates a ln odds for a
single group, the group with value x

I If we can get a ln odds, we can get an odds
I it turns out if we can estimate the odds for any single group

given x , we can estimate the probability of the outcome as well



Example: REspiratory failure and gestational age

I Respiratory Morbidity in Late Preterm Births: The Consortium
on Safe Labor, JAMA, 2010;304(4):419-25

ln
( p
1− p

)
= −5.5 + 3.4X1 + 2.8X2 + 2.0X3

I β̂1 = 3.4→ e3.4 = 30
I β̂2 = 2.8→ e2.8 = 16.4
I β̂3 = 2.0→ e2.0 = 7.4
I ln

(
p

1−p

)
= −5.5→ odds = e−5.5 = 0.004



Example: REspiratory failure and gestational age

I To compute estimate risk of respiratory failure for reference
group (37-40 weeks)

ln
( p
1− p

)
= −5.5→ odds = p

1− p = e−5.5 = 0.004

p = odds
1 + odds = 0.004

1.004 ≈ 0.004 (0.4%)



Example: CHD and age

I Recall the resulting equation from our example relating CHD
evidence to age

ln
( p
1− p

)
= −6.54 + 0.135×Age

I p is the estimated probability of CHD (i.e., the estimated
proportions of individual who had CHD) amongst those of a
given age

I What does the above estimate for 57 year old individuals?

ln
( p
1− p

)
= −6.54 + 0.135× 57 = 1.16



Example: CHD and age

I This is the estimated ln odds of CHD evidence of 57year old
individuals in the sample

ln
( p
1− p

)
= −6.54 + 0.135× 57 = 1.16

I To get the corresponding odds, exponentiate
I the odds of CHD for 57 year old individuals is e1.16 ≈ 3.19

I Notice: odds = p̂
1−p̂ =⇒ p̂ = odds

1+odds
I The above result translated into an estimated probability of

p̂ =
^odds

1 + ^odds
= 3.19

4.19 ≈ 0.76



Example: CHD and age

I An estimated 76% of 57 year old individuals had CHD in the
sample

I What about the estimated proportion of 55 year old
individuals?

ln
( p
1− p ; Age = 55

)
= −6.54 + 0.135× 55 = 0.89

I The corresponding odds is e0.89 ≈ 2.44
I The corresponding estimated probability is:

p̂ =
^odds

1 + ^odds
= 2.44

3.44 ≈ 0.71



Example: CHD and age

I An estimated 71% of 55 year old individuals had CHD in the
sample

I An estimated 76% of 57 year old individuals had CHD in the
sample

I What about the estimated relative risk of CHD for 57 year old
invididuals to 55 year old ones?

R̂R = p̂age=57
p̂age=55

= 0.76
0.71 ≈ 1.07

I The estimated risk difference for the same age comparison

p̂age=57 − p̂age=55 = 0.76− 0.71 = 0.05



Example: CHD and age
I Sometimes the graph of the estimated probability of the

outcome across the values of a continuous variable in the
sample is shown
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Example: Death in the ICU and Shock

I Recall the resulting equation from our example on 106 ICU
patients with severe sepsis relating death to shock

ln
( p
1− p

)
= −1.77 + 2.61× shock

I p is the estimated probability of death (i.e., the estimated
proportions of patients who die) amongst patients of a given
shock status at admission

I shock = 1 if patient is in shock at the time of the admission



Example: Death in the ICU and Shock

I What does the equation estimate for patients in shock at the
time of admission to the ICU?

ln
( p
1− p

)
= −1.77 + 2.61× shock

ln
( p
1− p ; shock = 1

)
= −1.77 + 2.61× 1 = 0.84

I The corresponding odds is e0.84 ≈ 2.32
I The corresponding estimated probability is:

p̂ =
^odds

1 + ^odds
= 2.32

3.32 ≈ 0.70



Example: Death in the ICU and Shock

I What does the equation estimate for patients NOT in shock at
the time of admission to the ICU?

ln
( p
1− p

)
= −1.77 + 2.61× shock

ln
( p
1− p ; shock = 1

)
= −1.77 + 2.61× 0 = −1.77

I The corresponding odds is e−1.77 ≈ 0.17
I The corresponding estimated probability is:

p̂ =
^odds

1 + ^odds
= 0.17

1.17 ≈ 0.15



Example: Death in the ICU and Shock

I An estimated 70% of patients in shock died in this sample of
ICU patients

I An estimated 15% of patients NOT in shock died
I What about the estimated relative risk of death for patients in

shock compared to those NOT in shock?

R̂R = p̂shock=1
p̂shock=0

= 0.70
0.15 ≈ 4.7

- The estimated risk difference for the same age comparison

p̂shock=1 − p̂shock=0 = 0.7− 0.15 = 0.55
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