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Simple Logistic Regression



Outline

» The case for Logistic Regression

» How logistic regression relates a function of the probability
(proportion) of a binary outcome through a linear relationship

> Interpret the resulting intercept and slope from a logistic
regression model



The case for Logistic Regression

Evidence status (CHD): 100 subjects selected from a hospital
population and screened for evidence CHD:

> average age 45 years, range 20 to 64
» 43% showed evidence of CHD

ID Age  CHD ID Age  CHD
1 20 0 10 29 0
2 23 0 11 30 0
3 24 0 12 30 0
4 25 0 13 30 0
5 25 1 14 30 0
6 26 0 15 30 0

» Aim: to determine whether age is a risk factor for CHD and
estimate the magnitude of this outcome exposure



Outcome (response/dependent variable)

» Presence/absence of CHD evidence from screening result

» Y =1 if there is CHD evidence
» Y =0 if there is NOT CHD evidence

Y only takes on two values: - 1 (yes/presence) - 0 (no/absence)



Example: CHD and age

» Could we use linear regression?
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Example:

CHD and age

» Could we use linear regression?
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Example: CHD and age

» Could we use linear regression?
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Example: CHD and age

» What about creating age intervals?

Age group

25
32
37
42
47
52
57
65

CHD CHD
N Absent Present
9 8 1
15 13 2
12 9 3
15 10 5
13 7 6
8 3 5
17 4 13
10 2 8

Proportion
with CHD
0.11
0.13
0.25
0.33
0.46
0.63
0.76
0.8



Example: CHD and age

Age group N CHD CHD Proportion
Absent Present with CHD

25 9 8 1 0.11

32 15 13 2 0.13

37 12 9 3 0.25

42 15 10 5 0.33

47 13 7 6 0.46

52 8 3 5 0.63

57 17 4 13 0.76

65 10 2 8 0.8

» Beware, each of the age intervals contain very few observations



Example: CHD and age

> It seems to be some structure/pattern here (percentage with
CHD tends to increase with age)

1
L[]

Estimate percentage with
CHD evidence
01 02 03 04 05 06 07 08

Age (yrs)



Logistic Regression

» Wouldn't it be nice to model this relationship without having
to categorize age and compute proportions?

» Logistic regression allows for such a curve relating (equation)
the proportion with outcome to age



Objective of Logistic Regression

» Estimating a magnitude of outcome/exposure relationships

» To evaluate the association of a binary outcome with a set of
predictors

» Prediction

» Develop a model to determine the probability/likelihood that an
individual with Xs risk factors has the condition (Y = 1)



Different type of regression models

v

Linear Regression model

» Qutcome variable Y is continuous

v

Proportional hazard (Cox) Regression model

» Outcome variable is time-to-event

v

Logistic Regression model

» Outcome variable Y is binary (dichotomous)

v

What does my outcome look like? is the only (data type)
question you need ask when choosing a regression method
» Either regression method allows for many Xs (independent

variables)
» Xs can be either continuous or discrete



Logistic Regression

» Linear regression: outcome variable Y is continuous

Py|x = a+ Bx

> Logistic Regression: Outcome variable Y is binary
(dichotomous)

By x = P(Y =1|x) = Py|x

L pyx = a+ Bx

2. pyjx = e*thx

o e tBx
3' pY|X - 1+eoc+ﬁx



Logistic function
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Logistic function
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Logistic Regression model

eoc-‘,—ﬁx
pY|X = 1 + ea+5X
becomes
In 1 P _a + Bx

sometimes written as following:

IogL—a—i-,Bx
1-p

» where In (or log) is the logarithm to base e, or natural
logarithms (e is the natural constant 2.718)

> The regression models the log odds of a binary outcome as a
function of the predictor X

» X can be binary, nominal, categorical or continuous



The odds

» The odds of an event is defined as following:

odds = _P

I-p

» p is the probability (proportion) of Y =1



Yet another example

VOLUME 86 » SEPTEMBER 1990 + NUMBER 3

Pediatrics

Maternal Glucocorticoid Therapy and Reduced
Risk of Bronchopulmonary Dysplasia

Linda J. Van Marter, MD, MPH; Alan Leviton, MD, MS;
Karl C. K. Kuban, MD, MS; Marcello Pagano, PhD; and
Elizabeth N. Allred, MS

From the Division of Newbarn Medicine and the Neuroepidemiology Unit, The Children’s
Hospital, and the Department of Biostatistics, Harvard School of Public Health,
Boston, Massachusetts

» Bronchopulmonary dysplasia (BPD) gets measured on 223
premature infants at about age 29 days after birth

» 76 infants with BPD
» 147 infants without BPD



Yet another example

» The study was carried out on infants born weighing less than
1750 grams.

» Each child was categorized as 0 (no bpd), or 1 (bpd)

» Results are plotted above, as a function of birth weight
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Yet another example

Birthweight BPD N  Prop Odds
0-950 49 68 0.721 2.58
951-1350 18 80 0.225 0.29
1351-1750 9 75 0120 0.14
Total 76 223 0.341 0.52




The logistic regression model

» For BPD-weight dataset:
n—P_—q + Bx
» p: probability of BPD evidence (proportion of newborns with
BPD)
> x: weight

v

« and 3 are called regression coefficients



The logistic regression model

» Recall, the higher the odds of an event, the larger the
probability of an event

» A predictor x that is positively associated with the odds will
also be positively associated with the probability of the event
(the estimated coefficient 8 will be positive)

» A predictor x that is negatively associated with the odds will
also be negatively associated with the probability of the event
(the estimated coefficient 3 will be negative)



The logistic regression model for BPD dataset

» Results from logistic regression of log odds of BPD evidence on
birthweight:

p

In =4.03 — 0.0042 x X

- p is the estimated probability of evidence (i.e. the estimated
proportions of newborns with BPD evidence) among newbors of a
given birthweight



BPD and birthweight

» The estimated coefficient (/31) of birthweight X is negative

> a negative association between birthweight and log odds of BPD
> a negative association between birthweight and BPD evidence

» How can we actually interpret the value 0.00427



BPD and birthweight

» Consider two groups of newborns who differ in birthweight by
100 gr

» group 1: birthweight = k gr
» group 2: birthweight = k+100 gr

> The resulting equation estimating the log odds of BPD in each
birthweight group is:

In(odds of BPD; X =k +100) = «a+ B(k + 100)
In(odds of BPD; X = k) = a+fk

» Thus

1008 = In(odds of BPD; X = k+100)—In(odds of BPD; X = k)



BPD and birthweight

1005 = In(odds of BPD; X = k + 100) — In(odds of BPD; X = k)

» From the properties of logarithms:

odds of BPD; X =k + 100 _
odds of BPD: X = k ) = In(OR)

1008 = In(

» (3, the estimated slope of X is the natural log of an estimated
odds ratio

» To get the estimated odds ratio, exponentiate :

OR = ¢



BPD and birthweight

» In our example § = —0.0042 and 1005 = log(OR)



BPD and birthweight

» In our example § = —0.0042 and 1005 = log(OR)
> Here, OR = 1008 = ¢7042  0.96



BPD and birthweight

» In our example § = —0.0042 and 1005 = log(OR)

> Here, OR = 1008 = ¢7042  0.96

» The estimated odds ratio of BPD evidence for 100 gr
birthweight difference is 0.96



BPD and birthweight

» In our example § = —0.0042 and 1005 = log(OR)

» Here, OR = e'008 = 7042  0.96

> The estimated odds ratio of BPD evidence for 100 gr
birthweight difference is 0.96

> If we were to compare two groups of newborns who differ by
100 gr at birth, the estimated odds ratio for BPD evidence is
0.96



BPD and birthweight

» In our example § = —0.0042 and 1005 = log(OR)

» Here, OR = e'008 = 7042  0.96

> The estimated odds ratio of BPD evidence for 100 gr
birthweight difference is 0.96

> If we were to compare two groups of newborns who differ by
100 gr at birth, the estimated odds ratio for BPD evidence is
0.96

» 500 gr to 600 gr



BPD and birthweight

» In our example § = —0.0042 and 1005 = log(OR)

» Here, OR = e'008 = 7042  0.96

> The estimated odds ratio of BPD evidence for 100 gr
birthweight difference is 0.96

> If we were to compare two groups of newborns who differ by
100 gr at birth, the estimated odds ratio for BPD evidence is
0.96

» 500 gr to 600 gr

» 950 gr to 1050 gr



BPD and birthweight

» In our example § = —0.0042 and 1005 = log(OR)

» Here, OR = e'008 = 7042  0.96

> The estimated odds ratio of BPD evidence for 100 gr
birthweight difference is 0.96

> If we were to compare two groups of newborns who differ by
100 gr at birth, the estimated odds ratio for BPD evidence is
0.96

» 500 gr to 600 gr

» 950 gr to 1050 gr

» 1300 gr to 1400 gr



BPD and birthweight

In our example 5 = —0.0042 and 1003 = log(OR)
Here, OR = 1908 = =042 ~ .96

» The estimated odds ratio of BPD evidence for 100 gr

vVvyYVyYyysy

birthweight difference is 0.96

If we were to compare two groups of newborns who differ by
100 gr at birth, the estimated odds ratio for BPD evidence is
0.96

500 gr to 600 gr

950 gr to 1050 gr

1300 gr to 1400 gr

This is valid for birthweight comparisons within our original
range of data, 450-1730 gr



General interpretation: slope in Logistic regression

> [ is the estimated change in the log odds of the outcome for a
one unit increase in X

» change in the logodds of BPD for 100gr increase in birthweight

> It estimates the log odds ratio for comparing two groups of
observations

» one group with x n-units higher than the other

» This estimated slope can be exponentiated to get the
corresponding estimated odds ratio



What about the Intercept

» The resulting equation

p

In =4.03 —0.0042 x X

» Here, the intercept estimate « is in just a place holder

» it is the estimated In odds of BPD evidence for newborns of
birthweight 0

» The intercept is mathematically necessary to specify the entire
equation and use the entire equation to estimate the In odds of
the outcome for any group given X



Coefficients estimate in Logistic Regression

» The estimated regression coefficients are not the true
population parameter regression coefficients
» We will need to estimate a range of plausible values which takes
into account error associated with an imperfect sample

» We will need to test for a statistical significant association in
the population

» We will need tools for doing inference



Example 2: Respiratory

» Respiratory Morbidity in Late Preterm Births: The Consortium

Failure and gestational age

on Safe Labor, JAMA, 2010;304(4):419-25

I ORIGI

CONTRIBUTION

Respiratory Morbidity in Late Preterm Births

The Consortium on Safe Labor

ATE PRETERM BIRTH (34% TO
36%: weeks’ gestation) ac-
counts for 9.1% of all deliver-
iesand three-quarters of all pre-
term births' in the United States and has
been the focus of multiple investiga-
tions as well as a workshop in 2005
Considerable evidence and expert op
ion suggest that short-term morbid;
ties are prevalent®* and that the neo-
natal mortality rate is higher compared
with those born at term.®
However, much of the supporting
data for these conclusions are derived
from studies that are more than a de-
cade old, are from outside the United
States, or used administrative data such
as birth certificate or International Clas-
sification of Discases, Ninth Revision code
ta, and many were drawn from small
populations. For example, Wang et aP
studied neonates born at 35 to 365+
weeks and found that a statistically
higher propertion had respiratory dis-
tress syndrome (RDS) and clinical prob-
lems compared with term neonates.
However, this case-control study
cluded only 120 late preterm birth neo-
nates. Rubaltelli et al* documented a
30.8% incidence of respiratory prob-
lems in neonates bornat 34 to 36 weeks
compared with less than 1% at term but
also noted in another survey an inci-
dence of respiratory problems ofonly 3%

Context Late preterm births (3495-36%; weeks) account for an increasing propor-
tion of prematurity-associated short-term morbidities, particularly respiratory, that re-
quire specialized care and prolonged neonatal hospital stays

Objective To assess short-tem respiratory morbidity in late preterm births com-
pared with term births in a contemporary cohort of deliveries in the United States.
Design, Setting, and Participants Retrospective collection of electronic data
from 12 institutions (19 hospitals) across the United States on 233844 deliveries
between 2002 and 2008. Charts were abstracted for all neonates with respiratory
compromise admitted to a neonatal intensive care unit (NICU), and late preterm
births were compared with term births in regard to resuscitation, respiratory sup-
port, and respiratory diagnoses. A multivariate logistic regression analysis compared
infants at each gestational week, controlling for factors that influence respiratory
outcomes.

Main Outeome Measures Respiratory distress syndrome, transient tachypnea of
the newbor, peumonia, respiratory failure, and standard and oscillatory ventilator
support

Results Of 19324 late preterm births, 7055 (36.5%) were admitted to a NICU
and 2032 had respiratory compromise. Of 165993 term infants, 11980 (7.2%)
were admitted to a NICU, 1874 with respiratory morbidity. The incidence of respi-
ratory distress syndrome was 10.5% (390/3700) for infants borm at 34 weeks' ges-
tation vs 0.3% (140/41764) at 28 weeks. Similarly, incidence of transient tachyp-
nea of the newborn was 6.4% (n=236) for those born at 34 weeks vs 0.4%
(n=155) at 38 weeks, pneumonia was 1.5% (n=55) vs 0.1% (n=62), and respira-
tory failure was 1.6% (n=61) vs 0.2% (n=63). Standard and oscillatory ventilator
support had similar pattems. Odds of respiratory distress syndrome decreased with
each advancing week of estation until B weﬁ-ks compared with 39 to 40 Neeks
(adjusted odds ratio [OR] at 34 weeks, 40.1; 95% confidence interval [Cl],

503 and at 38 weeks, 1.1; 95% Cl, 0.9- 1 4) At 37 weeks, odds of vesplvaluryd\s—
tress syndrome were greater than at 39 to 40 weeks (adjusted OR, 3.1; 95% CI,
25-3.7), but the odds at 38 weeks did not differ from 39 to 40 weeks. Similar pat-
terns were noted for transient tachypnea of the newborn (adjusted OR at 34
weeks, 14.7; 95% CI, 11.7-18.4 and at 38 weeks, 1.0; 95% CI, 0.8-1.2), pneumo-
nia (adjusted OR at 34 weeks, 7.6; 95% Cl, 5.2-11.2 and at 38 weeks, 0.9; 95%
Cl, 0.6-1.2), and respiratory failure (adjusted OR at 24 weeks, 10.5; 95% Cl, 69-
16.1 and at 38 weeks, 1.4; 95% Cl, 1.0-1.9).

Conclusion In a contemporary cohort, late preterm birth, compared with term de-
livery, was associated with increased risk of respiratory distress syndrome and other

inlate * Both surveys were

respiratory morbidy. |

JAMA www jama.com



Example 2: Respiratory Failure and gestational age

> Respiratory Morbidity in Late Preterm Births: The Consortium
on Safe Labor, JAMA, 2010;304(4):419-25

GestationalAge Prop Total

34 weeks 0.02 3700
35 weeks 0.03 5477
36 weeks 0.05 10157

37-40 weeks 0.90 165993




Example 2: Respiratory Failure and gestational age

» Gestational age categories are ordinal

» authors didn’t want to assume linearity of Inodds of respiratory
failure and gestational age

» There are four categories:

» make one category the reference and make binary X's indicators
for the others
» authors used 37-40 weeks as the reference category

X1 =1 if gestational age = 34 weeks
Xo =1 if gestational age = 35 weeks
X3 =1 if gestational age = 36 weeks



Example 2: Respiratory Failure and gestational age

» Respiratory Morbidity in Late Preterm Births: The Consortium
on Safe Labor, JAMA, 2010;304(4):419-25

(2 = o 61X + e + 5aXs



Example 2: Respiratory Failure and gestational age

> Respiratory Morbidity in Late Preterm Births: The Consortium
on Safe Labor, JAMA, 2010;304(4):419-25

a = In(odds of respiratory failure, gest age = 37 — 40)
ﬁ — In odds of respiratory failure, gest age=34
1 = odds of respiratory failure, gest age=37—40

ﬁ — In odds of respiratory failure, gest age=35
2 = odds of respiratory failure, gest age=37—40
6 — In odds of respiratory failure, gest age=36
3 = odds of respiratory failure, gest age=37—40




Example 2: Respiratory Failure and gestational age

> Respiratory Morbidity in Late Preterm Births: The Consortium
on Safe Labor, JAMA, 2010;304(4):419-25

In (1p> — 5.5+ 3.4X; +2.8%, + 2.0X;
—p

» =34 34 =30
> Br =28 — e’ =16.4
» 33=20—e*0=74



Example 2: Respiratory Failure and gestational age

» Respiratory Morbidity in Late Preterm Births: The Consortium
on Safe Labor, JAMA, 2010;304(4):419-25

» 1 =34 34 =130

> 3, =28 €28 =164

> B3=20—>e20=74

> In (ﬁ) = —55— odds = e %% = 0.004



Example 3: Risk of obesity and HDL

» Data from 2009-10 NHANES
» Sample of over 6,400 residents US, 16-80 years old
» HDL levels

mean: 52.4 mg/dl

sd = 16

range = 11-144

15% of the sample is obese (by BMI)

vV vy vy



Example 3: Risk of obesity and HDL

» Question: does a line reasonably describe the general shape of
the relationship between obesity and HDL?

» The line we estimate is in the form

In (1”p> = a+BX

» p is the probability of being obese (proportion of individuals
who are obese) for a given value of HDL cholesterol X



Example 3: Risk of obesity and HDL

» This formulation makes a strong assumption about the nature
of the relationship between the In(odds) of obesity and HDL
cholesterol

(125) oo

» How to investigate this assumption?



Example 3:

Risk of obesity and HDL

Estimated In(odds) of Obesity By HDL Cholesterol Level
Data from 2009-10 NHANES

T T T T
50 100 150
HDL Cholesterol (mg/dL)

bandwidth = .5



Example 3: Risk of obesity and HDL

» Equation of the regression line relating In(odds) of obesity to
HDL

In <> = —0.05 — 0.033X
1-p



Example 3: Risk of obesity and HDL

» The OR = 70933 ~ 0.97
» The OR of being obese for two groups of persons who differ by
one mg/dL in HDL levels is 0.97, higher to lower HDL
» higher HDL subjects have 3% lower odds (risk) of beig obese
when compared to lower (by 1 mg/dL) HDL subjects
» The estimate is for any two groups who differ by 1 mg/dL in
HDL in the population from which the sample was drawn
» 60 mg/dL to 59 mg/dL
» 44 mg/dL to 43 mg/dL

L



Example 3: Risk of obesity and HDL

» What is the OR of being obese for persons with HDL of 100
mg/dL compared to persons with 80 mg/dL

» Using properties of logarithms

| <0dds of obesity, X = 100

odds of obesity, X = 80 ) =In(OR) = 205

OR — 208 — g20x(-0.033) (51

» Beware:
OR = 2% — (eﬁ)20 = (e_0'03’3)20 =0.97%° ~ 0.51

» Why?



Summary

> Logistic regression is a method for relating a binary outcome to
a predictor X via a linear equation

» the predictor can be binary, categorical or continuous
» The resulting linear equation relates the In(odds) of the binary
outcome to the predictor X

» Slopes from logistic regression have In(odds) interpretation and
can be eponentiated to estimate odds ratios

» The intercept estimates the In(odds) for the groups with X =0



More Examples of Simple Logistic Regression



CHD and age

Variable Estlm'a‘.ced Standard Error
Coefficient
Age (yrs) 0.135 0.036

Constant -6.54 1.73




CHD and Age

In =—6.5440.135 x X

» p is the estimated probability of evidence (i.e. the estimated
proportions of individuals with CHD evidence) among persons
of a given age



CHD and Age

> In our example 8 = 0.135

» Here, OR = f = %135 1.14

» The estimated odds ratio of CHD evidence for a one-year age
difference is 1.14, older to younger

> If we were to compare two groups of people who differ by one
year of age, the estimated odds ratio for CHE evidence is 1.14
(this is valid for age comparisons within our original range of
data, 20-69 years)

» 60 years old to 59 years old

> 45 years old to 44 years old
» 27 years old to 26 years old



Death in the ICU: patients with sepsis

» Sample of 106 patients admitted to the ICU at a large U.S.
hospital (Pine. et al.)

» All patients in sample had sepsis (blood infection) at time of
admission to ICU

» information also on whether patient died while in ICU,
> patient’s age at admission (range 17-94 years)
» whether patient was in shock at time of admission

» Using age as predictor X, let's use logistic regression to relate
death to patient age



Death in the ICU: patients with sepsis

Variable Estwn_aFed Standard Error
Coefficient

Age of Patients (yrs) 0.052 0.015

Constant -4.38 0.98

» 3 =0.052 is the estimated In odds ratio of death in ICU for
one year difference in age

» [ =0.052 is the estimated In odds ratio of death in ICU for two
groups of patients who differ by one year in age, older to
younger

» The corresponding odds ratio estimate is
OR =ef =e%952 x5 1.05

» in this sample a one year difference in age is associated with a
5% higher odds of death, older to younger

> the older patients have 1.05 times the odds of death compared
to the younger patients



Death in the ICU: patients with sepsis

> We could also use logistic regression to estimate the association
between death and whether the patient was in shock at the
time of admission to ICU (9% of the sample was in shock)

Variable EstlmaFed Standard Error
Coefficient

Shock (1 = yes) 2.61 0.75

Constant -1.77 0.29

» [ = 2.61 is the estimated In odds ratio of death in ICU for for
those in shock compared to those not in shock

» The corresponding odds ratio estimate is
OR = e? =261 x 13.75



Incorporating Sampling Variability



Outline

» 95% Confidence intervals for the intercept and slope and 95%
Confidence intervals for OR

» Estimate p-values for testing the null Hp : 5 = 0 (and hence
OR =1)



Coefficients estimate in Logistic Regression

» The estimated regression coefficients are not the true
population parameter regression coefficients

» We will need to estimate a range of plausible values which
takes into account error associated with an imperfect sample

» We will need to test for a statistical significant association in
the population

We will need tools for doing inference



Method of Estimation

» The method used to estimate the regression coefficients in
logistic regression is called the method of maximum
likelihood

> the resulting estimates of the slope and intercept are the values
that make the observed data most likely among all choices of
values for  and 3

» This method is computationally intensive and is of course best
handled by computers

» Along with estimates of o and ( this method yields estimates
of the standard errors

» standard errors can be used to create confidence intervals and
do hypothesis tests



Sampling Behavior of Logistic Regression Coefficients

» Random sampling behavior of estimated regression coefficients
is normal for large samples and centered at true population
value

B4

» we can use standard statistical reasoning to derive 95% Cl or
get p-values



Sampling Behavior of Logistic Regression Coefficients

» Beware the coefficients from logistic regression are on the
In odds scale

» The sampling distribution of odds and odds ratios is not
necessarily normal, but the sampling distribution of the In of
such quantities is

> We will create confidence intervals on the coefficient scale and
will need to exponentiate the results to get corresponding Cls
on the odds (ratio) scale

» Hypothesis testing and p-value will also be obtained on the
coefficient scale



Example CHD and Age

» Recall the results from logistic regression of log odds of CHD
evidence on age:

Variable Estimated Coefficient Standard Error
Age 0.135 0.036
Constant - 6.54 1.73

> ﬁA = 0.135 is the estimated In odds ratio of CHD evidence for
two groups who differ by one year in age

» the corresponding odds ratio is: OR = e = 0135 114



Example CHD and Age

» How to get 95%Cl of 3, the population value of Inodds ratio?
» Same old approach: £ 1.96 x SE(/5)

» for this example: 0.135 £ 1.96 x 0.036 = (0.06,0.21)
» Notice, the 95% Cl does not include 0, which would indicate no
relationship between CHD and age on the In odds ratio

» To get the corresponding 95% Cl for the odds ratio relating
CHD to age, exponentiate the endpoints of the 95%ClI
> for this example: (€29, e%21) = (1.06;1.23)

» Notice, the 95% Cl does not include 1, which would indicate no
relationship between CHD and age on the odds ratio scale



Example CHD and Age

» pvalue for testing

Ho:B8=0 Ho: e’ =1 (OR =1)
Hi:B#0 Hy:e%#1(OR #1)

» Assume null true and compute the standardized distance of 3

from 0 R R
_p-0 5 0135

z= — = — = ~
SE(8) SE(p) 0036
> p-value is the probability of being 3.75 or more standard errors
away from 0 on a normal curve: p < .001 (very low)




Example CHD and Age

» How about confidence intervals for the odds ratio when the
comparison is on two groups who differ by more than one unit
of X?

» What does the CHD/age results estimate as the odds ratio of
CHD evidence for 60 year olds compared to 50 olds? What is a
95% ClI for this odds ratio?

» The estimated odds ratio is found by taking
el08 _ o10x0.135 _ 135 o 3 g

> it is the same as taking OR'? = 1.141°

» Properties of 95% Cl similar on a coefficient scale: 95%CI for
103:

103 + 1.96 x SE(108) = 10 x [ + 1.96 x SE(103)]



95% Confidence Intervals

» On odds ratio scale, 95% Cl for €193 will be given by

ele[Bﬂ.%xSE(lOE)] (elox[B—1.96xsE(1oB)] ele[ﬁ+1.96xSE(103)})
which can be written down as:

<[eﬂ—1.96><SE(106)]10; [eﬂ+1.96><SE(10,B)]10)

which is just (L1%; U'%) where L and U are the lower and upper
endpoints respectively for the 95% CU for e



Death in the ICU: Patients with Sepsis

» Recall the results from logistic regression of log odds of death
on shock status at the time of ICU admission:

Estimated
Variable Coefficient Standard Error
Shock (1 = “yes”) 2.61 0.75
Constant -1.77 0.29

» OR = e = 261 x 13.75



Death in the ICU: Patients with Sepsis

» How to get 95%Cl of 3, the population value of Inodds ratio?
» Same old approach: £ 1.96 x SE(/5)

» for this example: 2.61 £ 1.96 x 0.75 = (1.11,4.11)
» Notice, the 95% Cl does not include 0, which would indicate no
relationship between CHD and age on the In odds ratio

» To get the corresponding 95% Cl for the odds ratio relating
CHD to age, exponentiate the endpoints of the 95%ClI
» for this example: (el e*11) = (3.0;61.0)

» Notice, the 95% Cl does not include 1, which would indicate no
relationship between CHD and age on the odds ratio scale



Death in the ICU: Patients with Sepsis

> pvalue for testing

Ho:3=0 Hp:e’=1(OR =1)
Hi:B#0 Hy:e%#1(OR #1)

» Assume null true and compute the standardized distance ofﬁ’
from 0

Z_B—o_ B 261
SE(B)  SE(3) 075
- p-value is the probability of being 3.5 or more standard errors away
from 0 on a normal curve: p < .001 (very low)




Estimating Risk and Functions of Risk



Study Design and Allowable Estimates

» Because the associations given in logistic regression are
estimated odds ratios, this method can be used to analyze
results from all types of study designs, including randomized
studies, observational studies and case-control studies

» In randomized, or observational non case-control studies, we
are not limited to odds ratios as measures of association

» we can also estimate probability (proportions, risk), risk
differences, and relative risks

» can we get such association measures from logistic regression as
well?



Study Design and allowable estimates

» Recall the generic equation for simple logistic regression:

In <1fp> = a+BX

» For any single value of x the equation estimates a Inodds for a
single group, the group with value x

> If we can get a Inodds, we can get an odds

> it turns out if we can estimate the odds for any single group
given x, we can estimate the probability of the outcome as well



Example: REspiratory failure and gestational age

» Respiratory Morbidity in Late Preterm Births: The Consortium
on Safe Labor, JAMA, 2010;304(4):419-25

» 1 =34 34 =130

> 3, =28 €28 =164

> B3=20—>e20=74

> In (ﬁ) = —55— odds = e %% = 0.004



Example: REspiratory failure and gestational age

» To compute estimate risk of respiratory failure for reference
group (37-40 weeks)

In (” > = 55 - odds = £ = &7 = 0.004

1-p -p

B odds _0.004
~ 14o0dds 1.004

p ~ 0.004 (0.4%)



Example: CHD and age

> Recall the resulting equation from our example relating CHD
evidence to age

In (p) = —6.54+0.135 x Age
1-p

» p is the estimated probability of CHD (i.e., the estimated
proportions of individual who had CHD) amongst those of a
given age

» What does the above estimate for 57 year old individuals?

In (1”> — —6.54+0.135 x 57 = 1.16
—p



Example: CHD and age

v

This is the estimated In odds of CHD evidence of 57year old
individuals in the sample

In (1fp> — _6.54+0.135 x 57 = 1.16

v

To get the corresponding odds, exponentiate

» the odds of CHD for 57 year old individuals is e''1® ~ 3.19

. _ D =~ __ _odds
Notice: odds = 5 — P~ THodds

v

v

The above result translated into an estimated probability of

odds _ 3.19
1+ odds 4.19

p= ~ 0.76



Example: CHD and age

» An estimated 76% of 57 year old individuals had CHD in the
sample

» What about the estimated proportion of 55 year old
individuals?

In (1”[); Age = 55) — —6.54 +0.135 x 55 = 0.89

» The corresponding odds is €989 ~ 2.44

» The corresponding estimated probability is:

odds 244
14 odds 3.44

p= ~ 0.71



Example: CHD and age

» An estimated 71% of 55 year old individuals had CHD in the
sample

» An estimated 76% of 57 year old individuals had CHD in the
sample

> What about the estimated relative risk of CHD for 57 year old
invididuals to 55 year old ones?

_ /Isage:57 o 0.76

— =~ 1.07

RR = =
page:55 0.71

» The estimated risk difference for the same age comparison

Pago—57 — Page—ss = 0.76 — 0.71 = 0.05



Example: CHD and age

» Sometimes the graph of the estimated probability of the
outcome across the values of a continuous variable in the
sample is shown

Estimated Probability of CHD by Age

1 1 1 1

0.8

0.6 - -

0.4 | -

Probability of CHD

0.2 - -

30 40 50 60
Age (yrs)



Example: Death in the ICU and Shock

» Recall the resulting equation from our example on 106 ICU
patients with severe sepsis relating death to shock

In <p> — _1.77 + 2.61 x shock
1-p

> p is the estimated probability of death (i.e., the estimated
proportions of patients who die) amongst patients of a given
shock status at admission

» shock = 1 if patient is in shock at the time of the admission



Example: Death in the ICU and Shock

» What does the equation estimate for patients in shock at the
time of admission to the ICU?

In (p> — _1.77 + 2.61 x shock
1-p

In (1 P . shock = 1) — _177+261x1=084
—p

» The corresponding odds is €984 ~ 2.32

» The corresponding estimated probability is:

odds  2.32
1+o0dds 332

p= ~ 0.70



Example: Death in the ICU and Shock

» What does the equation estimate for patients NOT in shock at
the time of admission to the ICU?

In (p> — _1.77 + 2.61 x shock
1-p

In (1 P p;shock - 1) 1774261 %x0=-177

» The corresponding odds is e 277 ~ 0.17

» The corresponding estimated probability is:

odAds _ 0.17
1+ odds 117

b= ~ 0.15



Example: Death in the ICU and Shock

» An estimated 70% of patients in shock died in this sample of
ICU patients
» An estimated 15% of patients NOT in shock died

» What about the estimated relative risk of death for patients in
shock compared to those NOT in shock?

3T ﬁshock:l 0.70
RR = = = ~ 4.7
Pshock=0 0.15

- The estimated risk difference for the same age comparison

ﬁshock:l - ﬁshock:ﬂ =0.7—-0.15=0.55
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