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Multivariate Logistic Regression



Outline

» Estimate from multivariate logistic regression models
» Comparison of the results from simple and multivariate logistic
regression models to assess confounding



Example 1: Breast Feeding and child’s sex

» Data from a random sample of 192 Nepali children [12, 36)
months old

» Question: what is the relationship between breast feeding and
sex of a child?

» Data:

» Breast fed: 70%
» Sex: 48% female (1 = male, 0 = female)



Example 1: Breast Feeding and child’s sex

» The resulting unadjusted association

In (1") —1.12 4+ 0.02 x sex

» 3 =0.02: the In(odds ratio) of being breast fed for males to
females is 0.02

» & = 1.12: the In(odds) of being breast fed for female children
is 1.12



Example 1: Breast Feeding and child’s sex

> The results of a multiple regression of breast feeding status on
sex and age of the child (months)

In (1p> — 7.2+ 0.27 x sex — 0.24 x age
-p
» Including uncertainty:

> 95%Cl for (3 : (—0.50;1.04), p-value = 0.48
» 95%Cl for 3 : (—0.31; —0.17), p-value < 0.001



Example 1: Breast Feeding, sex and age

> The slope estimate for sex is B =0.27

» an estimated In(odds ratio) of breast feeding for male children
to female children, who are of the same age

> it is called age adjusted association between breast feading and
sex

» The resulting odds ration estimate is €%2” = 1.30

» male children in che sample have 30% greater odds of being
breastfed than females of the same age

» The 95% for the age adjusted odds ratio for males compared to
females is (e 020, e1-0%) — (0.61,2.82)



Example 1: Breast Feeding, sex and age

> The slope estimate for age is 5’2 =-0.24

» an estimated In(odds ratio) of breast feeding for children who
differ by one month in age (older to younger) but are of the
same sex

> it is called sex adjusted association between breast feading and
age

» The resulting odds ration estimate is e~ 0?4 = 0.79

» a one month difference in age is associated with a 21%
reduction in the odds of being breastfed (older to younger)
among children of the same sex of the same age

» The 95% for the true sex adjusted odds ratio for age is
(7031, e7017) — (0.73,0.84)



Example 1: Presentation of finding

> In research articles, frequently a single table of unadjusted and
adjusted associations is reported (for non-randomized studies)

Table 1: Logistic Regression Results for Predictors of Breast Feeding
Odds Ratio (95% Cl)

Predictor Unadjusted Adjusted
Sex
female 1 1
male 1.02 (0.55, 1.90) 1.30(0.61, 2.82)
age (months) 0.79(0.73-0.84) 0.79(0.73,0.84)
Baseline Odds 1,333

(exponetiated intercept)



Example 1: Additional Predictors

» Some other additional predictors of interest include:
» maternal parity

No previous children 17%
1 previous child 16%

2 previous children 14%

3 previous children 15%
> 3 previous children 14%

vVvyVvYyYVvyy

» Maternal age: mean = 27.7 years, range 17-43 years



Example 1: Presentation of finding

» The results of several models are presented

Table 1: Logistic Regression Results for Predictors of Breast Feeding

0dds Ratio (95% CI)
Predictor
Sex
female

male
age (months)

Maternal Parity
No previous children
1 previous child
2 previous children
3 previous children
>=4 previous children

Mother's Age (years)

Baseline Odds
(exponetiated intercept)

Unadjusted

1
1.02(0.55, 1.90)

0.79(0.73-0.84)

p=0.40
1
0.38(.12,1.22)
0.50(0.15, 1.69)
0.34(0.11, 1.10)
0.61(0.18, 2.08)

0.99 (0.94, 1.04)

Model 2

1
1.30(0.61, 2.82)

0.79(0.73,0.84)

1,333

Model 3

1
1.23(0.54,2.77)

0.77(0.72,0.83)

=t
1
0.23(0.05, 1.01)
0.36 (0.08, 1.54)
0.18 (0.04, 1.05)
0.61(0.18,2.08)

4,932

0.12

Model 4

1
1.22(0.54,1.77)

0.77 (0.71,0.83)

p=
1
0.24(0.05,1.14)
0.39(0.08,1.83)
0.21(0.04,1.04)
0.75(0.14,4.2)

0.98 (0.89,1.08)

7,071

0.11



Example 1: Presentation of finding

» The results of several models are presented

Table 1: Logistic Regression Results for Predictors of Breast Feeding
Odds Ratio (95% Cl)

Predictor Model 4
female 1
male 1.22 (0.54,1.77)
age (months) 0.77 (0.71, 0.83)
No previous children 1
1 previous child 0.24 (0.05, 1.14)
2 previous children 0.39 (0.08, 1.83)
3 previous children 0.21 (0.04, 1.04)
>=4 previous children 0.75(0.14,4.2)
Mother's Age (years) 0.98 (0.89, 1.08)

Baseline Odds 7,071



Example 2: Predictors of Obesity

Data from 2009-10 NHANES
Sample of over 6,400 US residents, 16-80 years old
HDL levels

mean: 52.4 mg/dL

sd: 16 mg/dL

range: 11-14

obesity: 15% of the sample (by BMI)

v Vv

v
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Other potential predictors include sex, age (yrs) and marital
status



Example 2: Predictors of Obesity

Data from 2009-10 NHANES
Sex distribution:
» 49% F, 51% M

v

v

v

Age (years): 46.3 years, range: 16 to 80
Marital status

Married 52%
Widowed 9%
Divorced 11%
Separated 3%
Never Married 18%
Living together 7%

v
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Example 2: Predictors of Obesity

» Obesity/age relationship as from a lowess plot (it shows
unadjusted association)

Natural In Odds of Obesity as a Function of Age
2009-10 NHANES

T T T T
20 40 60 80
Age (Years)



Example 2: Logistic regression

Table 1: Logistic Regression Results for Predictors of Obesity

Odds Ratio (95% Cl)
Predictor

HDL (mg/dL)
Males

Age Category
<30vyears
30-46 years
46-62 years
>= 62 years

Marital Status
Married
Widowed
Divorced
Separated
Never Married
Living together

Baseline Odds
(exponentiated intercept)

Unadjusted

0.967 (0.961, 0.973)

1.75(1.52,2.01)

p<0.001
1

1.79 (1.46, 2.19)

1.82 (1.49, 2.24)

1.47 (1.19, 1.81)

p=0.69
1

1.10(0.85, 1.41)

1.13(0.90, 1.42)

1.18(0.81,1.73)

0.99 (0.81,1.20)

0.91 (0.69, 1.20)

Model 2

0.956 (0.951, 0.962)

2.63(2.25,3.07)

p<0.001
1

1.76 (1.42,2.17)

1.95 (1.57,2.43)

1.66 (1.34,2.07)

Model 3
0.958 (0.952, 0.964)
2.61(2.22,3.08)

p<0.001
1

1.62 (1.25,2.10)

1.79 (1.37,2.36)

1.53 (1.15, 2.05)

1
1.05(0.79, 1.41)

1.19 (0.94, 1.50)

(
(0.
116(0 78, 17z|
(
0.92 (0.68, 1.24)

0.58




Example 2: Logistic regression

Table 1: Logistic Regression Results for Predictors ¢

Odds Ratio (95% Cl)

Predictor
HDL ( mg/dL)
Males

Age Category
<30vyears
30-46 years
46-62 years
>= 62 years

Marital Status
Married
Widowed
Divorced
Separated
Never Married
Living together

Baseline Odds

Model 2
0.956 (0.951, 0.962)
2.63(2.25,3.07)

p <0.001
1

1.76 (1.42,2.17)

1.95 (1.57, 2.43)

1.66 (1.34,2.07)



Basics of Model Selection and Estimating
Outcomes



Outline

» Understand the “linearity assumption” as it applies to multiple
logistic regression

» Explain different strategies for picking a final (multivariate)
regression model among candidates

=777 Use the results of multivariate logistic regression models to
compare groups who differ by more than one predictor X, and
estimate proportions/probabilities for groups given their Xs values



Method of Estimation

» The method used to estimate the regression coefficients in
multivariate logistic regression is called the method of
maximum likelihood

» ame as that used with simple logistic
» The estimates of the slopes (ﬁAl,Bg, .. ,@p) and intercept &

are the values that make the observed data most likely among
all choices of values for & and (51, B2, ..., Bp)

» This method is computationally intensive and is best handled
by computer



Linearity assumption

> The linearity assumption assumes that the adjusted
relationship being estimated beween the In(odds of Y = 1) for
a binary outcome Y and each predictor X; is linear in nature

» this is an issue for continuous predictors, not for binary or
multi-categorical predictors



Choosing a Final Model

» When faced with potentially many possible predictors, how to
come up choosing the best model?

» Model building and selection is a combination of science,
statistics, and the research goal(s)



Choosing a Final Model

> If goal is to maximize precision of adjusted estimates:

» Keep only those predictors that are statistically significant in the
final model
> If goal is to present results comparable to results of similar
analyses presented by other researchers (on similar or different
populations)

» Present at least one model that includes the same predictor set
as the other research

> If goal is prediction ... >- this is a slightly more complicated
story



Example 1: Prediction with Regression Results

> Recall the models for looking at predictors of breast feeding
status in Nepali children, 12-36 months

Table 1: Logistic Regression Results for Predictors of Breast Feeding
Odds Ratio (95% Cl)

Predictor Unadjusted Adjusted
Sex
female 1 1
male 1.02 (0.55, 1.90) 1.30 (0.61, 2.82)
age (months) 0.79(0.73-0.84) 0.79 (0.73,0.84)
Baseline Odds 1,333

(exponetiated intercept)



Example 1: Prediction with Regression Results

_ Adjusted model

In (1p> =7.2+0.27 x sex — 0.24 x age

» Question: estimate the probability (proportion of) that female
children 22 months old are breast fed



Example 1: Prediction with Regression Results

Predictor Adjusted
Sex
female 1
male 1.30(0.61, 2.82)
age (months) 0.79(0.73,0.84)
Baseline Odds 1,333

(exponetiated intercept)



Example 1: Prediction with Regression Results

» Possible way to present the associated estimated probabilities
from the logistic regression results

Estimated Probabiliy of Being Breast Fed by Age and Sex
Sample of 192 Nepali Children, 12-36 Months

T T T T T T
10 15 20 25 30 35
Age of Child (months)

Male === Female



Example 1: Prediction with Regression Results

_ Adjusted model

In (1p> =7.2+0.27 x sex — 0.24 x age

» Estimate the odds ratio of being breast fed for female (sex =
0) children 22 months compared to male (sex = 1) children ,
19 months old

» F, 22 months: In(odds) = 7.2 —0.24 x 22 4+ 0.27 x 0 = 1.92
» M, 19 months: In(odds) = 7.2 —0.24 x 19+ 0.27 x 1 = 2.91



Example 2: Predictors of Obesity: NHANES

Table 1: Logistic Regression Results for Predictors of Obesity

0Odds Ratio (95% CI)
Predictor

HDL ( mg/dL)
Males

Age Category
<30 years
30-46 years
46-62 years
>= 62 years

Marital Status
Married
Widowed
Divorced
Separated
Never Married
Living together

Baseline Odds
(exponentiated intercept)

Unadjusted
0.967 (0.961, 0.973)
1.75 (1.52,2.01)

p<0.001
1

1.79 (1.46, 2.19)

1.82 (1.49, 2.24)

1.47 (119, 1.81)

p=0.69
1

1.10(0.85, 1.41)

1.13(0.90, 1.42)

1.18(0.81,1.73)

0.99(0.81,1.20)

0.91(0.69, 1.20)

Model 2

0.956 (0.951, 0.962)

2.63(2.25,3.07)

p<0.001
1

1.76 (1.42,2.17)

1.95 (1.57, 2.43)

1.66 (1.34, 2.07)

Model 3
0.958 (0.952, 0.964)
2.61(2.22,3.08)

p<0.001
1

162 (1.25,2.10)

1.79 (137, 2.36)

1,53 (1.15, 2.05)

1
1.05(0.79, 1.41)
1.14(0.89, 1.44)
116 (0.78,1.72)
1.19(0.94, 1.50)
0.92 (0.68,1.24)

0.58



Example 2: Predictors of Obesity: NHANES

» In(odds of being obese) =
—0.5 — 0.045X1 + 0.56X35 4 0.67X3 + 0.56X4 + 0.97X5

Table 1: Logistic Regression Results for Predictors ¢

0Odds Ratio (95% Cl)

Predictor Model 2
HDL ( mg/dL) 0.956 (0.951, 0.962)
Males 2.63 (2.25,3.07)
Age Category p<0.001
<30vyears 1
30-46 years 1.76 (1.42,2.17)
46-62 years 1.95 (1.57, 2.43)
>=62 years 1.66 (1.34,2.07)

Marital Status
Married
Widowed
Divorced
Separated
Never Married



Example 2: Prediction of Obesity

» Estimate the proportion (probability) of 50 year old males with
HDL of 80 mg/dL who are obese

In(odds of being obese)
=—-05-0.045x80+0.56 x1+4+0.67 x1+0.56x0+4+0.97 x0
— .46

» Thus

odds = e~2466 — (.09

from which:

0.09

— — g 130
~ 1+0.09 8:3%



Example 2: Prediction of Obesity

Predicted Probability of Obesity for Males Predicted Probability of Obesity for Females
By HDL levels and Age By HDL levels and Age
© ©
< <
0 50 100 150 0 50 100 150
HDL HDL

—— <30 years

30-44 years — <30 years 30-44 years
——— 4462years = >= 62 years m— 4462 years e = 62 years




Summary

» Multivariate logistic regression results can be used to estimate
probabilities (proportions) of binary outcomes for a given
subset in a population given their predictor values

» Multivariate logistic results can be used to estimate odds ratios
between groups who differ by more than one characteristic
(predictor)

» Confidence intervals can be estimated for each of the above



Tying it All Together: Examples of Logistic
Regression and Some Loose Ends
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