
SURVIVAL ANALYSIS 
AND COX REGRESSION



LEARNING OBJECTIVES

 Upon the completion of this lecture, you will be able to:

 Understand when using survival analysis

 Compute Kaplan-Meier curves

 Cox Regression Model









PROGRESSION FREE SURVIVAL

 Progression-free survival refers to the time from randomisation or initiation of treatment to the occurrence of 
disease progression or death

 Disease progression is defined by the Response Evaluation Criteria in Solid Tumors (RECIST) as an increase 
in the sum of maximum tumour diameters of at least 20%, the development of any new lesions, or an 
unequivocal increase in non-measurable malignant disease



TIME-TO-EVENT 

VARIABLE

 Between July 25, 2016, and 
November 12, 2018, 396 
patients were screened 

 290 patients (149 men [51.4%]; 
median age, 54 years [range, 25-
90 years]) were randomized

 ensartinib, 143 patients; 
crizotinib, 147 patients
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TIME-TO-EVENT VARIABLE

 Patient 1 is a complete observation

 Patient 2 and 3 are censored observations

 partial information about the progression free 
survival time

 Patient 2 had no progression when he/she 
withdrew (lost follow-up)

 we know that he/she survived 26 months on the 
study clock

 Patient 3 survived 1 year on the study clock



TIME-TO-EVENT VARIABLE





RATE OF PROGRESSION

 Suppose we want to compute the rate of the 

progression

 PFS is a binary outcome: 1 event out of 3 patients: 

1/3 = 33%

 the time at risk of progression in study period 
varies from person to person

 If we compute the rate as 1 event out of 3 
patients, we weight equally all 3 patients, as we 
had observed them for the same time



RATE OF PROGRESSION

 Suppose we want to compute the rate of the 

progression

 What about reporting the average time?


9+22+12

3
= 14.3 months

 since only 1 of the 3 patients had progression 
while in the study, this average is NOT capturing 
average time to progression since enrollment, but 
only average follow-up time



INCIDENCE RATE OF PROGRESSION

 Incidence Rate takes total number of progression that 
occurred and divide by the total amount of follow-time 
contributed by the patients:

𝐼𝑅 =
1

9 + 22 + 12
=
1 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

43 𝑚𝑜𝑛𝑡ℎ𝑠



EXAMPLE 2: INFANT

MORTALITY

 Maternal Vitamin Supplementation
and Infant Mortality

 Katz J,West K et al. Maternal low-
dose vitamin A or beta-carotene 
supplementation has no effect on fetal loss
and early infant mortality: a randomized
cluster trial in Nepal. 

American Journal of Clinical Nutrition
(2000) Vol. 71, No. 6,1570-1576



EXAMPLE 3:

INFANT

MORTALITY

 Maternal Vitamin Supplementation and Infant

Mortality

 A total of 43,559 women were enrolled; 15,892

contributed 17,373 pregnancies and 15,997 live

born infants to the trial

 Total follow-up time: 1,627,725 days

 Total deaths in (6 month) follow-up period: 644



EXAMPLE 3: INFANT MORTALITY

ˆIR =

► Infant mortality rate in 6-months post birth

644deaths

1,627,725
≈ 0.0004 deaths/day

• 0.0004 deaths/day × (365days/1year) = 
0.146deaths/year

IR estimate per (1 
person) year

• 0.146deaths/year × 500 = 73 deaths/(500 
years)

IR estimate per 500 
(persons) years



COMPARING
NUMERICALLY

TIME TO EVENT
DATA BETWEEN

TWO (OR MORE)
SAMPLES
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EXAMPLE 3: INFANT

MORTALITY



MORTALITY ON
DIALYSIS, RACE AND
AGE:  EXAMPLE 4

 Mortality on Dialysis, Race and

Age:

 Kucircka L et al.Association of 

RaceandAgeWith Survival 

Among Patients Undergoing

Dialysis. Journal of the

American Medical Association

(2011) Vol. 306, No. 6, 620-

626



SMORTALITY ON
DIALYSIS, RACE AND
AGE:  EXAMPLE 4

 IRR estimates for mortality in 

follow-up period (black versus 

white), presently separately across 

age groupings (adjusted), presented

on log scale



SUMMARY

 The incidence rate ratio (IRR, estimated by IRˆR) can be used to quantify differences in the time to event 
information from two samples

 The incidence rate ratio can be thought of as a relative risk measure that incorporates differences in subject 
follow up times into the comparison



CONFIDENCE INTERVAL FOR INCIDENCE RATE RATIOS



OUTLINE

 Estimate and interpret a 95% (or other level) confidence interval for an incidence rate ratio comparing time-to-
event outcomes between two populations



PBC TRIAL
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PBC TRIAL



HOW TO GET
CONFIDENCE 
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HOW TO GET 
CONFIDENCE 
INTERVALS



HOW TO GET  95% 

CI: PBC TRIAL



INTERPRETATION



HOW TO GET 95% CI: ART 
AND PARTNER TO 
PARTNER HIV
TRANSMISSION
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HOW TO GET 95% CI: ART 
AND PARTNER TO PARTNER 
HIV
TRANSMISSION



INTERPRETATION















KAPLAN-MEIER CURVES

 Suppose we have data on 12 patients (hypothetical

data):

 2  3+  6  6  7+  10  15+  15  16  27  30  30+

 times are in months, censoring is indicated by 
a +

 The curve will start at 1 at time 0, and will not 
change until the first event time

 The curve will only change at event times

 At each event time, the total number of persons at 
risk for progression are those who haven’t neither  
had the progression nor the censoring



KAPLAN-MEIER CURVES

 At each time t, the PFS probability is estimated by:

 𝑆 𝑡 =
𝑁 𝑡 −𝐸(𝑡)

𝑁(𝑡)
× 𝑆(𝑡 − 1)

 PFS probability is given by the product of 

 probability to survived until time t-1: 𝑆(𝑡 − 1)

 The probability to survived time t: 
𝑁 𝑡 −𝐸(𝑡)

𝑁(𝑡)

 The curve will start at 1 at time 0, and will not 
change until the first event time

 The curve will only change at event times

 At each event time, the total number of persons at 
risk for progression are those who haven’t neither  
had the progression nor the censoring



KAPLAN-MEIER CURVES

 Suppose we have data on 12 patients (hypothetical

data):

 2  3+  6  6  7+  10  15+  15  16  27  30  30+

 times are in months, censoring is indicated by 
a +

 The curve will start at 1 at time 0, and will not 
change until the first event time

 𝑆 0 = 1

 The curve will only change at event times

 The first step is at month 2 (first event)

 𝑆 2 =
12−1

12
=

11

12
≈ 0.92

 What month is the next step?



KAPLAN-MEIER CURVES

 Suppose we have data on 12 patients (hypothetical
data):

 2  3+  6  6  7+  10  15+  15  16  27  30  30+

 times are in months, censoring is indicated by 
a +

 The curve will start at 1 at time 0, and will not 
change until the first event time

 𝑆 0 = 1

 The curve will only change at event times

 The first step is at month 2 (first event)

 𝑆 2 =
12−1

12
=

11

12
≈ 0.92

 What month is the next step?

 𝑆 6 =
10−2

10
× 0.92 = 0.8 × 0.92 ≈ 0.74



KAPLAN-MEIER CURVES

 Suppose we have data on 12 patients (hypothetical data):

 2  3+  6  6  7+  10  15+  15  16  27  30  30+

 times are in months, censoring is indicated by a +

 The curve will start at 1 at time 0, and will not change until 
the first event time

 𝑆 0 = 1

 The curve will only change at event times

 The first step is at month 2 (first event)

 𝑆 2 =
12−1

12
=

11

12
≈ 0.92

 What month is the next step?

 𝑆 6 =
10−2

10
× 0.92 = 0.8 × 0.92 ≈ 0.73

 What month is the next step?

 𝑆 10 =
7−1

7
× 0.73 = 0.86 × 0.73 ≈ 0.63



KAPLAN-MEIER CURVES

 Suppose we have data on 12 patients (hypothetical

data):

 2  3+  6  6  7+  10  15+  15  16  27  30  30+

 times are in months, censoring is indicated by 
a +

Times No at risk No of 

events

2 12 1 0.92

6 10 2 0.73

10 7 1 0.63

15 6 1 0.52

16 4 1 0.39

27 3 1 0.26

30 2 1 0.13



KAPLAN-MEIER CURVES

Times No at risk No of 

events

2 12 1 0.92

6 10 2 0.73

10 7 1 0.63

15 6 1 0.52

16 4 1 0.39

27 3 1 0.26

30 2 1 0.13



COMPUTE KM ESTIMATE OF SURVIVAL FOR THE FOLLOWING DATA



COMPUTE KM ESTIMATE OF SURVIVAL FOR THE FOLLOWING DATA



T(months) N Event Censored S(t)

0 9 0 0 1

1 9 0 1 1

2 8 1 0

3 7 0 1

4 6 0 1

8 5 1 0

10 4 1 1

12 2 0 1

14 1 0 1

PRODUCT-LIMIT ESTIMATE



T(months) N Event Censored S(t)

0 9 0 0 1

1 9 0 1 1

2 8 1 0 (7/8)*1=0.875

3 7 0 1

4 6 0 1

8 5 1 0

10 4 1 1

12 2 0 1

14 1 0 1

PRODUCT-LIMIT ESTIMATE



T(months) N Event Censored S(t)

0 9 0 0 1

1 9 0 1 1

2 8 1 0 (7/8)*1=0.875

3 7 0 1 0.875

4 6 0 1 0.875

8 5 1 0

10 4 1 1

12 2 0 1

14 1 0 1

PRODUCT-LIMIT ESTIMATE



T(months) N Event Censored S(t)

0 9 0 0 1

1 9 0 1 1

2 8 1 0 (7/8)*1=0.875

3 7 0 1 0.875

4 6 0 1 0.875

8 5 1 0 (4/5)*0.875=0.70

10 4 1 1

12 2 0 1

14 1 0 1

PRODUCT-LIMIT ESTIMATE



T(months) N Event Censored S(t)

0 9 0 0 1

1 9 0 1 1

2 8 1 0 (7/8)*1=0.875

3 7 0 1 0.875

4 6 0 1 0.875

8 5 1 0 (4/5)*0.875=0.70

10 4 1 1 (3/4)*0.70=0.525

12 2 0 1

14 1 0 1

PRODUCT-LIMIT ESTIMATE



T(months) N Event Censored S(t)

0 9 0 0 1

1 9 0 1 1

2 8 1 0 (7/8)*1=0.875

3 7 0 1 0.875

4 6 0 1 0.875

8 5 1 0 (4/5)*0.875=0.70

10 4 1 1 (3/4)*0.70=0.525

12 2 0 1 0.525

14 1 0 1

PRODUCT-LIMIT ESTIMATE



T(months) N Event Censored S(t)

0 9 0 0 1

1 9 0 1 1

2 8 1 0 (7/8)*1=0.875

3 7 0 1 0.875

4 6 0 1 0.875

8 5 1 0 (4/5)*0.875=0.70

10 4 1 1 (3/4)*0.70=0.525

12 2 0 1 0.525

14 1 0 1 0.525

PRODUCT-LIMIT ESTIMATE



 Is there any statistically 

significant difference between 

the trial arms?



INTERPRETATION  Is DPCA better than pacebo? Is there a stastically significant difference?



OBJECTIVE



PBC TRIAL



LOG RANK TEST



LOG RANK TEST 

TECHNICAL



LOG RANK TEST PBC 

TRIAL



 Is there any statistically 

significant difference between 

the trial arms?

 We want to make hypothesis 

about PFS (true values) in the 

two treated populations

 𝐻0: 𝑆𝑇 𝑡 = 𝑆𝐶(𝑇)



 Is there any statistically 

significant difference between 

the trial arms?

 We want to make hypothesis 

about PFS (true values) in the 

two treated populations

 𝐻0: 𝑆𝑇 𝑡 = 𝑆𝐶(𝑇)

 Most popular test used to 

compare survival curves is the 

log-rank test



 Is there any statistically 

significant difference between 

the trial arms?

 We want to make hypothesis 

about PFS (true values) in the 

two treated populations

 𝐻0: 𝑆𝑇 𝑡 = 𝑆𝐶(𝑇)

 Most popular test used to 

compare survival curves is the 

log-rank test



 The mPFS in the ensartinib
group was statistically superior 
to that in the crizotinib group.

 25.8 months [range, 0.03-44.0 
months] vs 12.7 months [range, 
0.03-38.6 months] 

 log-rank P < .001



OTHER STATISTICAL TESTS

 Other tests are possible

 Gehan’s generalized Wilcoxon test

 Tarone-Ware test

 Peto-Peto-Prentice test

 Generally they give similar results, but emphasize different parts  of survival curve



LIMITATIONS OF KAPLAN-MEIER CURVES

 Mainly descriptive

 Doesn’t control for covariates

 Requires categorical predictors

 Cannot deal with time-dependent variables



COX 

REGRESSION 

MODEL



COX REGRESSION MODEL

 Hazard: risk at time t

 ℎ(𝑡)

 Risk/protective factor 𝑋1

 Experimental treatment vs Standard treatment

 Aim: to quantify the risk increase/reduction

associated to 𝑋1
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COX REGRESSION MODEL

 Hazard: risk at time t

 ℎ(𝑡)

 Risk/protective factor 𝑋1

 Experimental treatment vs Standard treatment

 Aim: to quantify the risk increase/reduction

associated to 𝑋1

 ℎ 𝑡 = 𝛽𝑋1
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 Hazard: risk at time t

 ℎ(𝑡)

 Risk/protective factor 𝑋1
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 Aim: to quantify the risk increase/reduction

associated to 𝑋1

 ℎ 𝑡 = 𝜆 𝑡 + 𝛽𝑋1
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COX REGRESSION MODEL

 Hazard: risk at time t

 ℎ(𝑡)

 Risk/protective factor 𝑋1

 Experimental treatment vs Standard treatment

 Aim: to quantify the risk increase/reduction

associated to 𝑋1

 log(ℎ 𝑡) = 𝜆 𝑡 + 𝛽𝑋1



COX REGRESSION MODEL

 Hazard: risk at time t

 ℎ(𝑡)

 Risk/protective factor 𝑋1

 Experimental treatment vs Standard treatment

 Aim: to quantify the risk increase/reduction associated to 𝑋1

 log(ℎ 𝑡 ) = 𝜆 𝑡 + 𝛽𝑋1

 𝜆 𝑡 is the risk in the standard treatment group

 𝛽 quantifies the risk increase/reduction in the experimental treatment 
group

 𝛽 > 0 risk increase

 𝛽 < 0 risk reduction



COX REGRESSION MODEL

 Hazard: risk at time t

 ℎ(𝑡)

 Risk/protective factor 𝑋1

 Experimental treatment vs Standard treatment

 Supponse we have a patient in the control group (𝑋1 = 0)

 log(ℎ 𝑡; 𝑋1 = 0 ) = 𝜆 𝑡

 Supponse we have a patient in the experimetal group (𝑋1 = 1)

 log ℎ 𝑡; 𝑋1 = 1 = 𝜆 𝑡 + 𝛽

 As we did for logistic regression model, compare the two patients

 log ℎ 𝑡; 𝑋1 = 0 − log ℎ 𝑡; 𝑋1 = 1 = 𝜆 𝑡 − (𝜆 𝑡 + 𝛽)
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COX REGRESSION MODEL

 Hazard: risk at time t

 ℎ(𝑡)

 Risk/protective factor 𝑋1
 Experimental treatment vs Standard treatment

 Supponse we have a patient in the control group (𝑋1 = 0)
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1)

 log ℎ 𝑡; 𝑋1 = 1 = 𝜆 𝑡 + 𝛽

 As we did for logistic regression model, compare the two 
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 Hazard: risk at time t
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= 𝛽



COX REGRESSION MODEL

 Hazard: risk at time t

 ℎ(𝑡)

 Risk/protective factor 𝑋1
 Experimental treatment vs Standard treatment

 Supponse we have a patient in the control group (𝑋1 = 0)

 log(ℎ 𝑡; 𝑋1 = 0 ) = 𝜆 𝑡

 Supponse we have a patient in the experimetal group (𝑋1 = 1)

 log ℎ 𝑡; 𝑋1 = 1 = 𝜆 𝑡 + 𝛽

 As we did for logistic regression model, compare the two patients

 log ℎ 𝑡; 𝑋1 = 0 − log ℎ 𝑡; 𝑋1 = 1 = 𝛽 ⟹ log(
ℎ 𝑡;𝑋1=0

ℎ 𝑡;𝑋1=1
) = 𝛽 ⟹

ℎ 𝑡;𝑋1=0

ℎ 𝑡;𝑋1=1
= exp 𝛽



COX REGRESSION MODEL

 Hazard: risk at time t

 ℎ(𝑡)

 Risk/protective factor 𝑋1
 Experimental treatment vs Standard treatment

 Supponse we have a patient in the control group (𝑋1 = 0)

 log(ℎ 𝑡; 𝑋1 = 0 ) = 𝜆 𝑡

 Supponse we have a patient in the experimetal group (𝑋1 = 1)

 log ℎ 𝑡; 𝑋1 = 1 = 𝜆 𝑡 + 𝛽

 As we did for logistic regression model, compare the two patients

 log ℎ 𝑡; 𝑋1 = 0 − log ℎ 𝑡; 𝑋1 = 1 = 𝛽 ⟹ log(
ℎ 𝑡;𝑋1=0

ℎ 𝑡;𝑋1=1
) = 𝛽 ⟹

ℎ 𝑡;𝑋1=0

ℎ 𝑡;𝑋1=1
= exp 𝛽



COX REGRESSION MODEL OR PROPORTIONAL HAZARDS 

REGRESSION MODEL

 Hazard: risk at time t

 ℎ(𝑡)

 Risk/protective factor 𝑋1

 Experimental treatment vs Standard treatment

 Supponse we have a patient in the control group (𝑋1 = 0)

 log(ℎ 𝑡; 𝑋1 = 0 ) = 𝜆 𝑡

 Supponse we have a patient in the experimetal group (𝑋1 = 1)

 log ℎ 𝑡; 𝑋1 = 1 = 𝜆 𝑡 + 𝛽

 As we did for logistic regression model, compare the two 
patients

 log ℎ 𝑡; 𝑋1 = 0 − log ℎ 𝑡; 𝑋1 = 1 = 𝛽 ⟹ log(
ℎ 𝑡;𝑋1=0

ℎ 𝑡;𝑋1=1
) = 𝛽 ⟹

ℎ 𝑡;𝑋1=0

ℎ 𝑡;𝑋1=1
= exp𝛽



HAZARD RATIO

 Hazard: risk at time t

 log(ℎ 𝑡 ) = 𝜆 𝑡 + 𝛽𝑋1

 𝐻𝑅 = exp𝛽



INTERPRETATION

 HR > 1: higher hazard (worse survival) associated with the risk factor

 HR < 1: lower hazard (better survival) associated with the risk factor (protective factor)

 HR = 1: no association between the hazard (and survival) and the risk factor



HAZARD RATIO

 Hazard: risk at time t

 log(ℎ 𝑡 ) = 𝜆 𝑡 + 𝛽𝑋1

 𝐻𝑅 = exp𝛽

 HR = 0.51

 Treatment with Ensartinib

is associated with a 49% 

reduction in the risk of 

progression



HAZARD RATIO

 Hazard: risk at time t

 log(ℎ 𝑡 ) = 𝜆 𝑡 + 𝛽𝑋1

 𝐻𝑅 = exp𝛽

 HR = 0.51

 Treatment with Ensartinib is 
associated with a 49% 
reduction in the risk of 
progression

 Since the 95%CI does not 
contain unity therefore the 
risk of progression is 
significantly lower in the 
Ensartinib group than in the 
Crizotinib group



CUMULATIVE 

INCIDENCE

 Association of Rivaroxaban vs 

Apixaban With Major Ischemic 

or Hemorrhagic Events in 

Patients With Atrial Fibrillation









METHODS

 Descriptive statistics were used to illustrate and compare general characteristics of the participants. The survival 
curves for NSCLC patients of different baseline ChE levels were drawn and compared by using Kaplan-Meier
method and the log-rank test. 

 Univariate and multivariate Cox proportional hazards models were used to evaluate the crude and adjusted 
associations between baseline serum ChE and the OS of NSCLC patients

 Variables that achieved a less strict significance (p < 0.10) in univariate analyses were included into the subsequent 
multivariate model.

 A two-tailed probability less than 0.05 was deemed statistically significant



METHODS

 Descriptive statistics were used to illustrate and compare general characteristics of the participants. The survival 
curves for NSCLC patients of different baseline ChE levels were drawn and compared by using Kaplan-Meier
method and the log-rank test. 

 Univariate and multivariate Cox proportional hazards models were used to evaluate the crude and adjusted 
associations between baseline serum ChE and the OS of NSCLC patients

 Variables that achieved a less strict significance (p < 0.10) in univariate analyses were included into the subsequent 
multivariate model.

 A two-tailed probability less than 0.05 was deemed statistically significant

 Schoenfeld's global and individual test were used to estimate time-varying covariance for the assumption of the 
Cox proportional hazard regression analysis



TABLE 1



K-M CURVES

 Overall Survival (OS)



UNIVARIABLE COX MODEL



UNIVARIABLE COX MODEL



MULTIVARIABLE (MULTIVARIATE) COX REGRESSION MODEL

 We want to estimate the effect of several risk factors on the hazard

 ℎ(𝑡) is the hazar of the event over time (outcome variable)

 𝑋1, X2, … , 𝑋𝑛 are risk factors

ln ℎ(𝑡) = 𝜆(𝑡) + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑛𝑋𝑛

ℎ1(𝑡) = 𝑃(𝑌 = 1, 𝑡|𝑋1 = 1 & 𝑋2 = 1,… , 𝑋𝑛 = 1)

ℎ0(𝑡) = 𝑃(𝑌 = 1, 𝑡|𝑋1 = 0 & 𝑋2 = 1,… , 𝑋𝑛 = 1)

ln ℎ1 𝑡 - ln ℎ0 𝑡 = 𝜆(𝑡) + 𝛽1 + 𝛽2𝑋2 +⋯+ 𝛽𝑛𝑋𝑛 − 𝜆 𝑡 + 𝛽2𝑋2 +⋯+ 𝛽𝑛𝑋𝑛



MULTIVARIABLE (MULTIVARIATE) COX REGRESSION MODEL

 We want to estimate the effect of several risk factors on the hazard

 ℎ(𝑡) is the hazar of the event over time (outcome variable)

 𝑋1, X2, … , 𝑋𝑛 are risk factors

ln ℎ(𝑡) = 𝜆(𝑡) + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑛𝑋𝑛

ℎ1(𝑡) = 𝑃(𝑌 = 1, 𝑡|𝑋1 = 1 & 𝑋2 = 1,… , 𝑋𝑛 = 1)

ℎ0(𝑡) = 𝑃(𝑌 = 1, 𝑡|𝑋1 = 0 & 𝑋2 = 1,… , 𝑋𝑛 = 1)

ln ℎ1 𝑡 - ln ℎ0 𝑡 = 𝜆(𝑡) + 𝛽1 + 𝛽2𝑋2 +⋯+ 𝛽𝑛𝑋𝑛 − 𝜆 𝑡 + 𝛽2𝑋2 +⋯+ 𝛽𝑛𝑋𝑛

exp𝛽1 is the HR of 𝑋1 adjusted by 𝑋2, … , 𝑋𝑛
We are comparing two group of patients that share the same risk factors 𝑋2, … , 𝑋𝑛 and differ only in 𝑋1



UNIVARIABLE COX MODEL



YET ANOTHER 

EXAMPLE



VARIABLES

 Age

 Men

 Race

 Charlson Comorbidity Index

 Vision/Hearing deficits

 mBDRS scale

 APACHE score

 SOFA score

 ICU admission diagnosis



DELIRIUM IN ICU 

AND MORTALITY 



STATISTICAL 

ANALYSIS

 Six-month mortality, overall hospital length of stay, and 
length of stay after first ICU discharge were analyzed 
using time-to-event analyses

 For 6-month mortality analyses, patients were 
censored at the time of last contact alive or at 6 
months from enrollment, whichever was first. 

 Censoring for length-of-stay analyses occurred at time 
of hospital death

 Kaplan-Meier survival curves were used for graphical 
presentation of time to death or hospital discharge, and 
log-rank statistics were used to assess difference by 
overall delirium status

 Cox proportional hazard regression models were used to 
obtain hazard ratios (HRs) of death up to 6 months from 
enrollment and HRs of remaining in hospital



RESULTS

 Six-month mortality, overall hospital 
length of stay, and length of stay after 
first ICU discharge were analyzed using 
time-to-event analyses

 For 6-month mortality analyses, 
patients were censored at the 
time of last contact alive or at 6 
months from enrollment, 
whichever was first. 

 Censoring for length-of-stay 
analyses occurred at time of 
hospital death

 Kaplan-Meier survival curves were 
used for graphical presentation of time 
to death or hospital discharge, and 
log-rank statistics were used to 
assess difference by overall delirium 
status
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