Methods for meta-analysis in medical research

Aurelio Tobias Spanish Council for Scientific Research (CSIC)

Outline

- Introduction to meta-analysis
- Fixed vs. random effects models
- Between-study differences
- Meta-analysis in practice

What is meta-analysis?

- Meta-analysis is "the statistical analysis of a large collection of analysis results from individual studies for the purpose of integrating the findings" (Glass 1976)
- A meta-analysis is basically a way of calculating an average effect

Usual meta-analysis slang

Statistical analysis. We estimated a pooled RE with 95% CI based on fixed- and random-effects models depending on the heterogeneity of the analysis. Statistical heterogeneity among studies included in the meta-analysis was assessed using the Q (10) and I² statistics (11).

Where to use meta-analysis?

- Systematic reviews
 - Identification and evaluation of all the available relevant scientific evidence
 - Meta-analysis may be appropriate to combine the estimates of studies included in the systematic review

Where to use meta-analysis?

- Systematic reviews
 - Identification and evaluation of all the available relevant scientific evidence
 - Meta-analysis may be appropriate to combine the estimates of studies included in the systematic review
- Multi-centre studies
 - Each participating centre analyses its own individual data under the same (or not) protocol
 - Meta-analysis may be appropriate to combine the estimates reported from each study-centre

Why do a meta-analysis?

- Objectives
 - To increase statistical power and precision
 - To assess consistency of results
 - To answer questions not comprised by the individual studies

Views

Synthetic view to summarise study results

Analytic view to identify differences between study results

Summarized data

- Effect size
- i) Binary outcome
 - Odds Ratio (OR)
 - Risk Ratio (RR)
 - Risk Difference (RD)
- ii) Continuous outcome
 - Mean Difference (D)

Variability
i) 95% CI (low, upp)
ii) Standard error (se)
iii) Variance (s²)

Converting between scales
 95% CI = effect size ± 1.96 × se
 se = (upp - low)/(2 × 1.96)
 s² = se × se

Binary outcome

	Out	come		
Group	Yes	No	_	P _(yes)
Treat.	а	b		a/(a+b)
Control	С	d	-	c/(c+d)

- Absolute risk (symmetric scale)
 - DR = (a/(a+b)) (c/(c+d))
- Relative risk (asymmetric scale)
 - **RR** = (a/(a+b)) / (c/(c+d))

• Binary outcome

	Out	come		
Group	Yes	No	_	Odds _(yes)
Treat.	а	b		a/b
Control	С	d	-	c/d

- Absolute risk (symmetric scale)
 - **DR** = (a/(a+b)) (c/(c+d))
- Relative risk (asymmetric scale)
 - **RR** = (a/(a+b)) / (c/(c+d))
 - **OR** = (a/b) / (c/d)

Binary outcome

	Out	come
Group	Yes	No
Treat.	а	b
Control	С	d

- Absolute risk (symmetric scale)
 - **DR** with $s_{DR}^2 = (ab/(a+b)^3) (cd/(c+d)^3)$
- Relative risk (asymmetric scale)
 - **RR** with $s_{\log(RR)}^2 = (1/a) (1/(a+b)) + (1/c) (1/(c+d))$
 - **OR** $s_{\log(OR)}^2 = (1/a) + (1/b) + (1/c) + (1/d)$

Continuous outcome

		Outcome	2
Group	n	mean	(sd)
Treat.	n ₁	m ₁	(s ₁)
Control	n ₂	m ₂	(s ₂)

- Mean difference
 - $D = m_1 m_2$ with $s_D^2 = ((n_1 1)s_1^2 + (n_2 1)s_2^2)/(n_1 + n_2 2)$
- Standardized mean difference
 - $d = (m_1 m_2)/s$ with $s_d^2 = (n_1 + n_2)/(n_1 n_2) + d^2/2(n_1 + n_2 2)$

and $V((n_1-1)s_1^2+(n_2-1)s_2^2)/(n_1+n_2-2)$

Fixed effects model

Assumes homogeneity of effects

 $H_0: y_1 = y_2 = \dots = y_k$

Meta-analysis pooled estimate

$$\hat{\theta} = \sum w_i y_i / \sum w_i$$
 with $s_{\hat{\theta}}^2 = 1 / \sum w_i$

- With weights as $w_i = 1/s_i^2$

- Inverse variance weight method (Cochran 1937)

Random effects model

- Assumes that the treatment effect in each study is randomly distributed across studies, with a given mean and variance (τ²)
- Meta-analysis pooled estimate

$$\widehat{\mu} = \sum w_i^* y_i / \sum w_i^* \qquad \text{with } s_{\widehat{\mu}}^2 = 1 / \sum w_i^*$$

- With weights as $\mathbf{w_i}^* = 1/(s_i^2 + \tau^2)$
- DerSimonian & Laird's method (1986)

- **Testing** for heterogeneity
 - H₀: $y_1 = y_2 = ... = y_k$

$$\mathbf{Q} = \sum \mathbf{w}_{i} \left(\mathbf{y}_{i} - \widehat{\boldsymbol{\theta}} \right)^{2} \sim \chi_{k-1}^{2}$$

 The test has low power when there are few studies, thus, the p-value is difficult to interpret

- Testing for heterogeneity
 - H₀: $y_1 = y_2 = ... = y_k$

$$Q = \sum w_i \left(y_i - \widehat{\theta} \right)^2 \sim \chi^2_{k-1}$$

 The test has low power when there are few studies, but high when there are many, so the p-value is difficult to interpret

- **Quantifying** heterogeneity
 - Based on Q s

$$I^2 = \frac{Q - (k - 1)}{Q} \times 100\%$$

- Proportion of total variability explained by heterogeneity
- Cut-off values of 25%, 50%
 and 75% might be considered as low, moderate, high and very high heterogeneity, respectively

 Is the variation in the *true* effect which may be shown in more observed variation than expected by chance

- Is the variation in the *true* effect which may be shown in more observed variation than expected by chance
- Heterogeneity should not be ignored, it must be explained
- Studies are conducted in different places, times and populations, leading to different between-study estimates

Causes of heterogeneity

1) **Study** characteristics

- Variations in the study designs
- Development of studies
- Attrition
- Methodological (statistical) heterogeneity due to bias

2) **Population** characteristics

- Type of participants
- Temporal/geographical settings
- Treatment (or exposure) and outcome measures
- Clinical heterogeneity due to biological diversity

Subgroup meta-analysis

• Synthetic vs. analytic views

- Stratified meta-analysis by study/population characteristics
- Clear definitions of subgroups is essential
- Identify homogeneity within each subgroup, but heterogeneity between subgroups

Meta-analysis as a linear model

Subgroup meta-analysis

• Synthetic vs. analytic views

Meta-regression

• Synthetic vs. analytic views

- Weighted random effects linear regression model

 $y_i = \mu + \beta x_i + \delta_i + e_i$

y_i is the *i*-study effect size
x_i is a covariate for a given
study/population
characteristic

 Explain great part of heterogeneity and the remaining as residual heterogeneity

[y] log(RR)	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
[x] group_B cons	.2058966 .3982895	.0862307 .0628281	2.39 6.34	0.017 0.000	.0368874 .2751487	.3749057
oup_A: exp(0.	3982895) =	1.49				

Limitations

- Small number of studies low statistical power
- Observational relationship *between* studies confounding bias
- Definition of sub-groups and use of aggregated covariates information bias
- Too many sources of methodological and clinical heterogeneity – interpretation bias

Summary

- Simple statistical basis for meta-analysis
 - Homogeneity of effects assumption
 - Weighted mean
- In case of heterogeneity between studies
 - The fixed effects model is clearly inappropriate ... but the random effects models is inappropriate too
 - Heterogeneity should not be ignored, must be explained, but avoid over-interpretation of findings

Further readings

Borestein M, Hedges LV, Higgins JPT, Rothstein HR.
 Introduction to Meta-analysis (mainly Chapters 4, 5, 11, 12, 13, 16, 19 and 20). Wiley, 2009

 Schwarzer G, Carpenter JR, Rücker G. Metaanalysis with R (mainly Part II). Springer, 2015

