
3 Identification based on the “recursiveness”

assumption

Following CEE (2000), the systematic component of monetary policy is de-

fined by assuming that in any period  monetary policymakers set the value

of a policy instrument  as a (linear) function of the variables in their infor-

mation set Ω, thereby following a feedback rule of the form:

 = (Ω) +  



where  

 represents the monetary policy shock (with  normalized to have

unit variance) and () is the monetary policy feedback rule. The information

set Ω contains contemporaneous and lagged variables to which monetary

authorities react when setting the policy instrument.

The structural model is then specified as:

A

⎛⎝ Y


X

⎞⎠ = C()

⎛⎝ Y−1
−1
X−1

⎞⎠+B
⎛⎝ v


v

⎞⎠
where Y contains 1 non-policy variables, and X contains 2 policy indica-

tors.

The identification scheme proposed by CEE is based on the following

assumptions:

1. when setting  monetary authorities do not see the values of the vari-

ables in X;

2. the monetary policy shock  is orthogonal to the non-policy variables

in Y.

These two (sets of) assumptions imply the following structure of contem-

poraneous relations among the variables:

A =

⎛⎜⎜⎜⎝
a 
(1×1)

0
(1×1)

0
(1×2)

a
(1×1)

1
(1×1)

0
(1×2)

a
(2×1)

a
(2×1)

a
(2×2)

⎞⎟⎟⎟⎠
Assumption (1) motivates the zero block in the central row of A, so that the

policy rule is specified as:

 = (YY−1 Y−X−1 X−) +  


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where contemporaneous and lagged (up to  lags) values of the non-policy

variables Y and only lagged values of the variables in X enter the policy

rule. The two zero blocks in the upper 1-row submatrix of A are motivated

by assumption (2): the monetary policy shock  does not affect (contem-

poraneously) the variables in Y. The zero 1-element vector in the middle

rules out any direct effect on the macroeconomic variables, whereas the other

1× 2 zero block rules out any indirect effect of 

 on Y through the (con-

temporaneous) effect on X, measured by the elements in a. In addition,

matrix B is assumed diagonal with the standard deviations of the structural

disturbances in v on the diagonal.

The assumptions on A imply the following “recursive” structure on the

model:

Y

predetermined

variables

−→ 
policy

instrument

−→ X

variables directly

affected by policy

In the CEE empirical implementation of this identification strategy, Y con-

tains goods market variables (output, prices, commodity price index),  is

either the Fed funds rate or the quantity of non-borrowed bank reserves,

and the variables in X are money market aggregates (bank reserves and

the money stock). In summary, this identification scheme is based on the

existence of a set of predetermined variables relative to the policy shock, and

on the assumption that the only contemporaneous variables the Fed looks at

when setting the policy instrument are the predetermined variables in Y.

Under this “recursiveness” assumption the monetary policy shock  is

identified by a simple OLS regression of the policy instrument on the pre-

determined variables (and lags of Y and X). However, CEE show that the

recursiveness assumption is not sufficient to identify all elements of matrixA

(and B), but is sufficient to identify the dynamic response (impulse response

functions, IRF) of all variables in the system to the monetary policy shock

. In particular, there is a whole family of matrices A (and B) consistent

with the recursiveness assumption and such that Σ = A−1BB0A−10 (given
the assumption that (vv

0
) = I).2 All those matrices generate the same

IRF to a policy shock . If A is chosen to be lower triangular, then the IRF

2Note that matrix A0 in CEE (2000) corresponds to B
−1A in our notation:

B−1A| {z }
A0

u = v

Matrix B−1 is simply a diagonal matrix with the reciprocal of the standard deviation of
each structural disturbance on the main diagonal.
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of all variables to  is invariant to the ordering of variables in Y and X (but

the IRF of all variables to the non-policy shocks are sensitive to the ordering

of variables in Y and X).

The early   studies of the monetary policy mechanism, adopting sim-

ple recursive (in many cases Choleski) identification schemes on a limited

number of endogenous variables produced a series of results that were incon-

sistent with a plausible interpretation of how monetary policy works. Refine-

ments of the identification strategy (or the adoption of a different approach,

i.e. the “semi-structural” approach to be discussed below) provided at least

partial solutions to the puzzles. In particular, two puzzles emerged from the

empirical literature (mainly applied to US data):

1. the “price puzzle”, namely the empirical result of a restrictive mon-

etary policy shock leading to an increase (instead of a decrease) of the

price level

possible cause: misspecification of the monetary policy rule (since

the central bank can act on the basis of more information than is

captured by the few variables included in the  )

solution: extend the   to include proxies for expected inflation

(e.g. a commodity price index), that can capture the additional

information of the monetary policymaker

2. the “liquidity puzzle”, namely the absence of an impact fall of inter-

est rates due to expansionary policy shocks

possible cause: confusion between money supply and money de-

mand disturbances

solution: more careful modelling of the money market (on which

monetary policy actions have their first impact effects) to sepa-

rately identify supply and demand shocks. An example of this is

the adoption of the “semi-structural” approach to identification

of the monetary policy disturbance.
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4 The “semi-structural” approach

This approach (introduced by Bernanke and Mihov, QJE 1998, henceforth

BM) focuses on the policy block of the system P, using a standard model for

the market of US commercial bank reserves (appropriate to the institutional

setting prevailing until the end of the 1990s) and the Fed’s operating pro-

cedures. Behavioral relationships among innovations in the relevant reserve

aggregates and interest rates are specified as follows (with : total reserves;

: borrowed reserves; : nonborrowed reserves;  : Fed funds rate;

time subscripts ignored):

 = − +  (4)

 = ( − ) +  (5)

 =  +  +  (6)

where  denotes innovations to the Fed discount window rate and, given

the very high predictability of discount rate changes, will be assumed equal

to zero, and the equation for the supply of nonborrowed reserves (6) captures

the behavior of the Fed (potential reaction to the total reserves demand shock

, and to the borrowed reserves demand shock , plus the policy shock ).

This set of relations among   innovations relies on a simple structural

model of the US money market where banks’ reserve demand and reserve sup-

ply interact to determine the (overnight) Federal Funds ( ) rate in equi-

librium, denoted by  ∗ in Figure 1 below. Total reserves () demand is
negatively related to the  market rate, reflecting the opportunity cost for

banks of keeping reserves at the Federal Reserve (Fed). A stochastic distur-

bance  is added to capture variations in income and other factors inducing

fluctuations in bank’s deposits demands (and therefore affecting the amount

of reserves banks have to maintain). The supply of reserves is partly deter-

mined by the Fed’s regular interventions onto the market with open-market

operations, providing liquidity to banks (“nonborrowed reserves”, ). In

deciding the amount of  to offer, the Fed can respond to contempora-

neous disturbances to total reserve demand and to borrowed reserve demand

through the policy parameters  and . The general specification adopted

above for the supply of  encompasses various operating procedures,

e.g. “federal funds rate targeting” and “non-borrowed reserves targeting”,

characterized by different values of the policy parameters. A stochastic com-

ponent  reflects deliberate actions by the Fed aimed at changing the supply

of reserves available to the market (in a way that does not depend on con-

temporaneous reserve demand shocks) and, ultimately, affect the market rate

for federal funds. Moreover, banks can borrow at their discretion from the
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Fed ( from the so-called “discount window”) at the discount rate, set by

the Fed and traditionally kept below the market rate (at least in the insti-

tutional setting prevailing until the end of the 1990s, and appropriate for

the analysis of the Bernanke-Mihov paper).3 This component of the reserve

supply is therefore determined by the banks’ demand for borrowed reserves

(); such demand depends on the spread between the cost of borrowing

(the discount rate) and the return on reserves offered by the market (the

prevailing  rate). The coefficient  measures the elasticity of the demand

for borrowed reserves to the spread; such elasticity is heavily influenced by

the “moral suasion” of the Fed, inducing banks not to fully exploit the arbi-

trage opportunities offered by a positive  -discount rate spread. Finally,

the borrowed reserves demand is influenced by stochastic factors modifying

banks’ behavior captured by .

Figure 1: The bank reserves market

3From 2002, the US Federal Reserve has changed the role of the discount window. Since

then, the discount rate has become a penalty rate for borrowing from the Fed and therefore

its level is set above the  rate, thus eliminating potential arbitrage opportunities for

the banks, and the consequent need for non-price ("moral suasion") rationing by the Fed.

The relevant empirical work referred to in these notes concerns the working of the reserve

market before the recent changes, and therefore correctly assumes a positive  -discount

rate spread.
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The equilibrium condition on the reserve market equates (innovations in)

total reserve demand and supply:  = + (note that the demand

for borrowed reserves yields an increased supply of reserves). In terms of our

general formulation of the model we have (using  ≡  − ):⎛⎝ 1 − 1


1


 1 0

0 0 1

⎞⎠⎛⎝ 



⎞⎠ =

⎛⎝ − 1


0 0

0 1 0

  1

⎞⎠⎛⎝ 





⎞⎠
Au = Bv

from which:

u = A−1Bv

⎛⎝ 



⎞⎠ =

⎛⎜⎝ −1+


+

1−
+

− 1
+

1+


+

+

+


+

  1

⎞⎟⎠
⎛⎝ 





⎞⎠ (7)

All VAR residuals  are expressed as linear combinations of the structural

disturbances : no innovation to a particular variable in the policy block may

be interpreted as (at least proportional to) the policy shock  before spec-

ifying appropriate identifying restrictions. Note from (7) that the responses

of  ,  and  to the policy shock  do not depend on the policy

parameters  and , whereas the responses of reserve aggregates and the

funds rate to the non-policy shocks depend on the policy parameters. The

relationship between VAR innovations and structural disturbances yields a

measure of the “liquidity effect” of the monetary policy shock, capturing the

negative response of the Federal funds rate to a positive (i.e. expansionary)

realization of : this effect is − 1
+

and depends on the two behavioural

parameters in the model ( and ).

Inverting (7), structural shocks may be expressed in terms of VAR resid-

uals as follows:⎛⎝ 





⎞⎠ =

⎛⎝ − 1 −1
 1 0

 −  −( + ) 1 + 

⎞⎠⎛⎝ 



⎞⎠ (8)

In particular, the policy shock  is expressed as a linear combination of

the VAR innovations in  ,  and  and can be recovered once an

appropriate identification scheme, based on the operating procedures followed

by the Fed, is assumed and the remaining free parameters are estimated.
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Before proceeding to the illustration of alternative identification schemes

reflecting different policy regimes, let us write the complete VAR system in

structural form as in (1), including the non-policy, macroeconomic variables

(here the logs of  , the consumer price index  , the IMF index of world

commodity price ), and the policy block (with the Fed funds rate  ,

total reserves  and nonborrowed reserves ):⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0

21 1 0 0 0 0

31 32 1 0 0 0

41 42 43 1 − 1


1


51 52 53  1 0

61 62 63 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝












⎞⎟⎟⎟⎟⎟⎟⎠ = C()

⎛⎜⎜⎜⎜⎜⎜⎝
−1
−1
−1
−1
−1
−1

⎞⎟⎟⎟⎟⎟⎟⎠ (9)

+

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 − 1


0 0

0 0 0 0 1 0

0 0 0   1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

1


2


3





⎞⎟⎟⎟⎟⎟⎟⎠
where the first 3 structural disturbances are generically denominated as non-

policy ( ) shocks 
 ( = 1 2 3) since no economic structural inter-

pretation is given for them (a simple recursive structure is adopted for the

non-policy block of the system).

4.1 Alternative identification schemes

The BM theoretical model of the reserves market contains seven parameters

(, , ,  and 2, 
2
 , 

2
) to be estimated from the variance-covariance

matrix of the VAR innovations in the policy block ( , , ), which

yields six estimated values. One restriction is then needed for just-identification

of the model; additional restrictions over-identify the model and allow for

overidentification tests. Also considering the complete model in (9) we con-

firm the need for at least one additional restriction: there are 22 parameters

to be estimated (12 coefficients , 6 variances of the structural shocks and

the 4 structural parameters , ,  and ) but the estimated elements of

the variance-covariance matrix of VAR innovations are only 21 (6 variances

and 15 covariances).

Several sets of restrictions on the model’s parameters have been proposed

in order to identify monetary policy shocks, allowing for different monetary

policy regimes (i.e. Fed operating procedures). Of the five different schemes
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analyzed by BM, two (each imposing one over-identifying restriction, there-

fore allowing for a test) have proved particularly relevant: the “federal funds

rate targeting” (whereby the Fed sets the amount of  in order to keep

the  rate at the chosen level, offsetting the disturbances to total and bor-

rowed reserve demand), and the “non-borrowed reserve targeting” (whereby

the Fed targets the quantity of  reserves in the market, not reacting

to reserve demand shocks). The specific operating procedure adopted by

the Fed is essential in providing values for the policy parameters consistent

with the actual behavior of the central bank. To clarify this point, Figure

2 shows the effect on the equilibrium  rate of a positive shock to total

reserve demand (  0) that shifts the  curve. The effect on the  rate

depends crucially on the response of the Fed. Under a (perfect)  rate

targeting regime the appopriate reaction to keep the rate unchanged at the

pre-shock level is to accommodate entirely the disturbance, increasing the

supply of  by , therefore setting  = 1, whereas no reaction to the

shock ( = 0) occurs under a  targeting regime, allowing the demand

disturbance to affect the equilibrium  rate.

Figure 2: A shock to  demand

When the disturbance comes from the borrowed reserves (  0), the pos-

itively sloped portion of the supply curve shifts, as in Figure 3. Again, the

effects on market equilibrium depends on the prevailing operating procedures:

if the Fed targets  there is no reaction to the shock ( = 0) and the
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market  rate falls, whereas under a  rate targeting regime the Fed

completely offsets the shock ( = −1) shifting the supply curve back to its
original position.

Figure 3: A shock to  demand

The two different operating procedures that the Fed might adopt place

different sets of restrictions on the policy parameters and therefore on the

structural model of the reserves market, giving rise to two specific models:

1. Federal funds rate model : the Fed targets the Federal funds rate, fully

offsetting shocks to  and . Therefore:  = 1 and  = −1.⎛⎝ 



⎞⎠ =

⎛⎝ 0 0 − 1
+

0 1 
+

−1 1 1

⎞⎠⎛⎝ 





⎞⎠
and (inverting), the policy shock  can be found as

 = −(+ )

2. Nonborrowed reserves model : the Fed targets the quantity of nonbor-

rowed reserves, allowing the Federal funds rate to fluctuate in the face
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of reserve demand disturbances. Therefore, nonborrowed reserves show

no response to reserve demand shocks; then innovations in nonborrowed

reeserves reflect shocks to policy. Under this operating procedure the

following restrictions must hold:  =  = 0,⎛⎝ 



⎞⎠ =

⎛⎝ − 1
+

1
+

− 1
+


+



+


+

0 0 1

⎞⎠⎛⎝ 





⎞⎠
and the policy shock becomes simply

 = 

As a final note on the importance of carefully modelling the reserves

market in order to identify the monetary policy shock taking into account

the operating procedure of the central bank and on the dangers of mixing

several different policy regimes in estimation, let us look at the “liquidity

effect” of a policy shock, i.e. the impact of  on the  rate. As noted

above, the theoretical model in (7) predicts that the liquidity effect is − 1
+

.

Therefore, consistently with basic intuition about the effect of policy actions

on the monetary market, the liquidity effect should be negative (in response

to expansionary policy shocks), with a magnitude given by banks’ behaviour

(captured by  and ). However, if the system is estimated ignoring the

potential role of different policy regimes and simply identifying the innovation

to nonborrowed reserves () as the policy shock (
), the estimate of the

liquidity effect is biased when the operational procedure followed by the

central bank is different from nonborrowed reserves targeting. To see the

point, assume a recursive identification scheme of the policy block, with

 ordered before  : the estimated liquidity effect is therefore given

by the regression coefficient of  onto . Given the general structural

model in (7) such coefficient may be computed as:

(  )

()
=


³
−1+

+
 + 1−

+
 − 1

+
    +   + 

´


¡
  +   + 

¢
= − 1

+ 

Ã
1 +

 2 −  2¡

¢2

2 +
¡

¢2

2 + 2

!

If the central bank in fact follows a nonborrowed reserves targeting regime,

 =  = 0 and the liquidity effect is correctly estimated; however, if a

different operational procedure is implemented, the estimate is biased. For
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example, under a Federal funds rate targeting (whereby  = 1 and  = −1)
the estimated liquidity effect would be

− 1

+ 

µ
1− 2 + 2

2 + 2 + 2

¶
 − 1

+ 

implying an underestimation of the magnitude of the effect (not an uncom-

mon result in the empirical literature).
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5 Identification based on long-run restrictions

A different way of identifying structural disturbances (and proceed to im-

pulse response and forecast error variance decomposition analysis) has been

proposed by Blanchard and Quah (BQ, AER 1989) and relies on restrictions

on the long-run responses of endogenous variables to structural shocks rather

than on their contemporaneous reactions.

This methodology, applied by Bernanke and Mihov (Carn. Roch 1998) to

the long-run real effects of monetary policy, has been implemented on small

sets of macroeconomic variables to separate the effects of permanent from

temporary disturbances. Here, we cast the argument in terms of a bivari-

ate model including one non-stationary ((1)) variable  and one stationary

((0)) variable . Since, in order to apply the BQ identification procedure,

only stationary variables must enter the VAR, we specify the vector of en-

dogenous variables as (∆ )
0
. Note that if the two variables of interest were

both non-stationary, the BQ methodology could be applied to the vector of

first differences of both variables provided that they are not cointegrated.

Let us start from the reduced (VAR) form of the bivariate system:µ
∆


¶
= C∗()

µ
∆−1
−1

¶
+

µ



¶
(10)

where the innovations are defined as  and . The relation between the

VAR residuals  and the structural disturbances is now specified asµ



¶
=

µ
11 12
21 22

¶µ
1
2

¶
(11)

where the two structural disturbances are given the economic interpretation

of a shock having a permanent effect on the non-stationary variable  (the

“permanent” disturbance) and a shock having only a transitory effect on 

(the “transitory” disturbance). Both shocks have only temporary effects on

the stationary variable . The two structural disturbances are orthogonal

and, for simplicity, their variance is normalized to unity, so that (vv0) = I.
In (11) the VAR innovations for ∆ and  are linear combinations of the

permanent and transitory disturbances. In order to retrieve the structural

disturbances 1 and 2 from estimation of the VAR innovations  and 

(and of their covariance matrix), identification of the four elements  (  =

1 2) is necessary. The BQ methodology achieves identification by imposing

long-run restrictions on the impulse response function of ∆ with respect to

the transitory shock.
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From (11) we can write the covariance matrix of VAR innovations in

terms of the coefficients :

(uu0) =

µ
11 12
21 22

¶
(vv0)

µ
11 12
21 22

¶0
⇒

µ
2  
  2

¶
=

µ
211 + 212 1121 + 1222

1121 + 1222 221 + 222

¶
since(vv0) = I. Given the estimated values for the variances and covariance
of VAR innovations (denoted by 2 , 

2
 and  ), the above relation delivers

the following three equations to obtain the  coefficients:

211 + 212 = 2 (12)

221 + 222 = 2 (13)

1121 + 1222 =   (14)

One additional restriction is needed for (just)identification. This additional

restriction is derived by obtaining the vector bivariate moving average form

from the VAR representation of the system in (10):µ
∆


¶
= [I−C∗()]−1

µ
11 12
21 22

¶µ
1
2

¶
=

µ
11() 12()

21() 22()

¶µ
11 12
21 22

¶µ
1
2

¶
=

µ
11() 12()

21() 22()

¶µ
1
2

¶
(15)

In (15) the polynomials () trace out the responses of ∆ and  to the

permanent and transitory structural disturbances. The restriction that the

transitory shock, say 2, does not affect  in the long run amounts to impos-

ing:

12(1) = 0

which can be expressed in terms of the ’s and the (1)’s as

11(1) 12 + 12(1) 22 = 0 (16)

From estimation of the reduced form of the system the values of 11(1) and

12(1) are obtained, so that (16) can be added to the three equations in

(12)-(14) to form the set of four just-identifying restrictions needed for re-

trieving the structural disturbances from VAR innovations. Once the struc-

tural shocks are obtained, the impulse response functions of ∆ and  to

the permanent (1) and the transitory (2) shocks can be computed and the

forecast error variance of the endogenous variables can be decomposed into

the fractions attributable to the two structural disturbances.
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6 Identification based on (non-VAR) high- fre-

quency financial data

All the identification schemes presented so far rely on particular assump-

tions on either contemporaneous or long-run responses of some variables in

the system to other variables. Such assumptions allow identification of the

structural disturbances (and particularly the monetary policy shock) from

the estimated VAR residuals.

A different approach to identification tries to derive measures of the unan-

ticipated monetary policy actions exploiting information not embedded in the

VAR system used to explore the dynamic effects of monetary policy. Deriving

such measures from non-VAR information bypasses the identification prob-

lem, providing an “exogenous” variable, capturing the monetary policy shock,

that can be used in the VAR system to derive the impulse response functions

of the endogenous variables to the policy disturbance. Non-VAR measures

of monetary policy shocks have been proposed by Rudebusch (International

Economic Review 1998), Bagliano-Favero (European Economic Review 1998

and 1999), Brunner (Journal of Money,Credit and Banking 2000) and briefly

discussed also in CEE (2000).

The proposed measures generally exploit information on expected mone-

tary policy actions obtained from financial markets, in particular from prices

of future contracts or from interest rates on short-term bills. Once a measure

of this kind is derived, it can be included in the reduced form   system

(1) as a contemporaneous exogenous variable:

y = C
∗()y−1 +G

∗  + u

whereG∗ is a -dimensional vector capturing the contemporaneous (reduced
form) impacts of the monetary policy shock  on the endogenous variables

in the model. The dynamic response ( ) of the variables in y to  can

be obtained from the (∞) representation of the  :
y = (I−C∗())−1G∗  + (I−C∗())−1 u

= (I+Ψ1+Ψ2
2 + )−1G∗  + (I+Ψ1+Ψ2

2 + )−1 u

This non-VAR identification strategy may be particularly useful when the

identification problem is difficult to solve on the basis of “recursive” or even

“structural” assumptions, for example because there is an obvious simulta-

neous feedback between the monetary policy variable and other endogenous

variables in the system, such as long-term interest rates and exchange rates.

Examples of non-VAR measures of monetary policy shocks (applied in

the literature to US data) include:
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- the difference between the Federal funds rate at month  and the one-

month Federal funds future at month −1, taken as an unbiased predic-
tor of the next-month effective rate; this measure is directly comparable

to the reduced form VAR innovation in the Federal funds rate  ;

- the change of the 3-month Treasury bills on the days of policy an-

nouncements;

- the difference between effective overnight rates on the days immediately

after FOMC policy meetings and the expected overnight rates for those

days derived from estimation of the curve of istantaneous forward rates

on the days immediately preceding the meetings.

Faust, Swanson and Wright (JME 2004) recently proposed to use high-

frequency data from financial markets (in particular from the Federal funds

future market) in a novel way to identify the response of VAR variables to

monetary policy shocks.
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