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1 Stylized facts and puzzles

Recent empirical research has highlighted a number of regularities, mainly

for US data in the post-World-War-II period (but also confirmed over longer

samples and extended to other countries by cross-countries studies). The

main relevant stylized facts are the following:

1. “high” real average return on stocks (US S&P index: around 8% an-

nually over 1947-2000)

2. “low” real average return on “riskless” bonds → riskfree real rate (US

T-bills: around 1% annually over 1947-2000)

3. high volatility of real stock returns (annualized standard deviation:

around 16%)

4. low volatility of real riskless rate (annualized standard deviation of

ex-post rate: around 2%)

5. positive and very smooth real consumption growth (for non-durables

& services: 2% annual growth rate with 1.1% standard deviation)

6. relatively low correlation between consumption growth and real stock

returns (0.23 at quarterly horizon)

This set of facts has several implications for the interpretation of the joint

behavior of asset returns and consumption. Mainly:
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⇒ facts (1) and (2) imply a high expected excess return on stocks (high

equity premium)

theory: CCAPM (consumption capital asset pricing model) provides

an explanation in terms of:

(i) covariance between consumption and stock returns;

(ii) degree of agents’ risk aversion

but:

⇒ facts (5) and (6) imply that (i) is low, so a very high degree of risk

aversion is needed to generate the observed premium:

→ “equity premium puzzle” (originally noted byMehra and Prescott

Journal of Monetary Economics 1985)

Is the hypothesis of a very high risk aversion consistent with facts (1),

(2) and (5) ?

with high risk aversion:

→ strong incentive to transfer purchasing power to periods of

low expected consumption levels

→ given consumption growth (see fact (5)) there should be a

tendency for consumers to borrow heavily in capital markets

(to transfer consumption from the future to the present), gen-

erating an upward pressure on (the general level of) interest

rates,

but:

⇒ the relatively low observed interest rate (fact (2)) can be consistent

with the positive consumption growth rate only if the consumers’ in-

tertemporal rate of time preference is very low (even “negative”: agents

are very “patient”, favoring future consumption instead of current

consumption). Only implausibly low rates of time preference could

reconcile consumption growth with low interest rates:

→ “riskfree rate puzzle” (observed by Weil Journal of Monetary

Economics 1989)
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2 Standard theory: the Consumption Capi-

tal Asset Pricing Model (CCAPM)

2.1 The basic framework

The basic theoretical framework focuses on an infinitely-lived representa-

tive agent (consumer/investor) with rational expectations, maximizing an

intertemporal utility function defined over consumption flows:

max
{+}

 =  ( +1 )

subject to the dynamic budget constraint:

++1 = (1 + +)+ + + − + ( = 0 ∞)

where + is the stock of financial wealth (composed of a single asset yielding

a rate of return +) evaluated at the beginning of period  + , + is the

stochastic labour income (exogenously given) and + is consumption; by

timing convention, both income and consumption are measured at the end

of each period + .

Several assumptions on the consumer’s preferences are usually intro-

duced:

• intertemporal (time) separability:

 ( +1 ) =  () + +1 (+1) + 

where + (+) ≡ valuation in  of utility derived from consumption

at +  ⇒ “habit formation” and durable goods are ruled out

• future utility discount of the form

+ (+) =

µ
1

1 + 

¶

 (+)

where  is the rate of time preference (measuring the degree of the

agent’s “impatience”) ⇒ with this form of “exponential discounting”

the possibility of “dynamic inconsistency” of preferences is ruled out

• expected utility as objective function (with uncertainty):

 = 

Ã ∞X
=0

µ
1

1 + 

¶

 (+) | 
!
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⇒ jointly with time-separability, this assumption on  generates an

inverse relationship between the elasticity of intertemporal substitution

and the degree of risk aversion (to be seen clearly below in the case of

“power utility”).

Under those assumptions the intertemporal maximization problem can

be solved. To begin with, let’s consider the simple case of a “safe” financial

asset, with known (and costant) rate of return . In this case the first order

condition of the problem (so-called “Euler equation”) is:

f.o.c. (for  = 0) 0() =
1 + 

1 + 
 

0(+1)

With a CRRA utility function (“constant relative risk aversion” or“power

utility”) with relative risk aversion (RRA) parameter :

 () =
1− − 1
1− 

with coeff. of RRA  = −
00

0
  0

we get:

(a) if there is certainty also on labour income flows + :


−
 =

1 + 

1 + 

−
+1 ⇒

µ
+1



¶

=
1 + 

1 + 

in logs, with  ≡ log :

∆ +1 =
1


( − )

where 1

measures the intertemporal elasticity of substitution (inversely

related to the coefficient of RRA)

(b) with uncertain ( stochastic) labour income:

1 + 

1 + 


"µ
+1



¶−#
= 1 ⇒ ( − ) + log 

"µ
+1



¶−#
= 0

with distributional assumption:

∆ +1 ∼ 
¡
∆ +1  

2


¢ ⇒ −∆ +1 ∼ 
¡− ∆ +1  

2 2
¢

using the general property for a (conditionally) lognormally distributed

random variable  :

log   =  log +
1

2
 (log )
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we get, with  ≡
³
+1


´−
( − )−  ∆ +1 +

1

2
2 2 = 0

⇒ ∆ +1 =
1


( − ) +



2
2

precautionary savings

effect

A higher degree of uncertainty on labour income (generating a higher

consumption variance 2 ) induces the agent to reduce current con-

sumption  (and increase current savings), with a positive effect on

the expected consumption growth rate ∆ +1: this incentive to save

reflects a “precautionary” motive

2.2 The general case:  risky assets

The basic framework can be extended to the general case of  risky financial

assets with stochastic returns:

 assets with uncertain returns  ( = 1  )



+ : stock of asset  held at the beginning of period + 

+ =
P

=1

+ : stock of financial wealth



++1 : return on asset  in period +  not known at the beginning of

+  ⇒ 

++1 = (1 + 


++1)


+

The consumer’s utility maximization problem becomes:

max
{+

+}
 = 

∞X
=0

µ
1

1 + 

¶

 (+)

subject to

X
=1



++1 =

X
=1

(1 + 

++1)


+ + + − + ( = 0 ∞)
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with solution:

f.o.c. (for  = 0) 0 () =
1

1 + 


£
(1 + 


+1)

0 (+1)
¤

( = 1  )

⇒ 1 = 

⎡⎢⎢⎢⎣ (1 + 

+1)

1

1 + 

0 (+1)

0 ()| {z }
+1

⎤⎥⎥⎥⎦
1 = 

£
(1 + 


+1)+1

¤
where +1 =

1
1+

0 (+1)
0 ()

is the stochastic discount factor (marginal rate of

intertemporal substitution).

Using the property:



£
(1 + 


+1)+1

¤
=  (1 + 


+1) (+1) + cov (


+1+1)

we can obtain a series of implications on the joint behaviour of financial

returns and optimal consumption.

The first implication relates the expected rate of return on each risky

asset  to its covariance with the stochastic discount factor:

 (1 + 

+1) =

1

 (+1)

£
1− cov (+1+1)

¤
(CCAPM 1)

Second, if one of the assets is riskless, with certain return  , the following

property holds:

1 + 

+1 =

1

 (+1)
(CCAPM 2)

Finally, combining CCAPM 1 and CCAPM 2 :

 

+1 − 


+1| {z }

equity premium

= −(1 + 

+1) cov (


+1+1) (CCAPM 3)

In the case of “power utility” (CRRA), the first order condition for each

asset  becomes:

1 = 

"
(1 + 


+1)

1

1 + 

µ
+1



¶−#
and in logs:

0 = −+ log 

"
(1 + 


+1)

µ
+1



¶−#
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In order to proceed, now an assumption on the joint distribution of the

growth rate of consumption and asset returns is necessary. An useful as-

sumption is that the consumption growth rate and the rate of return on each

asset  are (conditionally) jointly lognormally distributed. This implies the

following property for generic random variables  and :

log  (+1+1) =  (log (+1+1)) +
1

2
var (log (+1+1))| {z }

[log (+1+1)−(log (+1+1))2]

Applying this property to the expectations term on the right-hand side of

the first order condition we obtain

log 

"
(1 + 


+1)

µ
+1



¶−#
= 

¡


+1 − ∆ +1

¢
+
1

2
Σ

where

Σ = 
h¡
(


+1 − ∆ +1)− (


+1 − ∆ +1)

¢2i
(the expectation can be made unconditional -dropping the subscript - by

assuming conditional homoscedasticity of asset returns and consumption)

⇒  

+1 =  ∆ +1 + − 1

2
Σ

Note:

(i) the f.o.c. can be expressed as an Euler equation relating the expected

consumption growth rate to expected asset returns and the rate of time

preference:

∆ +1 =
1


( 


+1 − ) +

1

2
Σ

(ii) the f.o.c. is a relation between the expected consumption growth rate

and the expected returns on all assets, given by 1

. This delivers a way

of empirically testing the theory:

- forecast model for ∆+1 ⇒ ∆+1 = δ0x + +1

- estimate the system:

∆+1 = δ0x + +1



+1 = π0x +  + 


+1 ( = 1 )

and test restrictions:

π =  δ for all 
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To derive more easily interpretable relations, we calculate the variance

term Σ:

Σ = 
h¡
(


+1 − ∆ +1)− (


+1 − ∆ +1)

¢2i
= 

h¡
(


+1 − 


+1)−  (∆ +1 −∆ +1)

¢2i
= 

£
(


+1 −


+1)

2
¤| {z }

2

+ 2
£
(∆ +1 −∆ +1)

2
¤| {z }

2

−2 £
(


+1 −


+1) (∆ +1 −∆ +1)

¤| {z }


≡ 2 + 2 2 − 2  
Using this expression for Σ the three basic CCAPM relations obtained above

become:

 

+1 =  ∆ +1 + − 2

2
− 2 2

2
+   (CCAPM 1)

For the riskfree asset  = 2 = 0 :



+1 =  ∆ +1 + − 2 2

2
(CCAPM 2)

Finally the premia on the risky assets is:

( 

+1 − 


+1) +

2

2| {z }
adjusted excess return

=   (CCAPM 3)

The “premium” equation can be re-interpreted as in Cochrane (2005, p.16):

( 

+1 − 


+1) +

2

2
=

µ


2

¶
· ¡ 2¢ ≡ ∆ · ∆

where ∆ has the nature of a “regression coefficient” of the (innovation in

the) return on asset  on the (innovation in the) consumption growth rate

(similarly to a “beta” coefficient in the simple CAPM model), measuring the

“quantity of risk” contained in asset , whereas ∆ is a measure of the “price

of risk”, determined by risk aversion and the volatility of consumption. From

this perspective, expected returns should be positively related to each asset’s

“consumption beta”: for a given “price of risk”, a higher covariance between

asset returns and consumption growth increases the asset’s “quantity of risk”

and commands a higher expected return to be willingly held. Moreover, a

given “quantity of risk” is priced higher the more risk averse investors are

(high ) or the riskier is the environment (higher 2).
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2.3 Quantitative implications

The CCAPM model with a power utility assumption yields several predic-

tions on the relative magnitude of expected returns and risk premia that

can be matched with historically observed data. The main findings are the

following:

• from CCAPM 3 (with power utility):

( 

+1 − 


+1) +

2

2| {z }
average excess return 

=  |{z}
(∆)

given the historycally observed values for the average excess return on

a risky asset  (or on a stock index) and for the covariance between the

excess return and consumption growth, it is possible to compute the

value of the risk aversion parameter  that matches the observed data

(called (1) in Campbell 2003, Table 4)

⇒ implausibly high values for 

• from CCAPM 3 rewritten as

( 

+1 − 


+1) +

2

2
=   =  ()

where −1 ≤  ≤ 1 is the correlation coefficient between (innovations
in) consumption growth and returns on asset  (or on a stock index).

Assuming  = 1, it is possible to compute the value of  that match-

es observed data on average excess returns and consumption growth

volatility  (called (2) in Campbell 2003, Table 4)

⇒ still implausibly high values for 

• from CCAPM 2



+1 =  ∆ +1 + − 2 2

2

the rates of time preference  consistent with the values (1) and

(2) for  can be computed using observed data for the (average)

riskfree rate, the average growth rate of consumption and its volatility

(the implied values for  are called (1) and (2) by Campbell

2003, Table 5)

⇒ often (implausibly) negative values for 
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2.4 Insufficient explanations of the equity premium

and riskfree rate puzzles

Several potential rationalizations of the “twin” puzzles described above have

been put forward in the literature. Though somewhat plausible, all these

explanations have problems and cannot entirely account for the detected

puzzles. A non-exhaustive list includes:

1. explanations focused on the so-called “peso problem”:

a catastrophic event with a small positive probability, not oc-

curred in the observed sample but considered by agents in making

consumption/investment choices could explain the very high risk

premium required on risky assets (mainly stocks). However, such

an event should hit investors in stocks much more than investors

in short-term debt instruments to explain a very high premium

on equity.

2. explanations based on the so-called “survival bias”:

the empirical evidence focuses mainly on the US stock market

which is the best performing equity market: this focus could

then overstate stock market returns. However the evidence on

the equity premium puzzle is found worldwide.

3. explanations based on a “liquidity effect”:

greater liquidity of short-term (government) bills relative to longer-

term financial assets could explain very low riskfree rates and

therefore high equity premia. However, “term premia” are low-

er than equity premia; even when the short rate is replaced with

a long bond rate the evidence of an equity premium puzzle is

confirmed.

4. explanations introducing “individual (idiosyncratic) shocks” to con-

sumption:

idiosyncratic (and uninsurable) shocks may increase the variabil-

ity of consumption growth at the individual level with respect to

the (observable) variability of aggregate consumption; if this is
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the case, the theoretically relevant  (the consumption volatil-

ity faced by the “representative agent”) should be much larg-

er than the value used in quantitative evaluations of the theo-

ry. However, this observation does not solve the puzzle since,

given ∆ = ∆ +  where the individual consumption growth

∆ equals aggregate consumption growth plus an idiosyncratic

shock  uncorrelated with economy-wide variables (such as stock

returns), the covariance between individual consumption growth

and rates of return is unaffected:

(

  ∆) = (


  ∆ + ) = (


  ∆)

3 New research directions

Recent research has explored various ways to extend the basic relations

between returns and risk measures in order to account for the observed

magnitude of the equity premium and the level of riskfree interest rates.

3.1 More general specification of preferences

The general insight of this class of models is that, in order to account for a

high equity premium, additional variables are needed in the utility function

that affect marginal utility (and therefore the stochastic discount factor) in a

non-separable way. Such additional variables may better capture the “state of

the economy” (e.g. being a “recession” indicator), which may be relevant to

agents in determining their asset allocation choices. Therefore the covariance

between equity returns and such additional variables will enter the expression

for equilibrium returns and premia on risky assets. As a generic example,

given an utility function ( ) defined over consumption and an additional

“recession” state variable , the premium on the risky assets becomes:

()−  =
−


cov (∆)− 


cov ( )

The non-separability of utility in  and  ensures that  6= 0 and the term
involving the covariance between the “recession” variable and risky returns

contributes to the explanation of the premium over the riskfree asset.

3.1.1 Habit formation

In this vein, one possible extension of preferences which introduces time non-

separability into the representative agent’s utility function is developed by
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Campbell and Cochrane (JPE 1999). Their model is focused on the presence

of habit formation in consumers’ behaviour: the level of today’s consumption

positively affects the marginal utility of tomorrow’s consumption. The basic

intuition is that people get accustomed over time to a standard of living and

a decline in consumption after some time of high consumption (i.e. during a

cyclical recession) may hurt more in utility terms.

To capture this form of behaviour an extended utility function is assumed

of the form:

 () =  ( −) =
( −)

1− − 1
1− 

where the variable represents level of “habit” consumption (which depends

on aggregate consumption, not affected by the individual agent’s choices) and

 is the power parameter (not the risk aversion parameter).

The relation between the current level of consumption and “habit” is

captured by the surplus consumption ratio  =
−


(constrained to be

positive) so that

 () =  () = ()
−

and the risk aversion measure (related to the “curvature” of the utility

function) can be obtained as:

−


≡  =





Now risk aversion  is not a constant parameter but is time-varying, increas-

ing when the surplus ratio declines: people become more risk averse when

consumption falls towards “habit”. Then, even a low power coefficient  is

consistent with high (and variable over time) risk aversion. From this model,

Campbell and Cochane (1999) derive several implications

- concerning the equity premium: the solution of the representative agent

utility maximization problem leads to a first order condition of the form

1 = 

"
(1 + 


+1)

1

1 + 

µ
+1



¶− µ
+1



¶−#
 = 1 

yielding, with convenient distributional assumptions, the following ex-

pression for the premium on risky assets³
 


+1 − 


+1

´
+

2

2
=   ≡  (  )

higher risk aversion may explain a high equity premium even in the

presence of a low consumption volatility ;
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- concerning the riskfree rate: a higher risk aversion does not imply a

higher riskfree interest rate (the “riskfree rate puzzle”) due to a strong

“precautionary savings” effect:



+1 =  ∆+1 + − 1

2

³
̄

´2
2

Uncertainty on consumption levels (captured by 2) induces consumers

to save more: this effect is magnified by the term
¡


̄

¢2
(where ̄ denotes

the average surplus consumption ratio) with a resulting depressing

effect on the level of the riskfree rate.

3.2 An alternative multifactor model of risk and re-

turns (Campbell 1996)

Campbell (JPE 1996) proposes an intertemporal optimization model which

is capable of explaining equilibrium asset returns in terms of various risk

factors related not only to the return on the “market” portfolio (as in the

basic CAPMmodel) but also to variables useful to forecast future returns and

future labour income. The model is able to account for both the time-series

and the cross-section properties of asset returns.

3.2.1 Motivation

Traditional models trying to explain asset returns have used different mea-

sures of “risk”. In particular:

(a) the basic  model measures “risk” by means of the covariance of

asset returns only with “market returns”, usually proxied by the return

of a diversified portfolio of common stocks (i.e. a stock market index).

Ideally the “market return” should be the return on all the agents’

invested wealth, including non-financial wealth such as human capital.

(b) the  model uses the covariance of asset returns with aggregate

consumption as a measure of risk but:

- aggregate consumption may not be an adequate proxy for con-

sumption of stock market investors. For example, a fraction of

the population might be liquidity constrained and not trade in

asset markets: the consumption of those agents is irrelevant to

the determination of equilibrium asset prices, but is included in

aggregate consumption data. Moreover, a fraction of investors

13



might trade for reasons not related to the optimal intertemporal

allocation of consumption and asset portfolio, but for exogenous,

psychological reasons: such noise traders might influence market

prices if rational utility-maximizers investors take into account

their presence in making investment choices.

- risk is measured by a covariance with a variable (consumption)

which is not exogenous to investors, being determined by their

choices; the resulting measure of risk might then be different from

the risk perceived by agents.

These weaknesses of traditional models point to the need of an empirically

testable model that does not require aggregate consumption data and that

derives from theory other factors of risk in addition to the stock index return.

3.2.2 Technique

To develop a model with the above mentioned features, Campbell extends

the basic representative agent’s intertemporal optimization framework in two

main directions, concerning the budget constraint and the utility function:

(i) a log-linearization of the (intertemporal) budget constraint is used to

get closed-form solution for consumption;

(ii) a more general form of the agent’ utility function allows for a coefficient

of relative risk aversion unrelated to the elasticity of intertemporal sub-

stitution (a more flexible version of the classic “power” utility in which

the two measures are inversely related).

The result is an asset pricing formula with no role for consumption but

relating asset returns to covariances with the current market return and news

about future market returns.

Step 1: log-linearization of budget constraint. The representative

agent’s one-period budget constraint is written as

+1
total wealth

= (1 + +1) ( − )
invested wealth

where  includes “human” capital and  is the return on the “market

portfolio”, here including all wealth that is not consumed (“invested wealth”

 −). A linear approximation for the budget constraint may be obtained

14



by first dividing by  and taking logs (lower-case variables denote logs of

the corresponding upper-case variables):1

+1



= (1 + +1)

µ
1− 



¶
⇒

taking logs
∆+1 ' +1 + log

¡
1− −

¢
Now take a first-order Taylor approximation of log (1− −) around − 

(the mean consumption to wealth ratio, assumed constant in the long-run):

log
¡
1− −

¢ ' log
³
1− −

´
− −

1− −
[( − )− (− )]

⇒ ∆+1 ' +1 +

µ
1− 1



¶
( − ) + constant

with  ≡ 1− − = −


 1. Using the definition ∆+1 ≡ ∆+1 + ( −
)− (+1 − +1) we get:

 −  =  (+1 − +1) +  +1 − ∆+1 + constant

Solving forward, with stationary long-run −, i.e. lim→∞ (+−+) =

0, and taking expectations in  we obtain

 −  = 

" ∞X
=1


¡
+ −∆+

¢#
+ constant

In this form, the intertemporal budget constraint says that a high consump-

tion to wealth ratio at  is due either to high expected future returns on

invested wealth or to expected future low consumption growth. Using this

form of the budget constraint the following expression for unexpected changes

in consumption is derived:2

+1 −+1 =
¡
+1 −


+1

¢
+ (+1 −)

∞X
=1

 +1+ −

− (+1 −)

∞X
=1

 ∆+1+ (1)

1Note that

1− 



= 1− elog(


) ≡ 1− e−

2Note that

+1 −+1 = +1 −

+1
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A positive surprise in consumption today corresponds to a higher than ex-

pected return on wealth today (first term on the right-hand side) or to news

on higher future returns (second term) or to downward revisions in expected

future consumption growth (third term). Note that both the above expres-

sions are derived from approximations of the budget constraint and do not

impose any behavioural assumptions.

Step 2: generalization of preferences. The representative agent’s util-

ity function is of the Epstein-Zin (JPE, 1991) form:

 =
h
(1− )

1−


 + 
¡
 

1−
+1

¢ 1


i 
1−

where utility at time  is defined in a recursive way, depending on current

consumption, , and the expected value of next period’s utility +1. The

parameters involved in this definition are

 = RRA coefficient

 = elast. of intert. substitution

¾
 =

1− 

1− 1


so that this formulation of utility allows a choice of the risk aversion pa-

rameter independently of the magnitude of the elasticity of intertemporal

substitution. As a special case, if  = 1

then  = 1 and the utility func-

tion reduces to the classic “power utility” form. Moreover,  is a preference

discount factor (with notation used in previous sections:  ≡ 1
1+
).

The agent’s utility maximization problem yields the following solutions:

1. for the market portfolio:

f.o.c. 1 = 

⎡⎣(µ+1



¶− 1


(1 + +1)

)
⎤⎦

that, assuming conditional joint lognormal (and homoscedastic) distri-

bution for  and +1 (usual procedure), reduces to:

∆ +1 =   

+1 −  log  +

1

2




var (∆ +1 −  +1)| {z }

assumed constant  (under homoscedasticity)

(*)

This is the time-series Euler equation relating expected consumption

growth to the expected return on the market portfolio (this relationship

is measured by the elasticity of intertemporal substitution ).
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2. from the (more complicated) first order conditions for each individual

risky asset , the following (adjusted) risk premia are derived:³
 


+1 − 


+1

´
+



2
= 




+ (1− ) (2)

where

 ≡ var (+1 −

+1)

 ≡ cov (+1 −

+1 +1 −+1)

 ≡ cov (+1 −

+1 


+1 −


+1)

The expected adjusted excess return on asset  is given by a weighted

average of two covariances: the covariance of the asset ’s return with

consumption divided by  (with weight ) and the covariance of the

asset ’s return with the market return (with weight 1− ). Note that:

(a) with power utility ( = 1

and  = 1) adjusted risk premia reduce

to  as in the standard  ;

(b) with  = 1 and then  = 0, a loglinear version of the static 

model is obtained, where risk premia are determined by the asset

return’s covariance with the market return.

Step 3: eliminating consumption. First, from (*) we can construct the

revisions in expectations of future consumption growth:

(+1 −) ∆+ =  (+1 −) +

⇒ (+1 −)

∞X
=1

 ∆+1+ =  (+1 −)

∞X
=1

 +1+

Then, substituting the last equation into the expression for the innovation in

consumption +1 −+1 derived from the linearized budget constraint (1)

we obtain:

+1 −+1 = (

+1 −


+1) + (1− ) (+1 −)

∞X
=1

 +1+

Now innovations in consumption are expressed only in terms of current un-

expected market returns (the first right-hand side term, with a one-to-one

effect on consumption) and revisions in expectations of future market returns
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(the second term). The effect of an increase in expected future returns on

consumption depends on the relative strength of the substitution and income

effects. If the intertemporal elasticity of substitution  is less than 1 the agent

is unwilling to substitute over time and the income effect of higher expected

returns dominates: current consumption increases. If   1 the substitution

effect dominates and current consumption decreases, whereas consumption is

unaffected in the special case of  = 1 in which the income and substitution

effects exactly offset each other.

This equation for the innovation in consumption implies that the covari-

ance of the unexpected return on asset  with +1 − +1 () may be

expressed as:

 ≡ cov (+1 −

+1 +1 −+1) =  + (1− )

where  ≡cov
³
+1 −


+1 (+1 −)

P∞
=1 

 +1+

´
measures the

covariance between the return on asset  and “news” about future market re-

turns, capturing an intertemporal “hedging” component of asset demand. Fi-

nally, using this expression for , the following cross-sectional asset pricing

formula is derived:³
 


+1 − 


+1

´
+



2
=   + ( − 1) (3)

Now assets are priced (and thererefore expected excess returns are deter-

mined) with no direct reference to consumption growth. The risk premium

on asset  is a weighted average of two covariances: the covariance of the

asset’s return with the return on the market portfolio (including all invested

wealth) with weight , and the covariance of the asset’s return with news

about future market returns with weight  − 1. The effect of the latter
covariance on risk premia depends on the magnitude of the risk aversion pa-

rameter: a positive covariance of an asset return with good news on future

market returns reduces the asset ability to “hedge” the investor’s portfolio

against adverse changes in investment opportunities; when risk aversion is

sufficiently high (  1) this effect increases the riskiness of the asset and

must be compensated by a higher return. Note that the simple logarith-

mic version of the static  , in which investors disregard intertemporal

hedging considerations, holds either when  = 1 or when  = 0 for all

assets (i.e. in the absence of intertemporal risk), or when  is proportional

to  (a case where intertemporal risk is perfectly correlated with market

risk across assets), this last case being the empirically relevant one.

Step 4: introducing human capital. To make the model testable, the

rate of return on all invested wealth (including the “human” component),
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, must be specified in terms of observable variables. With approximation,

the market return can be expressed as an average of the returns on financial

assets and human capital as:

+1 = (1− ) +1 +  

+1 + constant

with  = return on financial assets,  = return on human wealth (unob-

servable but proxied by labour income), and  ' 23 is the average ratio

of human to total wealth (proxied by the labour share in total income).

Using log-linear approximation techniques the following expression for the

innovation in the return on human capital is derived:



+1 −


+1 = (+1 −)

∞X
=0

 ∆ +1+ − (+1 −)

∞X
=1

 +1+

A positive innovation in  might be due to increases in current and expected

future labour incomes ∆ (viewed as “dividends” on human capital) or to

decreases in expected future financial returns (used to discount future income

streams to the present). Using this expression and the above approximation

for the overall market return  the innovation in consumption (1) can be

expressed as:

+1 −+1 = (1− ) (+1 −

+1) +  (+1 −)

∞X
=0

 ∆ +1+

+(1−  − ) (+1 −)

∞X
=1

 +1+ (4)

Now consumption is affected by unexpected changes in the current interest

rate  (first term), by news on changes in current and future labour income

strems (second term) and by news on future interest rates (the third term).

The latter effect works through two channels: first, increases in expected

future interest rates reduce the present value of human wealth and tend to

decrease consumption (this effect works through the coefficient −); second,
there is an intertemporal substitution effect which depends on whether  is

less or greater than 1 (see the comment to equation (1)).

Finally, the following final form for the risk premium is obtained:³
 


+1 − 


+1

´
+



2
=  (1− ) +    + [(1− )− 1]  (5)

where

 ≡ (+1 −

+1 


+1 −


+1)

 ≡ 

Ã
+1 −


+1 (+1 −)

∞X
=0

 ∆ +1+

!
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This expression for the premium has the form of a “multifactor” pricing for-

mula (as in the “arbitrage pricing theory”  models), with intertemporal

optimization theory suggesting the nature of the relevant “factors” and im-

posing a set of restrictions on their “prices” (i.e. the weights with which they

enter the risk premium expression). Three factors are relevant here: the fi-

nancial (stock) market return (through ), labour income growth (through

) and future changes in investment opportunities (through ). Con-

sidering human wealth in the determination of equilibrium asset prices can

be important since, given a plausible value for  = 23, the weight on the

labour income factor is higher than the weight on the stock market factor.

Note also that in order to derive the simplified case of a (logarithmic) static

 model, now it is necessary to impose both  = 1 and  = 0, therefore

assuming no human capital in the overall investors’ portfolio.

3.2.3 Derivation of a   factor model

The main implication derived from the theoretical model suggests that rel-

evant “factors” must be selected according to their ability to forecast fu-

ture stock returns and future labor incomes and their prices must reflect the

relative forecasting power of the factors.

To this aim, a   model can be set up and used to produce forecasts

of stock market returns and labour income. Define a -variable vector z as

z =

⎛⎜⎜⎜⎜⎜⎜⎝

∆
3
4




⎞⎟⎟⎟⎟⎟⎟⎠
where 3  are variables potentially relevant to forecast  and ∆ and

in the agents’ information set at . A  (1) model of the form

z+1 = Az + ε+1
innovations

can be used to produce forecasts as

 z+1+ = A
+1 z

and revisions in expectations between time  and + 1 as, in the case of

z+2:

+1 z+2 = +1 [Az+1 + ε+2] = A
2 z +A ε+1

 z+2 =  [A
2 z + ε+1 + ε+2] = A

2 z

⎫⎬⎭⇒ (+1 −) z+2 = Aε+1
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and in general

(+1 −) z+1+ = A
 ε+1

Using the vectors e1 = (1 0  0)
0 and e2 = (0 1 0  0)0 to extract the first

and second element of -dimensional vectors, we can construct the revisions

in expectations (“news”) of future  and current and future ∆ as:

(+1 −)

∞X
=1

 +1+ = e01

∞X
=1

A ε+1

= e01 A [I− A]
−1| {z }

0

ε+1

= λ0 ε+1

and

(+1 −)

∞X
=0

 ∆ +1+ = e02

∞X
=0

A ε+1

= e02 [I− A]
−1| {z }

0

ε+1

= λ0 ε+1

with elements of vectors λ and λ (being non-linear functions of the coeffi-

cients of the   matrix A) measuring the importance of each variable in

z in forecasting future stock market returns and current and future labour

incomes respectively.

Now, using the definition

 ≡ cov (+1 −

+1 +1

th element of

vector ε

)

so that 1 = , asset pricing equations may be rewritten in a -factor

(“”) form:³
 


+1 − 


+1

´
+



2
=  (1− )1 +

X
=1

©
   + [(1− )− 1] 

ª


(where  and  are the -th elements of vectors λ and λ), with basic

structure ³
 


+1 − 


+1

´
+



2
=

X
=1


“prices” of

risk factors


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Each asset ’s excess return is expressed as a linear combination of the co-

variances of the return on asset  with the innovations in a set of variables

useful to forecast stock market returns and labour income and interpreted

here as “risk factors”. The coefficients in the linear combinations () are

the “prices” of such factors and are functions of the   coefficients, the

parameters of risk aversion , and the share of labour income . A factor

has a high risk price if it is a good forecaster of stock returns or labour in-

come. On the whole, the intertemporal optimization model yields a factor

asset pricing model with risk factor prices related to the ability of factors to

forecast future returns on both financial wealth and human capital.
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