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1 Introduction to VAR modelling

Univariate autoregressive () models can be extended to the multivariate

case to study dynamic interrelationships among several variables, all viewed

as endogenous. The resulting vector autoregression ( ) models describe

the evolution over time of a vector of  variables y = (1 2)
0 as a

function of its past realizations y−1y−2  and a vector of stochastic terms
u = (1 2)

0. A   model with  lags of the endogenous variables

in y is called  () and has the following general form:

y = δ +Θ1 y−1 +Θ2 y−2 + +Θ y− + u

where δ = (1 2)
0 is a vector of constant terms, Θ1Θ2Θ are  ×

 matrices and u is a vector of white noise processes with the following

variance-covariance structure:

(uu
0
) =

½
Σ if  = 

0 if  6= 

Matrix Σ is not assumed to be diagonal: therefore the error terms of the

individual equations can be (contemporaneously) correlated.

To understand the nature of the contemporaneous correlation among the

elements of u it is useful to view the   model as the “reduced form” of

a “structural” model capturing behavioral relationships among the endoge-

nous variables. As an example, in the case of two variables with dynamics

limited to one lag only, the structural form of the model is given by

1 = 10 + 12 2 + 11 1−1 + 12 2−1 + 1

2 = 20 + 21 1 + 21 1−1 + 22 2−1 + 2
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with

(vv
0
) =

½
D if  =  with D diagonal

0 if  6= 

The elements of v are the structural shocks (or disturbances) of the sys-

tem. The fact that they are uncorrelated (since D is diagonal, implying

(12) = 0), allows for a precise economic interpretation of the structural

disturbances in terms, for example, of demand shocks, supply shocks, inno-

vations to monetary policy, etc. Indeed, one of the main purposes of  

modelling is the estimation of the dynamic response of all endogenous vari-

ables to structural disturbances hitting the system. In matrix notation, the

structural form of the system can be expressed as:µ
1 −12
−21 1

¶
| {z }

A

µ
1
2

¶
=

µ
10
20

¶
| {z }



+

µ
11 12
21 22

¶
| {z }

Γ

µ
1−1
2−1

¶
+

µ
1
2

¶
| {z }

v

Ay = γ + Γy−1 + v

Matrix A captures the contemporaneous relations between the two endoge-

nous variables. Inverting A we get the reduced form of the model as a

 (1):µ
1
2

¶
=

µ
1 −12
−21 1

¶−1µ
10
20

¶
+

µ
1 −12
−21 1

¶−1µ
11 12
21 22

¶µ
1−1
2−1

¶
+

µ
1 −12
−21 1

¶−1µ
1
2

¶

y = A
−1γ +A−1Γy−1 +A

−1v
⇒ y = δ +Θy−1 + u

where the variance-covariance matrix of the error terms Σ is given by

Σ =
1

(1− 1221)2

µ
21 + 212

2
2

21
2
1
+ 12

2
2

21
2
1
+ 12

2
2

221
2
1
+ 22

¶
The   error terms (elements of u), interpreted as one-step forecast errors

or “innovations”, are linear combinations of the structural disturbances 1
and 2 and, in general, have non-zero covariance.

1.1 Stationarity

Using the   representation, it is possible to study the dynamic response of

the variables in y to each element of vector u. If the   is stationary (that
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is, it has finite and time-invariant first and second moments), the response

to innovations gradually dies down, tending to zero in the long-run. It is

therefore important to establish under what conditions the   system is

stationary. Such conditions are a multivariate extension of those valid for

the unvariate  process.

In the  () case

y = δ +Θ1 y−1 +Θ2 y−2 + +Θ y− + u
(I−Θ1 −Θ2 

2 − −Θ 
)y = δ + u

Θ()y = δ + u

for y to be stationary, the matrix polynomial in the lag operatorΘ() must

be invertible. Invertibility requires that the roots of the following equation

det (I−Θ1  −Θ2 
2 − −Θ 

) = 0

be (in modulus) outside the unit circle.

Example: for a  (1) bivariate system

y = δ +Θ1 y−1 + u
⇒ (I−Θ1 )y = δ + uµ

1− 11 −12
−21 1− 22

¶
y = δ + u

the stationarity condition is that the roots of the equation

det (I−Θ1 ) = 0

⇒ 1− (11 + 22)  + (1122 − 2112) 
2 = 0

be outside the unit circle.

Under stationarity, the   can be expressed as a vector moving average of

infinite order, (∞):

y = Θ()−1 (δ + u)

= Θ(1)−1 δ +Θ()−1 u

from which we get the expected value (unconditional mean) of y:

(y) = Θ(1)−1 δ = (I−Θ1 −Θ2 − −Θ)
−1 δ
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1.2 Estimation

The   can be estimated by means of  applied equation by equation.

This procedure yields consistent estimates of the parameters in δ, Θ1, Θ2,

... Θ, and of the variances and covariances of the innovations in matrix Σ.

1.3 The “identification” problem and dynamic analy-

sis

If we are interested in analyzing the dynamic response of the endogenous

variables in y to each element of the innovation vector u, the (∞)
form of the   model can be used:

y = Θ(1)−1 δ +Θ()−1 u
= Θ(1)−1 δ + (I+Ψ1+Ψ2

2 + )u

The  ×  matrices Ψ (for  = 0 ∞ and with Ψ0 = I) describe the

response over time of each endogenous variable  ( = 1 ) to each shock

 ( = 1 ).

However, the economic interpretability of such responses is often difficult

since the   innovations (elements of u) are linear combinations of the

system’s structural disturbances and display correlation. Indeed, what we

would like to get from the dynamic analysis of the  model is the response

of y to the structural disturbances, to which it is generally possible to attach

an economic interpretation. Extending the above example (with  = 2 and

 = 1) to   2 endogenous variables and to   1 lags, we can write the

relationship between the structural and reduced forms of the system (and

the associated disturbances) as:

Ay = γ + Γ1 y−1 + Γ2 y−2 + + Γ y− + v
⇒ y = A−1γ +A−1Γ1 y−1 +A

−1Γ2 y−2 + +A−1Γ y− +A
−1v

= δ +Θ1 y−1 +Θ2 y−2 + +Θ y− + u

from which we get the relationship between the   residuals (u) and the

structural disturbances (v):

u = A−1v
⇒ Au = v

To obtain the structural disturbances v from estimation of the  ’s inno-

vations u, it is necessary to identify the elements of matrix A (containing

the contemporaneous relationships among the endogenous variables). Only
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after solving this identification problem it is possible to proceed to the analy-

sis of the dynamic response of y to each shock in v. To obtain the elements

of A we can use the relation between the variance-covariance matrices of u
(Σ) and v (D), the latter being a diagonal matrix:

(Au (Au)
0) = A(uu

0
)| {z }

Σ

A0 = (vv
0
)| {z }

D

⇒ AΣA0 = D

The parameters to be identified are the (− 1) off-diagonal elements of A
(by construction the elements on the main diagonal being set equal to 1),

and the  elements on the diagonal of D (the variances of the structural

shocks): overall, 2 parameters. Estimation of the   yields estimates

of  variances and
(−1)
2

covariances among the innovations: overall,
(+1)

2

estimates, corresponding to the distinct elements of the symmetric matrix Σ.

Since the number of available estimates is less than the number of parameters

to be identified, it is necessary to impose a set of 2− (+1)

2
=

(−1)
2

restric-

tions on the elements of A. Such restrictions, concerning the simultaneous

relationships among the endogenous variables, can be suggested by economic

theory.

Example (for  = 2). In the bivariate case, the relationship between

the   residuals and the structural disturbances is:µ
1 −12
−21 1

¶µ
1
2

¶
=

µ
1
2

¶
There are 4 parameters to be identified: two off-diagonal elements of

A (−12 and −21), and the two variances of the structural shocks 21
and 22. From   estimation we get estimates  (with   = 1 2)

of the elements of Σ (with 12 = 21). The relationship between Σ and

D is then:µ
1 −12
−21 1

¶µ
11 12
12 22

¶µ
1 −21
−12 1

¶
=

µ
21 0

0 22

¶
from which we get the following system of 3 equations:

11 − 21212 + 21222 = 21
22111 − 22112 + 22 = 22

−2111 + (1 + 2112)12 − 1222 = 0
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It is necessary to impose one restriction to achieve identification. For

example, if the chosen restriction is 12 = 0, the system becomes:

11 = 21
22111 − 22112 + 22 = 22

−2111 + 12 = 0

from which we get the 3 remaining parameters:

21 = 11

21 =
12

11

22 = 22 − 212
11

This is the simplest example of “triangular” (or “Choleski”) identifica-

tion, which imposes a recursive structure to the system of simultaneous

relations among the variables. In this case the structural shock 1 is

immediately identified as the first element of the vector of   resid-

uals (1), and the shock 2 is identified as that portion of 2 not

correlated with (i.e. “orthogonal” to) 1:

1 = 1

2 = 211 + 2

The chosen restriction for identification (12 = 0) corresponds to a spe-

cific “ordering” of the variables in the system (with 1 coming “before”

2): 1 affects 2 within period  whereas 2 does affect 1 only in sub-

sequent periods (through its lags 2−1 in the   equation for 1).
The alternative restriction 21 = 0 leads to a different identification,

based on the opposite ordering of the variables, with 2 before 1; in

this case we have

2 = 2

1 = 122 + 1

In general, simple recursive identification schemes of this kind make use

of the Choleski factorization of a symmetric, positive definite matrix

such as Σ.1

1Choleski factorization: any symmetric positive definite matrix Σ can be expressed
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After achieving identification of the parameters in A and D, the (orthog-

onal) structural disturbances can be constructed from the relationAu = v.

It is then possible to proceed to the analysis of the dynamic response of y+
to v. This analysis, called innovation accounting, is carried out by con-

structing the (orthogonalized) impulse response functions ( ) and forecast

errors variance decompositions (), both derived from the (∞)
representation of the   system:

y = Θ(1)−1 δ + (I+Ψ1+Ψ2
2 + )u

= Θ(1)−1 δ + (A−1|{z}
Φ0

+Ψ1A
−1| {z }

Φ1

+Ψ2A
−1| {z }

Φ2

2 + )v

= Θ(1)−1 δ +Φ0 v +Φ1 v−1 +Φ2 v−2 + 

 : the elements of the matrices Φ trace out the effects over time (impulse

response functions) of each structural disturbance in v keeping all the

other disturbances at zero, under the set of identifying assumptions

used in the preceding step (note that Φ0 = A−1). Each matrix Φ

captures the effect of the structural shocks at time  on the endogenous

variables at time + ; the typical element

 =
 +

 

captures the response of the th element of y+ to an “impulse” due

to the th element of v.

: from the (∞) representation of the   it is possible to obtain

the forecast of future y0s over an -period horizon (ŷ+) on the basis

of information in current (time ) and past values of the variables in

the system yy−1 . The associated forecast error is:

y+ − (y+ |yy−1 ) = Φ0 v+ +Φ1 v+−1 + +Φ−1 v+1

(“factorized”) as

Σ = TT0

with T a lower-triangular matrix (with all zeros above the main diagonal). In the case

above

T = A−1D
1
2

so that

Σ = (A−1D
1
2 )(A−1D

1
2 )0

= A−1D(A−1)0
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The forecast error variance is given by the following symmetric matrix

 (y+ − (y+ |yy−1 )) = Φ0DΦ0
0+Φ1DΦ0

1++Φ−1DΦ0
−1

The elements on the main diagonal of this matrix capture the forecast

error variances of each variable in y:  (+−(+ |yy−1 )).
This variance can be expressed as the sum of the contributions of each

structural disturbance in v to the total variance of each endogenous

variable over the relevant horizon (forecast error variance decomposi-

tion). For example, the fraction of the forecast error variance of the

-th endogenous variable at horizon  attributable to the -th structural

disturbance is given by

2
P−1

=0 
2


21
P−1

=0 
2
1 + 22

P−1
=0 

2
2 + + 2

P−1
=0 

2


Again (as for the  s), this step is economically meaningful only

if there are no covariance terms, which is warranted by the chosen

identification procedure (D is diagonal).

1.4 A first application: Stock-Watson (JEP 2001)

J. Stock and M. Watson (Journal of Economic Perspectives 2001) provide

a simple example of   modelling, studying a small-scale macroeconomic

system for the US made up of the inflation rate (), the unemployment rate

() and the Federal Funds rate (), the very short-term policy rate directly

influenced by the monetary policy decisions of the Federal Reserve. The

structural form of the system is then:

A

⎛⎝ 




⎞⎠ = C()

⎛⎝ −1
−1
−1

⎞⎠+
⎛⎝ 1

2


⎞⎠
where C() is a square matrix of polynomials in the lag operator. The

innovation accounting analysis is performed after identification of the struc-

tural disturbances achieved by means of a Choleski (recursive) factorization

of matrix A. Ordering the three variables as shown above, the identification

scheme can be represented as:⎛⎝ 1 0 0

21 1 0

31 32 1

⎞⎠⎛⎝ 



⎞⎠ =

⎛⎝ 1
2


⎞⎠
⇒

 = 1
 = −21 + 2
 = −31 − 32


 + 
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where the structural disturbance  is interpreted as an unanticipated move-

ment of the interest rate due to monetary policy actions. Inverting A yields

the   innovations as linear combinations of the structural disturbances:

 = 1
 = −211 + 2
 = −(31 − 3221) 

1
 − 32 

2
 + 

9







2 Application to “monetary policy measure-

ment”

The general framework outlined above has been extensively applied to the

analysis of the monetary policy transmission mechanism (by Christiano-

Eichenbaum-Evans 2000, Bernanke-Mihov 1998, Bagliano-Favero 1998 among

others). To highlight the key issue of identification of monetary policy actions

whose effects on the economy can be analysed by means of VAR models, we

introduce more details in the general formulation of a VAR system outlined

above, starting from the structural and reduced forms of the model.

The need for a careful handling of the identification problem stems from

the main feature of monetary policy conduct: in setting their policy instru-

ments, monetary authorities react to current and foreseen developments in

the economy. In order to capture the dynamic effects of a monetary pol-

icy action on the economy (the “monetary policy transmission mechanism”),

the endogenous response of monetary policy to macroeconomic and financial

variables (the “systematic” policy component) must be separated from the

changes in the policy instruments due to “deviations” from such systematic

policy (the monetary policy “shock”). Only when the latter is identified, the

VAR analysis can yield reliable information on the transmission of policy

impulses to the economy. Possible rationalizations of such shocks include

changes in the “preferences” of the monetary authorities (e.g. as to the rel-

ative weight of inflation control and output stabilization goals in the loss

function) and the presence of measurement errors in the data used in real

time by policymakers, whereas the model is estimated on revised, error-free

data.

Expanding on the above general framework, we now describe the main

elements of the VAR analysis of the monetary transmission mechanism:

• the structural form of the model, defining the policy rule (system-

atic, endogenous response of monetary policy to developments in the

economy) and the exogenous monetary policy shocks is written as:

A

µ
Y

P

¶
= C()

µ
Y−1
P−1

¶
+B

µ
v
v

¶
(1)

whereY is a vector of non-policy macroeconomic variables (e.g. output

and prices), P is a vector of variables directly affected by the monetary

policymaker and/or containing information on the current stance of

policy (e.g. interest rates and monetary aggregates), v is a vector of

structural disturbances to the non-policy and policy variables. Matrix
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A describes the contemporaneous relations among the variables, and

the possibly non-zero off-diagonal elements of matrix B allow some

structural shocks to affect directly more than one endogenous variable

in the system.

• the reduced form of the model (VAR) to be estimated is derived as:µ
Y

P

¶
= C∗()

µ
Y−1
P−1

¶
+

µ
u
u

¶
(2)

where C∗() = A−1C() and u is the vector of VAR residuals (inno-
vations in the endogenous variables), with variance-covariance matrix

(uu
0
) = Σ;

• the relation between the (estimated) VAR innovations in u and the
(unobservable) structural disturbances in v is given by:

A u= B v

or, equivalently

u= A
−1B v (3)

from which it is clear that the VAR residuals are linear combinations

of the structural disturbances and cannot be given immediately an

interpretation as fundamental economic shocks. From (3) we derive

the following relationship:

(uu
0
) = A

−1B(vv
0
)B

0(A−1)0

The problem of the identification of structural parameters in the sys-

tem and of the structural shocks (including the monetary policy shock) is

addressed by imposing some restrictions on the elements of A and B. In

general, a model is identified by:

- assuming orthogonality of the structural disturbances in v;

- assuming that macroeconomic variables in Y do not simultaneously

react to policy variables in P, while the simultaneous feedback from Y

to P is allowed;

- imposing restrictions on the contemporaneous relationships among vari-

ables in the policy block of the model reflecting the operational proce-

dures implemented by monetary policymakers;
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- imposing restrictions on the long-run response of some variables to

structural disturbances.

Various combinations of these identification assumptions have been pro-

posed in the literature. In what follows we will examine the “recursiveness”

approach of Christiano, Eichenbaum and Evans (CEE, 2000), the “semi-

structural” approach of Bernanke and Mihov (BM, 1998) and the long-run

restrictions approach of Blanchard and Quah (BQ, 1989). Finally, a note

will be devoted to an alternative identification strategy, which exploits in-

formation not contained in the endogenous variables included in the VAR

system but extracted from financial markets data, usually at a high (daily)

frequency (Bagliano-Favero, EER 1999; Faust-Swanson-Wright, JME 2004).
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