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ABSTRACT

We show that the external habit-formation model economy of Campbell and Cochrane
~1999! can explain why the Capital Asset Pricing Model ~CAPM! and its extensions
are better approximate asset pricing models than is the standard consumption-
based model. The model economy produces time-varying expected returns, tracked
by the dividend–price ratio. Portfolio-based models capture some of this variation
in state variables, which a state-independent function of consumption cannot cap-
ture. Therefore, though the consumption-based model and CAPM are both perfect
conditional asset pricing models, the portfolio-based models are better approxi-
mate unconditional asset pricing models.

THE DEVELOPMENT OF CONSUMPTION-BASED ASSET PRICING THEORY ranks as one of
the major advances in financial economics during the last two decades. The
classic papers of Lucas ~1978!, Breeden ~1979!, Grossman and Shiller ~1981!,
and Hansen and Singleton ~1982, 1983! show how a simple relation between
consumption and asset returns captures the implications of complex dy-
namic intertemporal multifactor asset pricing models.

Unfortunately, consumption-based asset pricing models prove disappoint-
ing empirically. Hansen and Singleton ~1982, 1983! formulate a canonical
consumption-based model in which a representative investor has time-
separable power utility of consumption. They reject the model on U.S. data,
finding that it can not simultaneously explain the time-variation of interest
rates and the cross-sectional pattern of average returns on stocks and bonds.
Wheatley ~1988! rejects the model on international data.

All models can be rejected, and the more important issue is which approx-
imate models are most useful. Alas, the canonical consumption-based model
performs no better, and in many respects worse, than even the simple static
Capital Asset Pricing Model ~CAPM!. Mankiw and Shapiro ~1986! regress
the average returns of the 464 NYSE stocks that were continuously traded
from 1959 to 1982 on their market betas, on consumption growth betas, and
on both betas. They find that market betas are more strongly and robustly
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associated with the cross section of average returns, and they find that mar-
ket betas drive out consumption betas in multiple regressions. Breeden, Gib-
bons, and Litzenberger ~1989! study industry and bond portfolios, finding
roughly comparable performance of the CAPM and a model that uses a mim-
icking portfolio for consumption growth as the single factor, after adjusting
the consumption-based model for measurement problems in consumption.
Cochrane ~1996! finds that the traditional CAPM substantially outperforms
the canonical consumption-based model in pricing-size portfolios. For exam-
ple, he reports a root mean square pricing error ~alpha! of 0.094 percent per
quarter for the CAPM and 0.54 percent per quarter for the consumption-
based model.

More recently, multifactor models have improved on the CAPM. Shanken
~1990! Ferson and Schadt ~1996!, Jagannathan and Wang ~1996!, and Cochrane
~1996! extend the traditional CAPM by scaling the market factor with “price
ratio” variables that reveal market expectations, such as the dividend–price
ratio or the term premium. This extended CAPM can be interpreted as a
conditional CAPM, or as an unconditional multifactor model. Cochrane ~1996!
reports pricing errors about half those of the static CAPM on size portfolios.
Chen, Roll, and Ross ~1986! and Jagannathan and Wang ~1996! reduce pric-
ing errors by adding macroeconomic factors, and Fama and French ~1993!
use size and book-market factors to dramatically reduce the CAPM’s pricing
errors on size and book-market sorted portfolios.

The canonical consumption-based model has failed perhaps the most im-
portant test of all, the test of time. Twenty-five years after the development
of the consumption-based model, almost all applied work in finance still
uses portfolio-based models to correct for risk, to digest anomalies, to pro-
duce cost of capital estimates, and so forth.

This history is often interpreted as evidence against consumption-based
models in general rather than against particular utility functions, particular
specifications of temporal nonseparabilities such as habit persistence or du-
rability, and particular choices of consumption data and data-handling pro-
cedures. But this conclusion is internally inconsistent, because all current
asset pricing models are derived as specializations of the consumption-based
model rather than as alternatives to it. All current models predict that ex-
pected returns should line up against covariances of returns with some func-
tion of consumption ~possibly including leads and lags!. For example, the
CAPM is derived by specializing the consumption-based model to two peri-
ods, quadratic time-separable utility, and no labor income ~or to log utility
and lognormally distributed returns; or to quadratic utility and i.i.d. re-
turns; see Cochrane ~1999! for textbook derivations!. Portfolio-based models
are not derived by the assumption of explicit frictions that delink consump-
tion from asset returns. One cannot believe that the CAPM does hold, but
consumption-based models, as a class, fundamentally do not.

Still, the canonical consumption-based model does poorly in practice rel-
ative to factor-pricing models that use portfolio returns as risk factors, and
it is important to understand why this is so. The answer is likely to be

2864 The Journal of Finance



deeper than measurement errors in available consumption data sets. In this
paper, we examine this issue using artificial data from the Campbell and
Cochrane ~1999! model economy. A consumption-based model does hold, ex-
actly and by construction, yet we find that the CAPM outperforms the ca-
nonical specification of the consumption-based model, and that a multifactor
extension of the CAPM performs better still.

Because we study artificial data from a fully specified economy, we are
able to analyze the economic reasons for these results. Conditioning infor-
mation is the central element of the story. The model has only one shock, so as
the measurement interval shrinks ~and ignoring the small effects of non-
linearities!, consumption growth and the market return are both perfectly
conditionally correlated with the stochastic discount factor. Thus, consump-
tion growth or the market return both provide a perfect conditional asset pric-
ing model; conditional expected returns line up perfectly with conditional betas
on the market portfolio or conditional betas on consumption growth.

However, returns are not i.i.d., as the model economy generates time-varying
expected returns that can be forecast by dividend–price ratios. This means that
unconditional correlations need not match conditional correlations. It turns out
that the market return is better unconditionally correlated with the true dis-
count factor than is consumption growth and thus the market return is a better
proxy for an unconditional asset pricing model. The reason for this is that the
market return is affected when the price–dividend ratio changes. The market
return therefore reflects variation in this state variable that consumption growth
does not. Equivalently, the stochastic discount factor is a state-dependent func-
tion of consumption growth; the market return captures some of this state de-
pendence as well as some correlation with consumption growth shocks.

One can always argue in principle that perhaps the utility function is mis-
specified, but it is hard to believe that plausible changes in utility functions
could explain the amount by which portfolio-based models outperform the ca-
nonical consumption-based model with power utility. Our contribution is to show
in an explicit quantitative example that, in fact, portfolio-based models can out-
perform the canonical consumption-based model by the amount we see in the
data, even when a slightly more complex consumption-based model holds by
construction.

Section I quickly reviews the Campbell-Cochrane ~1999! model and pa-
rameter choices. Section II reviews the approximate models and the proce-
dure for calculating their pricing errors. Section III presents the results, and
Section IV concludes.

I. The Economic Model

To generate time-varying expected returns, the model economy adds habit
persistence to the standard consumption-based specification. As bad shocks
drive consumption down towards the habit level, risk aversion rises, stock
prices decline, and expected returns rise. Campbell and Cochrane ~1999!
describe the model in detail, and motivate the ingredients.
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A. Setup

Consumption growth is an i.i.d. lognormal endowment process,

Dct11 5 g 1 vt11; vt11 ; i.i.d. N ~0, s2 !. ~1!

Identical agents maximize the utility function

E (
t50

`

d t
~Ct 2 Xt !

12g 2 1

1 2 g
. ~2!

Here Ct is consumption, Xt is the level of habit, and d is the subjective or
time discount factor. Lowercase letters denote logarithms of uppercase let-
ters, ct 5 ln Ct , and so forth. g denotes the mean consumption growth rate.

It is convenient to capture the relation between consumption and habit by
the surplus consumption ratio

St 5
Ct 2 Xt

Ct
.

A process for the surplus consumption ratio specifies how habit Xt responds
to the history of consumption. The log surplus consumption ratio evolves as

st11 5 ~1 2 f! Ss 1 fst 1 l~st !~ct11 2 ct 2 g!. ~3!

f, g, and Ss are parameters. It is convenient to specify that the parameter g
in equation ~3! is equal to the mean consumption growth rate g, but this is
not essential.

The sensitivity function l~st ! in equation ~3! controls the sensitivity of st11
and thus habit xt11 to contemporaneous consumption ct11. It is given by

l~st ! 5 5
1
OS !1 2 2~st 2 Ss! 2 1, st # smax

0 st $ smax

~4!

where

OS [ s! g

1 2 f
, ~5!

and smax is the value of st at which the square root in equation ~4! runs into
zero,

smax [ Ss 1 2
12~1 2 OS 2 !. ~6!
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The specification is not as complex as it seems at first glance: Equations ~3!
and ~4! are almost a familiar square-root process. This specification of l~st !
achieves three objectives.

~1! The risk-free interest rate is constant. As consumption declines to-
ward habit, consumers in a nonstochastic economy would want to bor-
row, driving up interest rates. However, as consumption declines, l~st !
rises. This rise acts in equation ~3! like an increase in risk, which
increases precautionary savings, thus lowering interest rates. Our spec-
ification of l~st ! makes these two effects offset exactly.

~2! Habit is predetermined at the steady state st 5 Ss.
~3! Habit is also predetermined near the steady state, or, equivalently,

habit moves nonnegatively with consumption everywhere. It also turns
out that l~st ! must rise as st falls in order to generate a time-varying
conditional Sharpe ratio.

B. Marginal utility and asset prices

We assume that habit is external; people want to “keep up with the Joneses”
as in Abel ~1990!. Then, marginal utility is given by

uc~Ct , Xt ! 5 ~Ct 2 Xt !
2g 5 St

2g Ct
2g . ~7!

The intertemporal marginal rate of substitution, or stochastic discount fac-
tor, is

Mt11 [ d
uc~Ct11, Xt11!

uc~Ct , Xt !
5 dS St11

St

Ct11

Ct
D2g

. ~8!

The log marginal rate of substitution is

mt11 5 ln~d! 2 g~Dst11 1 Dct11!
~9!

5 ln~d! 2 gg 2 g~f 2 1!~st 2 Ss! 2 g~1 1 l~st !!vt11.

This variable is conditionally normally distributed. The external habit spec-
ification is convenient, because it allows us to ignore terms by which current
consumption might affect future habits. In Campbell and Cochrane ~1999!
we argue that many of the aggregate properties of the model are substan-
tially unaffected by the choice of an external rather than an internal
specification.

The real risk-free interest rate is the reciprocal of the conditionally ex-
pected stochastic discount factor

Rt
f 5 10Et ~Mt11!. ~10!
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Using equation ~9! and taking the expectation of the lognormal random vari-
able M, the log risk-free rate is

rt
f 5 2ln~d! 1 gg 2 2

12g~1 2 f!. ~11!

We use a claim to the consumption stream to model the market portfolio.
Its price–dividend ratio satisfies

Pt

Ct
~st ! 5 EtFMt11

Ct11

Ct
S1 1

Pt11

Ct11
~st11!DG. ~12!

We solve this functional equation numerically on a grid for the state vari-
able st , using numerical integration and interpolation of the P0C~s! function
to evaluate the conditional expectation. Given the price–consumption ratio
as a function of state and the state transition equation ~3!, we can simulate
returns and other interesting quantities.

We also model a claim to dividends that are imperfectly correlated with
consumption. We specify that log dividend growth is also i.i.d., and has cor-
relation coefficient r with aggregate consumption growth

Ddt11 5 g 1 wt11; wt11 ; i.i.d. N ~0, sw
2!, corr~wt ,vt ! 5 r. ~13!

The price–dividend ratio of this claim is also a function of the state variable
st , and we find it in the same way.

We simulate our model at a monthly frequency. We construct time-
averaged annual consumption data by summing consumption during the year.
This procedure is a crude way to capture the effect of time aggregation in
measured consumption.

C. Choosing Parameters

We use the same parameter values as in Campbell and Cochrane ~1999!,
calibrated to postwar ~1947 to 1995! annual NIPA nondurable and services
per capita consumption together with data from the CRSP value-weighted
NYSE stock portfolio. Table I summarizes the parameter choices. The mean
and standard deviation of log consumption growth, g and s, match the con-
sumption data. We choose the serial correlation parameter f to match the
serial correlation of the log price–dividend ratio. We choose the risk-free
rate to match the average real return on Treasury bills. We choose the utility
curvature parameter g to match the market Sharpe ratio. We calibrate the
standard deviation and consumption growth correlation of the dividend pro-
cess from the CRSP value-weighted return data as well. Parameters d, OS,
and Smax follow from these choices via equations ~11!, ~5!, and ~6!.
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Campbell and Cochrane ~1999! show that the model with these parameter
choices matches a wide variety of phenomena including the equity premium,
the predictability of stock returns from price–dividend ratios, violations of
volatility tests, and the leverage effect by which lower prices imply more
volatile returns. This point is important for the current exercise: Our story
is based on time-varying conditioning information, and one wants reassur-
ance that the assumed time variation in return distributions is sensible.

II. Implications for Cross-Sectional Tests of Asset Pricing Models

Now we can answer our basic question. How do the standard power utility
consumption-based model, the CAPM, and multifactor extensions compare
in artificial data from our model?

A. False Models

We specify the alternative asset pricing models in terms of their stochastic
discount factors, which we denote by Y. We use Y to distinguish false dis-
count factor proxies from the true discount factor M. The alternative models
are:

~1! The canonical consumption-based model with time-separable power
utility,

Yt11 5 bSCt11

Ct
D2h

. ~14!

Table I

Parameter Choices
Starred ~*! entries are annualized values, for example 12g, !12s, 12r f, f12, d12, !12sw be-
cause the model is simulated at a monthly frequency. d, OS, and Smax are calculated using equa-
tions ~11!, ~5!, and ~6! respectively.

Panel A: Assumed Parameters

Mean consumption growth* g, % 1.89
Standard deviation of consumption growth* s, % 1.50
Log risk-free rate* r f, % 0.94
Persistence coefficient* f 0.87
Utility curvature g 2.00
Standard deviation of dividend growth* sw, % 11.2
Correlation between consumption, dividend growth r 0.2

Panel B: Implied Parameters

Subjective discount factor* d 0.89
Steady-state surplus consumption ratio OS 0.057
Maximum surplus consumption ratio Smax 0.094
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We use b and h to emphasize that these coefficients need not be equal
to the parameters d and g of the data-generating model. This is the
classic form studied by Hansen and Singleton ~1982!.

~2! A consumption-based linear factor model,

Yt11 5 a 1 bSCt11

Ct
D. ~15!

A discount factor that is a linear function of a set of variables implies
that expected returns are linear in betas, that is, multiple regression
coefficients of returns on those variables. Thus equation ~15! corre-
sponds to tests that compare expected returns with consumption be-
tas, without imposing the nonlinear structure of equation ~14!, as in
Mankiw and Shapiro ~1986! and Breeden et al. ~1989!.

~3! The traditional static CAPM,

Yt11 5 a 1 bRt11
w , ~16!

where Rw is the consumption claim ~wealth! return.

~4! A multifactor or conditional CAPM,

Yt11 5 @a0 1 a1~dt 2 pt !# 1 @b1 1 b2~dt 2 pt !#Rt11
w ~17!

5 a0 1 a1~dt 2 pt ! 1 b1 Rt11
w 1 b2 @~dt 2 pt !Rt11

w # . ~18!

The first equation expresses this model as a conditional CAPM—a
CAPM with time-varying coefficients. The second equation expresses
the same model as an unconditional multifactor asset pricing model.

Our model is particularly good motivation for this form of a condi-
tional CAPM. The canonical consumption-based model with power util-
ity implies

yt11 5 ln~b! 2 h~ct11 2 ct !. ~19!

The true model is, from equation ~9!,

mt11 5 ln~d! 1 @ggl~st ! 2 g~f 2 1!~st 2 Ss!# 2 g~1 1 l~st !!~ct11 2 ct !.

~20!

The true model has the same form as the canonical consumption-
based model ~19!, except that it makes the intercept and slope on con-
sumption growth functions of the slow-moving state variable st . The
multifactor model ~17! also has this form, but it is driven by the mar-
ket return rather than by consumption growth.

2870 The Journal of Finance



B. Pricing Errors

We want to know how big the pricing errors of the false models are when
applied to a cross section of assets. Our single-shock model does not natu-
rally give rise to an interesting cross section of assets such as the size, book-
to-market ratio, industry, government bond, corporate bond, or international
portfolios studied in the asset pricing literature. Therefore, we use a dis-
tance measure introduced by Hansen and Jagannathan ~1997! and related to
Shanken ~1987! to find the maximum pricing error that the false models can
produce.

Hansen and Jagannathan show that the maximum possible pricing error,
expressed in Sharpe ratio units as expected return error ~Jensen’s alpha! per
unit of standard deviation, is proportional to the standard deviation of the
difference between the true and false discount factors. To express these ideas
formally, let E Y~j! denote the expected value of a payoff j predicted by the
false discount factor Y. We show that

max
$j%

6E Y~j! 2 E~j!6

s~j!
5

s~M 2 Y !

E~M !
. ~21!

The left-hand side of equation ~21! is the definition of the maximum pricing
error per unit of standard deviation. The right-hand side, the Hansen-
Jagannathan distance measure, relates the pricing error to the standard
deviation of the difference between true and false discount factors.

Each of our false discount factor models has free parameters. We fix the
free parameters in two alternative ways, either by minimizing the maximum
pricing error, or by “estimating” parameters that best price the risk-free rate
and the market return. When the discount factor Y is a linear function of
factors, Y 5 b'f, these procedures are related. In this case, minimizing the
maximum pricing error is the same as ensuring that the false model cor-
rectly prices the factors,

min
$b%

E @~M 2 b'f !2 # n E~Mf ! 5 E~f ~f 'b!! 5 E~Yf !. ~22!

Minimizing the maximum pricing error is also equivalent to an OLS regres-
sion of the true discount factor M on the factors f. From equation ~22!,

b 5 E~ff ' !21E~Mf !. ~23!

Both procedures imply that the true and approximate discount factor agree
on the risk-free rate, so E~M ! 5 E~Y !, which is required to derive our simple
version of Hansen and Jagannathan’s distance measure, equation ~21!.
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C. Derivation and Further Interpretation

To understand the Hansen-Jagannathan result, consider a payoff j with
price P. The pricing relation P 5 E~Mj! implies

E~j! 5
P

E~M !
2

cov~M, j!

E~M !
. ~24!

The expected payoff ~return! predicted by the false discount factor Y is
given by

E Y~j! [
P

E~Y !
2

cov~Y, j!

E~Y !
. ~25!

Suppose the approximate model gives the same average price of a risk-free
rate, that is, E~Y ! 5 E~M !. We pick parameters to ensure this equality in
our application, to focus entirely on the models’ ability to correct for risk.
Then the expected return error is

6E Y~j! 2 E~j!6 5 * cov n~M 2 Y, j!

E~M ! * #
s~M 2 Y !s~j!

E~M !
. ~26!

The payoff j* 5 M 2 Y makes the inequality tight. Sensibly, this worst-
priced payoff is perfectly correlated with the difference between the true and
false discount factors. Hansen and Jagannathan ~1997! derive the result in
a much more general setting.

It is both the advantage and disadvantage of the Hansen-Jagannathan
measure that it depends only on the model, not on the set of test portfolios.
Approximate models can work well on some portfolios but poorly on others.
The CAPM, for example, works well on beta-sorted stock portfolios, decently
on industry- and size-sorted portfolios, but poorly on portfolios sorted by
book-market ratio. Kandel and Stambaugh ~1995! and Roll and Ross ~1994!
show how the pricing errors of an approximate model can depend dramati-
cally on the test portfolio choice.

The Hansen-Jagannathan procedure eliminates this dependence by eval-
uating the pricing error of the worst possible portfolio, the one that gener-
ates the largest possible pricing error. The search for the worst-priced payoff
extends over all possible contingent claims, including all dynamic strategies.
The worst-priced payoff j* 5 M 2 Y is typically a function of consumption
growth as well as asset returns.

This is also the disadvantage, as our experience with the relative perfor-
mance of the CAPM and consumption-based model is based on a quite lim-
ited set of assets, especially when compared to the set of all contingent claims.
For example, if the maximum pricing error of a false model occurs for a
portfolio that is a highly nonlinear function of consumption growth, that fact
may really not tell us much about which models price stock portfolios well.
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Even within the limited set of assets that have been examined, results seem
to be sensitive to the asset choice; Breeden et al. ~1989! use industry and
bond portfolios, and find better results for the canonical consumption-based
model than do Mankiw and Shapiro ~1986! using individual stocks, or Cochrane
~1996! using size portfolios.

With a specific set of traded assets in mind, one could generalize the Hansen-
Jagannathan technique to characterize only the pricing errors of traded as-
sets. Equation ~21! generalizes to

max
$j[X%

6E Y~j! 2 E~j!6

s~j!
5 min

$M: P5E~MX !∀X[X%

s~M 2 Y !

E~M !
, ~27!

where X denotes the space of traded assets, and P and X denote a price and
payoff of a traded asset.

One could generate a limited set of traded assets, by generating multiple
dividends of the form given by equation ~13! and pricing them via the true
model. One could then evaluate pricing errors of false models via equation
~27!. However, the fundamental economic characteristics that drive the cross-
sectional variation in observed equity returns are poorly understood and are
unlikely to be well modeled by simple processes such as equation ~13!. There-
fore, we do not limit the space of portfolios over which to search for large
pricing errors.

III. Results

Table II gives the maximum pricing errors in artificial data from the
Campbell-Cochrane ~1999! model. These pricing errors are estimates of pop-
ulation moments, recovered from a simulation of 100,000 months of artifi-
cial data time aggregated to an annual frequency.

We start with the static CAPM, using the consumption-claim return as the
market return, in row ~a!. The maximum pricing errors have a 0.40 Sharpe
ratio, or 7.9 percent average return at a 20 percent standard deviation. This
is roughly the size of the worst CAPM pricing errors in the literature. For
example, Fama and French ~1993! find the CAPM does nothing to explain
the roughly 10 percent expected return variation across book-market sorted
portfolios, and they report that the high-minus-low book-market portfolio
earns a Sharpe ratio roughly that of the market portfolio, despite a very low
market beta.

The scaled CAPM in row ~b! does a bit better than the static CAPM. The
improvement in performance is not dramatic, possibly because we search for
the largest pricing error among all contingent claims, rather than among a
set of portfolios sorted on the same basis as the factors.

Row ~c! presents the canonical consumption-based model with power util-
ity. In this row, we estimate the parameters of the model to minimize the
maximum pricing error. This is as well as the power-utility model can do,
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and it fares a good deal worse than the CAPM. The maximum pricing error
is about 30 percent larger than that of the CAPM. We estimate a large co-
efficient of risk aversion ~h 5 29!, as one does in real data ~Hansen and
Singleton ~1982!!.

The performance of the power-utility model is sensitive to parameter choices.
Choosing parameters by minimizing the maximum pricing error forces the
CAPM to correctly price the market proxy, but this is not true for the
consumption-based model. In row ~d! we pick h to correctly price the market
return. ~Precisely, we minimize the pricing error, and it turns out that h 5
78 sets the error to zero. We always choose b to match the risk-free rate.!
This is the same condition used to pick CAPM parameters, and it more closely
mirrors practice, where one almost always picks parameters to minimize
pricing errors of a cross section of traded assets rather than to minimize the
maximum pricing error.

Table II

Maximum Pricing Errors from Approximate Asset Pricing Models
a0s gives the maximum expected return pricing error per unit of standard deviation produced
by each of the false discount factor models. This is calculated by a0s 5 s~M 2 Y !0E~M !. a~%!
evaluates the pricing error at a 20 percent annual standard deviation, expressed as an annual
percentage average return. h gives the estimated curvature coefficient in the consumption-
based models. rY, M gives the unconditional correlation between true and false discount factors.
The monthly results in rows ~f ! and ~g! are annualized by multiplying by !12. We always
choose parameters so that the false discount factor model correctly prices the risk-free rate. In
rows ~a!, ~b!, and ~c! we minimize the maximum pricing error, which is equivalent to correctly
pricing the factors in rows ~a! and ~b!. In row ~d! we pick h to correctly price the consumption
claim return. Results are based on 100,000 months of simulated data, which are time aggre-
gated to an annual frequency except where otherwise noted.

Panel A: Basic Results

Model a0s a~%! rY, M h

~a! CAPM, Yt11 5 a 1 bRt11
w 0.40 7.9 0.77

~b! Scaled CAPM, Yt11 5 a0 1 a1~ pdt ! 1 @b0 1 b1~ pdt !#Rt11 0.36 7.1 0.82
~c! Power utility, Yt11 5 b~Ct110Ct !

2h 0.52 10.3 0.56 29
~d! Power utility, b, h chosen to price Rw, R f 1.01 20.2 0.56 78
~e! Risk-neutral, Yt11 5 10R f 0.62 12.5 0

Panel B: Variations

Model a0s a~%! rY, M

~f ! CAPM, monthly simulated data 0.13 2.5 0.97
~g! Power utility model, monthly simulated data 0.23 4.7 0.91
~h! Consumption factor model, Yt11 5 a 1 b~Ct110Ct ! 0.54 10.8 0.50
~i! Consumption factor model, a, b chosen to price Rw, R f 0.93 18.5 0.50
~j! CAPM, dividend-claim return Yt11 5 a 1 bRt11

d 0.48 9.5 0.65
~k! Scaled CAPM, dividend-claim return 0.35 7.0 0.83
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The pricing errors in row ~d! are now more than double those of the CAPM:
a 1.01 Sharpe ratio corresponding to a 20.2 percent average return for a 20
percent standard deviation. This pricing error is larger than the spread in
expected returns in most studies. It is also larger than the pricing error of a
risk-neutral model shown in row ~e!. The consumption-based model is liter-
ally worse than useless.

To understand these results, note that there is only one shock in the
Campbell-Cochrane model economy, so consumption growth, returns, and
the discount factor become perfectly conditionally correlated as the time in-
terval of the model shrinks. ~Nonlinearities are the only reason the correla-
tion is not perfect in the discrete-time version of the model.! However, the
sensitivities of consumption growth, returns, and the discount factor to the
underlying shock vary over time and from each other. Thus, consumption
growth or returns are imperfectly unconditionally correlated with the dis-
count factor, and are thus imperfect proxies for unconditional asset pricing
models.

The CAPM performs better because the stock return is more closely un-
conditionally correlated with the marginal rate of substitution than is con-
sumption growth, as one can see from the correlation coefficients in Table II.
Recall that the marginal rate of substitution is given by

Mt11 5 dS St11

St

Ct11

Ct
D2g

. ~28!

Changes in the surplus consumption ratio reduce the unconditional correla-
tion between consumption growth and marginal utility growth. The stock
return moves when consumption ~its dividend! moves, but the stock return
also moves when there is a change in the surplus consumption ratio, so the
stock return is better correlated with marginal utility growth. Time aggre-
gation ~and, in real life, measurement error! add to the advantage of the
stock return as a proxy.

The scaled CAPM controls for variation in conditioning information by
making parameters functions of state. It produces somewhat lower pricing
errors than the CAPM, and somewhat higher correlation with the true dis-
count factor. A conditional CAPM that uses a square root transformation of
a state variable does even better, as one might expect from equation ~9!.

Panel B of Table II presents several variations on the theme. Rows ~f ! and
~g! present CAPM and power-utility results in our monthly simulated data
with no time aggregation. The CAPM produces about half the pricing errors
of the power-utility model. This calculation verifies that the relative perfor-
mance of the two models is centrally due to conditioning information, and
not just to time aggregation in the annual consumption data. Variation in
conditioning information is more important to the unconditional pricing of
shorter-horizon returns, which is why the relative performance of the CAPM
is even better in monthly artificial data, despite the lack of consumption
time aggregation.
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Rows ~h! and ~i! present pricing errors for a model that uses consumption
growth as a factor, but does not impose the nonlinear specification of power
utility, as in Breeden et al. ~1989! and Mankiw and Zeldes ~1986!. The pric-
ing errors are almost identical to those of the nonlinear power-utility model.
This calculation verifies that the poor performance of the consumption-
based model is not due to the occasional spectacular outliers that result from
raising consumption growth to the 278 power.

Rows ~j! and ~k! use a claim to dividends poorly correlated with consump-
tion as the market proxy in the CAPM. This dividend model is not perfect;
its most glaring fault is that dividends and consumption are not cointe-
grated. However, a more realistic dividend model would require another state
variable, and we can at least check the results’ sensitivity with this simple
model. The static dividend-claim CAPM in row ~j! has substantially higher
pricing errors than the static consumption-claim CAPM in row ~a!, yet still
lower than those of the power-utility model. When we scale the dividend-
claim CAPM in row ~k!, we find that its pricing errors fall close to those of
the scaled consumption-claim CAPM in row ~b!. This shows that scaling is
more important when using the noisier dividend-claim return as a proxy. ~In
monthly simulated data, without consumption time aggregation, the un-
scaled dividend-claim CAPM slightly underperforms the power-utility model.!

It is tempting to continue, using our artificial data to evaluate other mod-
els and to study the effects of alternative data transformations. One could
examine the performance of more complex consumption-based models, such
as Ferson and Constantinides’ ~1991! habit specification, or Epstein and Zin’s
~1991! non-expected-utility formulation. One could try ad-hoc leads and lags
of consumption. Porter and Wheatley ~1999! find that time aggregation can
lead one to estimate a habit where there is none; one could see if time ag-
gregation leads one to a biased habit estimate given that the true model
does have habits. We could calculate sampling distributions as well as pop-
ulation values of statistics. Such exercises are of limited value, however,
because a consumption-based model is true in our artificial data, by con-
struction. As more complex models approach the assumed model, they will
naturally do better. But how good various other consumption-based models
are as approximations to our model is a question of limited interest; we want
to know how good they are as approximations to the truth.

IV. Conclusion

We generate artificial time series from a consumption-based model. In our
artificial data, the CAPM, using the wealth portfolio return or the return on
a claim to dividends poorly correlated with consumption, is a much better ap-
proximate asset pricing model than is the canonical power-utility consumption-
based model. Multifactor extensions of the CAPM that use price information
are better still. We conclude that this finding in real data should be inter-
preted as evidence against specific functional forms and parameterizations
rather than as evidence against consumption-based models in general. Because
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conditioning information is at the heart of the story, we also conclude that as-
set pricing models that take account of time-varying conditioning information
are likely to perform better than models that do not do so.

We leave out measurement error in consumption data, and our model only
recognizes a single shock, so all series are perfectly correlated at high fre-
quency. Generalizing both limitations provides a more realistic comparison,
and should further degrade the relative performance of consumption-based
models in our model economy. On the other hand, we regard it as an inter-
esting success that so much of the relative performance of portfolio-based
models can be captured by the effect of conditioning information alone.

Of course, this analysis does not establish that our specification of habit
persistence explains the actual cross section of expected returns based on
measured consumption data. Empirical work on this issue is only just be-
ginning ~Lettau and Ludvigson ~1999!!. There is some hope: Campbell and
Cochrane ~1999! show that historical consumption data, when fed into the
calibrated model, produce stock market swings that are similar in many
ways to the actual history of the stock market. However, one must take
seriously measurement error and specification error in consumption data
before estimating and testing any consumption-based model and especially
in comparing it to portfolio-based models.

Furthermore, pricing error comparisons between consumption-based and
portfolio-based asset pricing models are fundamentally not that revealing.
Returns are far better measured than consumption data, so even if we knew
the true utility function, a return-based model ~using the mimicking portfo-
lio for marginal utility! would produce smaller pricing errors than the un-
derlying consumption-based model. Such a return-based model would continue
to be the best specification for nonstructural questions including risk ad-
justment, anomaly exploration, and cost of capital calculations, and for most
practitioners, especially at high frequency. Ad-hoc portfolio factors can more
closely approximate the ex post mean-variance efficient portfolio, and thus
will seem to do even better in any statistical horse race. Therefore, it is
likely that consumption-based models will always be best used to under-
stand the deeper economic forces that determine the prices of risk in portfolio-
based models, to help sort out which ones really work and which were just
lucky in particular samples, and to analyze structural changes in the dis-
tribution of risks or risk aversion.
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