Basics: spot rates, implicit forward rates and the yield curve

Simple case (discrete time): *zero-coupon* bonds (pay 1 at maturity), no *default risk*.

Yield to maturity (spot):

$$P_T = \frac{1}{(1+R_T)^T}$$

T: maturity (in periods, e.g. years)

 P_T : price at time 0 of a bond maturing at T

R_T: *yield to maturity* of the bond

The relation between yields to maturity R_T to maturity dates T is known as "term structure of interest rates" (*yield curve*)

Yields to maturity R_T implicitly define a term structure of one-period forward interest rates

In general, a (one-period) *forward* contract signed at 0 fixes the payment obtainable at *T* by investing 1 unit of capital at T - 1. Equivalently (as a result of two *spot* contracts):

	0	T - 1	Т
purchase bond maturing at T	-1		$(1 + R_T)^T$
sell bond maturing at $T-1$	+1	$-(1+R_{T-1})^{T-1}$	
	0	$-(1+R_{T-1})^{T-1}$	$(1 + R_T)^T$

 $\Rightarrow \text{ the forward rate between } T - 1 \text{ and } T, \text{ denoted as }_{T-1}f_T, \text{ is}$ $1 +_{T-1}f_T = \frac{(1 + R_T)^T}{(1 + R_{T-1})^{T-1}}$

from which:

$$_{T-1}f_T = \frac{(1+R_T)^T - (1+R_{T-1})^{T-1}}{(1+R_{T-1})^{T-1}}$$

the forward rate $_{T-1}f_T$ is the increase (in percentage points) of the final sum obtainable from a unitary investment at time 0, if the maturity is delayed by one period, from T-1 to T. Equivalently, in terms of the **price** of the bond at 0 :

$$1 +_{T-1} f_T = \frac{P_{T-1}}{P_T}$$

from which:

$$T_{T-1}f_T = \frac{P_{T-1} - P_T}{P_T}$$

the *forward* rate $_{T-1}f_T$ is the increase (in percentage points) of the price of the bond at time 0, if the maturity is anticipated by one period, from *T* to T - 1.

The same relationship between *spot* and (one-period) *forward* rates holds for any pair of dates. Therefore (going backward in time from *T*):

$$(1+R_T)^T = (1+R_{T-1})^{T-1} \cdot (1+T-1)^T \cdot (1+T-1)^T$$

$$(1 + R_{T-1})^{T-1} = (1 + R_{T-2})^{T-2} \cdot (1 + T-2 f_{T-1})$$

$$(1+R_2)^2 = (1+R_1) \cdot (1+_1f_2)$$

. . .

. . .

. . .

Combining the above expressions (with $R_1 \equiv_0 f_1$):

$$(1 + R_T)^T = (1 + f_1) \cdot (1 + f_2) \dots (1 + f_T)$$

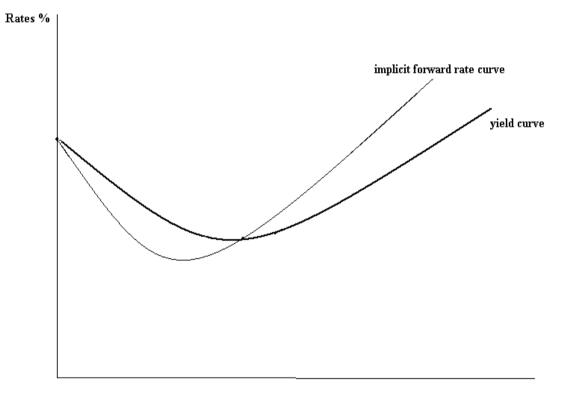
 \Rightarrow link between the *spot* rate on a bond maturing at *T* and the series of (one-period) *forward* rates from period 1 to *T*.

Using the logarithmic approximation $log(1 + x) \simeq x$ we get:

$$R_T = \frac{1}{T} \left(_0 f_1 + _1 f_2 + _2 f_3 + \ldots + _{T-1} f_T \right)$$

 \Rightarrow for any maturity *T* the corresponding *yield* R_T can be expressed as the average of the implicit *forward* rates on the whole life of the bond

\Rightarrow An implicit forward rate curve is therefore associated to the yield (to maturity) curve



Maturity

Note: Relationship between the implicit *forward rate* curve and the *yield* curve in:

$\underbrace{T-1f_T}$	$=$ $\underbrace{R_{T-1}}$	+ $(R_T - R_{T-1})$ • 7	Γ
implicit forward	spot rate	"slope" of the	
rate between	at <i>T</i> – 1	yield curve	
T-1 and T		between $T-1$ and T	

Hence:

 $_{T-1}f_T > R_{T-1}$ if *spot* rates increase b/w T-1 and T $_{T-1}f_T < R_{T-1}$ if *spot* rates decrease b/w T-1 and T $_{T-1}f_T = R_{T-1}$ for T = 0 or if *spot* rates are constant b/w T-1 and T