
VAR modelling for monetary policy analysis: Appendix

Innovation accounting: a bivariate example

Consider a stationary bivariate VAR system in (∞) representation (omitting constant
terms for simplicity):

y = Φ0 v +Φ1 v−1 +Φ2 v−2 + + Φ v− + 
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Impulse response functions

The elements of the matrices Φ trace out the effects over time (impulse response functions)

of each structural disturbance in v keeping all the other disturbances at zero, under the set of

identifying assumptions used (Φ0 = A
−1). Each matrix Φ captures the effect of the structural

shocks at time  on the endogenous variables at time + ; the typical element

 =
 +

 

captures the response of the th element of y+ to an “impulse” due to the th element of v.

Noting that
 +
 

=
 

 −
, from the  representation above we get:

•  of 1 to 1: 011 111 211  (elements in position 1 1 in Φ0Φ1Φ2 )

•  of 1 to 2: 012 112 212  (elements in position 1 2 in Φ0Φ1Φ2 )

•  of 2 to 1: 021 121 221  (elements in position 2 1 in Φ0Φ1Φ2 )

•  of 2 to 2: 022 122 222  (elements in position 2 2 in Φ0Φ1Φ2 )

Forecast error variance decomposition

From the (∞) representation of the   it is possible to obtain the forecast of future

y0s over an -period horizon on the basis of information in current (time ) and past values of

the variables in the system yy−1 . The associated forecast error is:

y+ − (y+ |yy−1 ) = Φ0 v+ +Φ1 v+−1 + +Φ−1 v+1

written in full form asµ
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The forecast error variance is given by the following symmetric matrix

 (y+ − (y+ |yy−1 )) = Φ0DΦ0
0 +Φ1DΦ0

1 + +Φ−1DΦ0
−1

The elements on the main diagonal capture the forecast error variances of each variable in y.

Writing the matrix in full form we get:
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(omitting off-diagonal covariance terms for ease of exposition)
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At any horizon , the forecast error variance for each variable  (with  = 1 2) is the sum

of two components: (i) 21
P−1

=0 
2
1, that captures the variance due to the first structural

disturbance 1, and (ii) 
2
2
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2
2, capturing the variance due to 2. The  exercise

consists in computing the fractions of the total variance attributable to each of the two struc-

tural shocks. Letting  denote the portion of the forecast error variance of variable 

attributable to shock  at forecasting horizon , we have:
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• for a two-period forecasting horizon,  = 2:
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and so on for more extended forecasting horizons. In general, for horizon , variable  and

shock , we have:
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