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The rational expectations hypothesis has been introduced in many macroeco-
nomic models, even outside the framework of the new classical macroeconomics,
to investigate the interactions between asset prices and real activity. These notes
outline two dynamic models that focus on the determinants of stock prices and
exchange rate fluctuations, and their effects on the real economy.

1. The stock market in a dynamic IS-LM model (Blanchard
1981)

This section describes a simplified version of the dynamic IS − LM model in
Blanchard (1981), that extends this elementary macroeconomic scheme along two
dimensions: (i) by considering dynamics, and (ii) by enlarging the set of financial
markets beyond the traditional "money" and "bonds". In the model below, the
latter extension is limited to the stock market. Stock prices have a forward-looking
nature, since they incorporate agents’ expectations on the future course of the
economy (particularly on the determinants of stock market returns: dividends,
future stock prices, and interest rates).1 The changes in stock prices (and, in
extended versions of the model, in the prices of other financial assets such as long-
term bonds) highlight the role of expectations as driving forces of real variables

1In the model, absent any stochastic element, the rational expectations hypothesis coincides
with perfect foresight.



dynamics and as determinants of the effects of economic (fiscal and monetary)
policies.
The main features of Blanchard’s model are:

• the economy is closed, and, as in the static version of the IS − LM model,
the goods price is exogenously fixed and constant;

• private investments (a component of aggregate demand) depend positively
on the ratio of the market value of the productive capital owned by firms to
its replacement cost: this ratio is known as Tobin’s q;

• in the model, q is interpreted as the market valuation of firms’ capital stock.
Such valuation is incorporated into the level of stock prices: an increase in
stock prices signals that the market attributes a higher value to the capital
stock (relative to its replacement cost), thereby inducing firms to increase
investment and enlarge the existing capital stock.

Formally, the aggregate demand side of the model is represented by equations
describing goods demand and the equilibrium on financial asset markets (money,
bonds, and stocks), and the supply side, with fixed prices, is given by a function
capturing the dynamic adjustment of output to excess demand or excess supply in
the goods market. In the following, time t is measured by a continuous variable,
and all variables (with the exception of the price level p) are functions of time.

1.1. Aggregate demand

The aggregate demand for goods, yD(t), is given by the following linear function:

yD(t) = α q(t) + c y(t) + g(t) α > 0 , 0 < c < 1 (1.1)

The level of aggregate demand has three determinants: output y(t) through the
consumption function (the parameter c captures the marginal propensity to con-
sume), the level of stock prices q(t) (here the only determinant of firms’ invest-
ments), and a measure of the fiscal policy stance g(t) (e.g. government spending
less taxation), exogenously set by the policymaker.
Three financial assets are available: money, short-term bonds, and stocks.

Therefore, a complete description of the simultaneous equilibrium on all financial
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markets is given by two equilibrium conditions. On the money market, equilibrium
is described by a standard LM curve:

m(t)

p
= h0 + h1 y(t)− h2 r(t) (1.2)

where real money supply (nominal money m(t) -used as the monetary policy
instrument, perfectly controlled by the central bank- divided by the exogenous
price level p) is equal to money demand, that depends positively on output (for
transaction motives: purchases of goods and payments to productive inputs) and
negatively on the interest rate on short-term bonds r(t).2 For analytical conve-
nience, we assume that the short-term bonds have "instantaneous" (infinitesimal)
maturity. Thus, the rate of return obtained on those bonds coincides with the
interest rate r with no additional capital gain (or loss) component due to changes
in the market price of bonds.
Short-term bonds and stocks are seen as perfect substitutes in investors’ port-

folios: therefore, their rates of return must be equal in equilibrium. Investors’
arbitrage operations on the two financial markets ensures that any return differ-
entials is immediately eliminated, restoring at any time t the following equilibrium
condition (known as a "no-arbitrage condition"):

π(t)

q(t)
+

q̇(t)

q(t)
= r(t) (1.3)

where the left-hand side is the (instantaneous) rate of return on stocks, made up
of dividends paid to shareholders π(t) (and, by assumption, equal to firms’ profits)
and by the capital gain (or loss) due to stock price changes. Such changes are
captured by q̇(t) ≡ dq(t)

dt
, where the dot over q denotes the time derivative: q̇(t) > 0

is a capital gain, whereas q̇(t) < 0 a capital loss.3 The no-arbitrage condition (1.3)
imposes equality in each moment in time between the rate of return on stocks and
the short-term interest rate r(t).4

2The assumption of fixed prices implies a zero expected inflation rate. Therefore, there is no
need to distinguish between the nominal and the real interest rates.

3The absence of stochastic elements in the model allows to equate the expected capital gain
q̇e(t) (that should enter the definition of the rate of return on stocks in (1.3)) with the realized
capital gain q̇(t). In the absence of uncertainty, the rational expectations hypothesis coincides
with perfect foresight: the expected and realized changes in shock prices are equal.

4In the original version of the model (Blanchard 1981), also long-term bonds are introduced.
In this case, a second no-arbitrage condition would be necessary to ensure that the return on
those bonds (made up of two elements -interest payments and price changes- as for stocks) is
equal to the short-term rate r(t).
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Finally, profits (entirely paid out as dividends to shareholders) are positively
related to output:

π(t) = a0 + a1 y(t) (1.4)

1.2. Aggregate supply

On the supply-side of the economy, with fixed prices, the output level adjusts
to clear the goods market. The evolution of output over time is given by the
following dynamic (differential) equation:

ẏ(t) = β (yD(t)− y(t)) β > 0 (1.5)

where ẏ ≡ dy(t)
dt

is the (instantaneous) change of output in response to the excess
demand for goods, yD(t) − y(t): when aggregate demand yD(t) is higher than
current output y(t), firms meet goods demand by decumulating inventories and
increasing production only gradually over time. Therefore, changes in inventories
ensure continuous clearing of the goods market, whereas output reacts only grad-
ually to excess demand (or excess supply) on the market. Under this assumption
on dynamic adjustment, output y(t) has the nature of a "predetermined" variable:
it cannot show instantaneous (i.e. "discrete") adjustments in response to changes
in market demand conditions.5

1.3. Steady-state equilibrium and dynamics

The two differential equations (1.3) e (1.5) describe the time dynamics of stock
prices q(t) and output y(t). In a steady-state equilibrium both variables do not
change over time: q̇(t) = ẏ(t) = 0. Off the steady-state equilibrium, q(t) and y(t)

5Formally, the differential equation (1.5) can be solved to express the level of output in any
given instant T as a function of goods demand. In the case of (1.5), the negative coefficient
on y(t) (−β) guarantees that a backward-looking solution (making output depend only on past
demand levels) is stable. It is then possible to express output at T as a weighted average of all
past demand levels:

y(T ) =

Z T

−∞
yD(t)β e−β(T−t)dt ,

with values of yD(t) in the distant past having decreasing weights. The weights sum to one:R T
−∞ β e−β(T−t)dt = 1. Therefore, in each moment in time, output is determined by the whole
past goods demand history. A current excess demand can only trigger a gradual adjustment over
time, and cannot determine an immediate adjustment leading instantaneously to the equality
between production and demand: y(t) = yD(t).
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change over time according to their dynamic equations; moreover, in each mo-
ment in time, the money market is in equilibrium, satisfying (1.2), and aggregate
demand and firms’ profits are at the levels given by (1.1) and (1.4).
How the economy works can be illustrated graphically by means of the station-

ary equations (or "stationary loci") for y(t) and q(t), capturing the relationships
that hold between output and stock when we impose ẏ(t) = 0 and q̇(t) = 0 re-
spectively on (1.5) and (1.3). The relationships so obtained can then be plotted
on a (q, y) plane.
Let us start by imposing ẏ(t) = 0 in (1.5). Using the aggregate demand

equation (1.1) to substitute out yD(t), we get the following relationship between
output and stock prices:

y(t) =
α

1− c
q(t) +

1

1− c
g(t) (1.6)

For a given value of the fiscal measure g(t), equation (1.6) describes all the com-
binations of output y(t) and stock prices q(t) that ensure equality between goods
demand and supply. The positive coefficient on q(t) means that a higher value
of q(t), by increasing private investment, stimulates aggregate spending, and an
increase in production y(t) is necessary to restore the stationary equilibrium on
the goods market (a situation in which firms do not have to decumulate invento-
ries to meet goods demand, and output is constant over time). The relation (1.6),
plotted in Figure 1(a), is the equivalent of the IS schedule in a more traditional
IS − LM model, linking negatively the interest rate to output. For each level of
output, there exists a unique value of q(t), given by (1.6), for which output equals
aggregate spending. Higher values of q(t) determine larger investment flows and
a corresponding excess demand for goods, yD(t) > y(t); according to the dynamic
equation (1.5), output starts to increase, gradually adjusting to the higher de-
mand: ẏ(t) > 0. This output adjustment occurs at all points above the ẏ(t) = 0
curve (or "locus"), and is graphically depicted by the arrows pointing to the right
(note that, since we are dealing with the dynamics of output only, keeping q(t)
constant, the arrows are horizontal). Symmetrically, at all points below (1.6),
there is excess supply of goods (yD(t) < y(t)) and output decreases over time
(ẏ(t) < 0), as shown by the arrows pointing to the left.
Similarly, the stationary locus for q(t) is derived by setting q̇(t) = 0 in (1.3):

q(t) =
π(t)

r(t)
=

a0 + a1 y(t)
h0
h2
+ h1

h2
y(t)− 1

h2

m(t)
p

(1.7)
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where the last equality is obtained using (1.4) and (1.2) to substitute out π(t) and
r(t). (1.7) shows the combinations of y(t) and q(t) for which the money market
is in equilibrium and the returns on stocks and bonds are equal without the need
for capital gains or losses (i.e. with constant share prices, q̇(t) = 0). The sign
of this relationship is not uniquely determined: as output increases, profits and
dividends increase, raising q(t); also the interest rate r(t), at which future profits
are discounted, increases, with a depressing effect on stock prices. The slope of
the q̇(t) = 0 locus then depends on the relative strength of those two effects; in
what follows we assume that the "interest rate effect" dominates, and consequently
draw a downward-sloping stationary locus for q(t) in Figure 1(b); this assumption
corresponds to the "bad news" case in Blanchard (1981).6 The dynamics of q(t)
out of its stationary locus are governed by the no-arbitrage condition (1.3). For
each level of output (that uniquely determines dividends and the interest rate
from (1.4) and (1.2), only the value of q(t) on the stationary locus is such that
q̇(t) = 0. Higher values of q(t) (as in points above the curve) reduce the dividend
component of the rate of return on shares, and a capital gain, implying q̇(t) > 0,
is needed to fulfil the no-arbitrage condition between shares and bonds: q(t)will
then move upwards, as shown by the arrows in the figure (note that, since we are
dealing with the dynamics of share prices only, keeping y(t) constant, the arrows
are vertical). Symmetrically, at all points below the q̇(t) = 0 curve, capital losses
are needed to equate returns, and therefore q̇(t) < 0.

6Formally, the negative slope of the stationary locus for q(t) depends on the following condi-
tions on parameters:

dq

dy

¯̄̄̄
q̇=0

< 0⇔ a1 < q
h1
h2

Moreover, as shown in Figure 1(b), the q̇(t) = 0 curve has the following asymptote (as y →∞):

lim
y→∞

q|q̇=0 =
a1 h2
h1

6



Figure 1

A complete graphical description of the joint dynamic behavior of q(t) and
y(t) is obtained by superimposing the two pictures in Figure 1, getting the phase
diagram shown in Figure 2. The unique steady state equilibrium of the system is
found at the point where the two stationary loci given by (1.6) and (1.7) cross, and
output and stock prices are constant over time. The arrows of motion describe, for
each region of the diagram, the joint effect of the dynamics of y(t) and q(t) already
(separately) analyzed in Figure 1. In the regions above and below the steady
state equilibrium, the dynamics follow divergent paths, with y(t) and q(t) either
increasing towards infinitely large values (in the upper region, with arrows pointing
right and upwards), or decreasing towards economically nonsensical (negative)
values (in the lower region, with arrows pointing left and downwards). Those
paths, not converging to the steady-state equilibrium, are hardly interpretable
from the economic point of view. Moreover, also trajectories starting from the
left and right regions in Figure 2 may not lead the system towards the steady-
state equilibrium; this happens when the dynamic paths cross the ẏ(t) = 0 locus
(vertically) or the q̇(t) = 0 locus (horizontally), and then, instead of pointing
towards the steady state, proceed in the regions where arrows point away from it.
Two such paths are shown in Figure 2, starting from points B and C.
In the figure, however, a pair of dynamic paths is drawn that start from points
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to the left and right of the steady state and continue towards it, at gradually
decreasing speed,7 without ever meeting the system’s stationari loci. All points
along such path are compatible with convergence towards the steady state, and
together form the saddlepath of the dynamic system. For any given level of output,
only one level of stock prices puts the system on a trajectory converging to the
steady state. For example, given the output level y0 lower than steady-state
output, only the level of share prices corresponding to point A in Figure 2 allows
the system to travel along a path leading to the steady state.All other values of
q(t), such as those corresponding to points B and C in the figure, would put the
economy on an "explosive" path, gradually diverging from the steady state at
an increasing speed..8 In what follows, for reasons of economic interpretability,
we will focus attention only on "stable" trajectories, converging to the unique
steady-state equilibrium of the system.

7From the law of motion of y(t) given by (1.5), the output change over time is larger the
larger is the excess demand for goods yD(t) − y(t), which is gradually reduced along the path
approaching the steady state. Similarly, from the dynamic equation for q(t) (1.3), the change
in stock prices is larger the bigger is the diference between the interest rate and the dividend
component of share returns r(t)− π(t)

q(t) , that again gradually decreases along the converging path.
8Formally, the dynamic properties of y(t) and q(t) off their stationary loci, and the relative

slopes of the ẏ(t) = 0 and q̇(t) = 0 curves ensure the uniqueness of the saddlepath converging
to the steady state.
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Figure 2

To rationalize the negative slope of the saddlepath, let us consider again point
A in the figure, where output y0 is lower than its steady-state level. The associated
level of stock prices on the saddlepath is higher than the value of q(t) on the
stationary locus ẏ(t) = 0 corresponding to y(t) = y0. Therefore, there is excess
demand for goods owing to a high level of investment, and output gradually
increases towards its steady-state value. As y(t) increases, the demand for money
increases as well, and, with a given money supply, the interest rate r(t) rises.
The level of stock prices q(t) is affected by the future behavior of both output
(through higher profits and therefore dividends) and the interest rate. The first
effect pushes q(t) upwards, whereas the "interest rate effect" on share prices (since
future dividends are discounted at higher interest rates) is negative.Under our
maintained assumption that the latter effect dominates, q(t) then declines over
time towards its steady-state value.
Formally, the behavior of share prices in any instant of time t0 can be obtained

by solving forward the differential equation (1.3), yielding the value of q(t0) as the
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present discounted value of future dividends:9

q(t0) =

Z ∞

t0

π(t) e−
t
t0
r(s) dsdt (1.8)

Over time, q(t) changes for two reasons: on the one hand, stock prices are posi-
tively affected by the increase in dividends (resulting from higher output),; on the
other, higher interest rates increase the discount factor applied to future dividends
(given, in continuous time, by the negative exponential function e−

t
t0
r(s) ds), with

a negative effect on q(t).
Using the dynamic model of the economy developed above, we can study the

effects of macroeconomic policies on output, share prices, and the interest rate.
The dynamic adjustment of output and share prices, governed by the two dynamic
equations (1.5) and (1.3), have fundamentally different features. As mentioned
previously, output, being a predetermined variable, reacts only gradually to the
excess demand for goods. Instead, with agents forming expectations rationally,
stock prices are a forward-looking variable, immediately reacting to changes in
expected future interest rates and output levels over the whole infinite horizon;
therefore, q(t) can display instantaneous, or discrete, adjustments ("jumps") in
the face of events or news that change the expected future path of interest rates
and output, for example as a consequence of the implementation (or even the
announcement) of monetary and fiscal policy measures.

1.4. The effects of macroeconomic policies

Since agents, endowed with rational expectations, use all available information to
form expectations on the future course of the relevant macroeconomic variables,
whether the policy measures under study are unexpected or previously antici-
pated, and permanent or transitory, are features of crucial importance in the
evaluation of their effects on the system’s dynamic adjustment to a new steady
state equilibrium. In this section we derive the dynamic response of output, share
prices, and the interest rate to monetary and fiscal policy actions.

9In solving the equation, the "transversality condition"

lim
t→∞

π(t)e−
t
t0
r(s)ds

= 0

is imposed, thereby ensuring convergence to the steady state.
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1.4.1. Monetary policy

Let us consider a monetary policy restriction, implemented at time t0 by means of
a permanent reduction of the quantity of money m; such reduction is unexpected
by agents. Up to t0 the economy is in a steady-state equilibrium at point A in
Figure 3(a). To pin down the new steady state equilibrium, with a lower quantity
of money m, we note that a reduction of the money stock leaves the position of
the ẏ(t) = 0 curve unchanged, while shifting the q̇(t) = 0 locus downwards. 10

The new steady-state equilibrium is then determined at point C in the figure: in
the long run, a monetary restriction causes output and share prices to decline;
moreover, as in the static IS − LM model, a monetary restriction increases the
interest rate.
Figure 3(a) shows also the unique dynamic adjustment path converging to the 

new steady state along the saddlepath. At t0, when money supply is reduced, 
with output still at the initial equilibrium level y(t0), the interest rate r increases 
to clear the money market, according to (1.2). To restore the no-arbitrage con-
dition between bonds and stocks, share prices decrease at t0(point B), reaching 
the saddlepath converging to the new equilibrium. From t0 onwards, the dynamic 
adjustment follows the saddlepath (from B to C), with output declining and in-
creasing share prices. A level of q(t0) lower than the initial equilibrium reduces 
investment and the aggregate goods demand, triggering a gradual decline in out-
put. Also the interest rate, after the increase in t0 in the face of the money supply 
reduction, starts decreasing, due to the lower demand for money. The dynamic 
paths of all variables are displayed in Figure 3(b).
The dynamic adjustment of share prices can be rationalized in terms of the

behavior of output (and therefore of profits and dividends) and the interest rate.
With rational, forward-looking agents, when the unexpected monetary restriction
takes place at t0, share prices immediately incorporate the future course of y(t)
(and therefore π(t)) and r(t). At t0 agents understand that, from then on, the
interest rate will always be higher than in the initial equilibrium, and output
and dividends will always be lower. Both effects contribute to lower the level
of stock prices q(t0) needed to equate returns. As shown by (1.8), lower future
profits and higher future interest rates both determine a lower level of q at the very

10Formally, from (1.7), we have
∂q

∂m

¯̄̄̄
q̇=0

> 0

whereas m does not enter the stationary locus ẏ(t) = 0 (1.6).
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moment of the monetary policy restriction (point B). On the subsequent dynamic
path (along the saddlepath from B to C), even though output and dividends are
decreasing, the effect of declining interest rates dominates, making share prices to
increase towards their new steady-state level. Along this path, q̇(t) > 0: capital
gains ensure the equality of the rates of return on bonds and stocks.
In this model, the effects of a restrictive monetary policy are characterized not

only in the long run (increase of the interest rate, decrease of share prices and
output), but also in the adjustment dynamics of all the variables, that in some
cases display a change in their direction of motion. In fact, both share prices and
the interest rate show an impact response to the monetary restriction which leads
their values at t0 respectively below and above the final steady-state equilibrium
levels. Afterwards, together with the gradual output decline, we observe decreas-
ing interest rates and increasing share prices, a behavior that could be hardly
explained in the absence of agents forming rational expectations

Figure 3
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1.4.2. Fiscal policy

Suppose that at time t0 a future fiscal restriction is announced, to be implemented
at time t1 > t0: public spending, that is initially constant at g0, will be decreased
to g1 < g0 at t1 and will then remain permanently at this lower level. The
information on the permanent nature of the fiscal restriction is included in the
policy announcement.
The effects of this anticipated fiscal restriction on the steady state levels of

output and the interest rate are immediately clear from a conventional IS −LM
(static) model: in the new steady state both y and r will be lower. Both changes
affect the new steady-state level of q: lower output and dividends depress stock
prices, whereas a lower interest rate raises q. Again, the latter effect is assumed to
dominate, leading to an increase of the steady-state value of q. Only the position
of the stationary locus for output, ẏ(t) = 0, is affected by changes in g: at t1 (the
implementation date of the fiscal policy measure), this curve shifts upwards along
an unchanged q̇(t) = 0 schedule, leading to a higher q and a lower y in steady
state, as shown by point D in Figure 4(a).
In order to characterize the dynamics of the system, we note that, from time

t1 onwards, no further change in the exogenous variables occurs: to converge to
the steady state, the economy must then be on the saddlepath portrayed in the
diagram. Accordingly, from t1 onwards, along the saddlepath from C to D in the
figure, output decreases (since the lower public spending causes aggregate demand
to fall below current production) and q increases (due to the dominant effect of
the decreasing interest rate).
What happens from the fiscal policy announcement at t0 to its delayed imple-

mentation at t1? At t0, when the future policy becomes known, agents in the stock
market anticipate lower future interest rates (they also foresee lower dividends but
this effect is relatively weak); consequently, they immediately shift their porfolios
towards shares, bidding up their price. Then, at the announcement date, with
output and the interest rate still at their initial steady state levels, q increases, as
at point B in the figure. The ensuing dynamics from t0 up to the implementation
date t1 follow the equations of motion in (1.5) and (1.3) referred to the initial
steady state (i.e. the unchanged q̇(t) = 0 locus, and the initial ẏ(t) = 0 curve).
A higher value of q stimulates investment, causing an excess demand for goods;
starting from t0, then, output gradually increases, and so does the interest rate
(due to the increase in money demand). The dynamic adjustment of output and q
is such that when the fiscal policy is implemented at t1 (and the stationary locus
ẏ(t) = 0 shifts upwards) the economy is exactly on the saddlepath (point C) lead-
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ing to the new steady state: aggregate demand falls and output starts decreasing
along with the interest rate, whereas q and investment continue to rise. Figure
4(b) displays the dynamic adjustment of all relevant variables.
Therefore, an apparently “perverse” effect of fiscal policy (an expansion of

investment and output following the announcement of a future fiscal restriction)
can be explained by the forward-looking nature of stock prices, anticipating future
lower interest rates.

Figure 4

2. Expectations and exchange rate dynamics (Dornbusch
1976)

The wide fluctations of nominal and real exchange rates observed under flexible
exchange rate regimes (perticularly in the 1970s) motivated the analysis of simple
dynamic macroeconomic models where the exchange rate is determined by equi-
librium conditions on financial markets, and agents are endowed with rational
expectations. This section outlines a version of the most influential model of this
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kind, due to R. Dornbusch (1976), that shows the possibility of an over-reaction
of the exchange rate to unexpected monetary policy actions (a result known as
exchange rate overshooting).
The main features of the model are the following:

(i) the model describes a relatively "small" open economy, under a flexible
exchange rate regime, and with perfect capital mobility;

(ii) on the financial markets (for domestic bonds, denominated in local currency,
and foreign bonds, denominated in foreign currency) the uncovered interest
rate parity holds, and agents form rational expectations on the future course
of the exchange rate;

(iii) the (perfectly flexible) exchange rate ensures that equilibrium occurs at any
instant on financial markets; on the contrary, the goods price level, though
not fixed (as in the simple IS − LM scheme and in Blanchard’s model),
adjusts only gradually in response to deviations of output from its "natural"
level. Therefore, the nominal rigidity in the model takes the form of a slower
adjustment of the goods price level with respect to the exchange rate.

We now specify the structure of the economy and show the dynamic response
of output, the interest rate, and the exchange rate to fiscal and monetary policy
measures.

2.1. The structure of the economy

The model is set in continuous time: therefore, all variables are functions of
time t (for notational simplicity, this dependence will not be made explicit in the
following equations). All variables, with the exception of interest rates, are in
logarithms, and all parameters are positive.
In the goods market, output y is determined by aggregate demand according

to:
y = −α r + β (e+ p∗ − p) + γ g (2.1)

where demand has three determinants: the nominal interest rate r, the real ex-
change rate e+ p∗ − p, and government spending g. Since the price level p is not
fixed, the inclusion of the nominal instead of the real interest rate (i.e. r− ṗ) as a
(negative) demand determinant is allowed only for the sake of analytical simplic-
ity, without any qualitative change in the model’s conclusions. The real exchange
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rate is defined as the ratio of the foreign goods price level converted into domestic
currency (that is the nominal exchange rate E times the -exogenously set and
constant- foreign price level P ∗) to the domestic price level P : then EP∗

P
, in logs

e+ p∗ − p as in (2.1). Given this definition, an increase in the real exchange rate
corresponds to a depreciation of the domestic currency, which stimulates exports
and reduces imports: the overall effect on aggregate demand is therefore positive
(β > 0).
On the domestic money market, the standard equilibrium condition between

money demand (determined by output y and the nominal domestic interest rate
r) and money supply holds:

m− p = y − h r (2.2)

where a unit elasticity of money demand to income has been assumed (for sim-
plicity), and −h measures the (semi)elasticity of money demand to the interest
rate.
On the supply side of the economy, the price level p chnages gradually over

time in response to possible deviations of current output y from its natural level
ȳ, according to the dynamic equation:

ṗ = θ (y − ȳ) (2.3)

When current output is above (below) ȳ, the price level increases (decreases) at a
gradual pace (since the value of θ is finite, 0 < θ <∞).11
Finally, equilibrium on asset markets for domestic and foreign bonds is imposed

by means of a no-arbitrage condition, known as uncovered interest rate parity:

r = r∗ + ėe (2.4)

where r and r∗ are the interest rates on domestic and foreign bonds respectively,
and ėe is the expected change of the exchange rate. Assuming that the denomi-
nation currency is the only difference between the two bonds, and that agents are
risk-neutral (and therefore consider only expected returns and not return vari-
abilities in their portfolio allocation decisions), the rates of return on domestic
and foreign bonds, both measured in domestic currency, must be equal in equilib-
rium. The rate of return on domestic bonds is simply the interest rate r, whereas
the return on foreign bonds is given by the (exogenous) foreign interest rate r∗

11This assumption on price level adjustment is adopted in the last section of the original paper
by Dornbusch (1976). The main version of the model adopts the stronger assumption of output
fixed at its natural level.

16



plus the expected depreciation of the domestic currency ėe. An interest rate
differential in favor of domestic bonds (r > r∗) can be consistent with no arbi-
trage on bond markets only if a depreciation of the domestic currency is expected
(ėe > 0). The opposite occurs, with expected appreciation (ėe < 0), if the interest
rate differential favors foreign bonds (r < r∗). Immediate arbitrage operations
between currencies (with perfect international capital mobility) ensure that the
no-arbitrage condition (2.4) holds at each instant in time. Agents are endowed
with rational expectations, and in the absence of stochastic elements in the model
(as in Dornbusch 1976), this assumption leads to perfect foresight. Therefore, in
(2.4) we have

ėe = ė (2.5)

Using the set of equations (2.1)-(2.5) we can now characterize the steady-
state equilibrium of the economy and the adjustment dynamics of all variables
in response to changes in the (exogenous) foreign variables p∗ and r∗,and in the
instruments of monetary and fiscal policy, m and g.

2.2. Steady-state equilibrium

The properties of the steady state of the system, representing the economy’s long-
run equilibrium, can be easily derived by imposing that all dynamic adjustments
of the variables have been completed; therefore, there are no further changes in
prices (ṗ = 0) and in the exchange rate (ė = 0). Imposing those conditions onto
(2.3) and (2.4), we can derive the steady-state levels of all variables.
From the two dynamic equations, with ṗ = 0 and ė = 0, we get

ṗ = 0⇒ y = ȳ (2.6)

ė = 0⇒ r = r∗ (2.7)

stating that in the steady state, output is at the natural rate and the domestic and
foreign interest rates are equal. The long-run values of the nominal variables p and
e can be found using the money market equilibrium condition and the aggregate
demand equation (both with r = r∗ and y = ȳ):

p = m− ȳ + h r∗ (2.8)

e = p− p∗ +
1

β
ȳ +

α

β
r∗ − γ

β
g (2.9)

The levels of p and e are then proportional to the quantity of money m. If a
monetary policy action makes money supply change by dm, in the long run only
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a proportional change of the price level and of the exchange rate occur (dp =
de = dm), with no effect on output, the interest rate, and the real exchange rate:
monetary neutrality prevails in the long run.
Also a fiscal policy measure, changing government expenditure by dg, does not

affect output and the interest rate in the long run. Moreover, from (2.8) we note
that also the price level p is unaffected in the long run by changes in g. What is
affected is the exchange rate e: from (2.9) we have that de = −γ

β
dg; and, since

prices are unaffected, also the real exchange rate varies by the same proportion as
the nominal exchange rate. Then, a change in fiscal policy, though unable to affect
the overall level of output in the long run, can change the output composition:
higher government spending makes net exports to decrease by the same amount
(due to the real exchange rate appreciation).

2.3. Dynamics

Let us now study the dynamics of the system outside the steady state. As a first
step, we separately analyze the two dynamic equations describing the adjustment
of prices (2.3) and of the exchange rate (2.4), to get the two stationary loci relating
p and e that can be plotted in a phase diagram.
Starting from the stationary locus for the price level p, setting ṗ = 0 into (2.3)

and using the money market equilibrium condition (2.2) to eliminate the interest
rate r from the output equation (with y = ȳ) we get

ȳ = β(e+ p∗ − p)− α

h
ȳ +

α

h
(m− p) + γg

from which the following relationship between p and e can be derived

e =
βh+ α

βh
p− α

βh
m− γ

β
g +

h+ α

βh
ȳ − p∗ (2.10)

The stationary locus for p is shown in Figure 5(a) as a positively sloped line. Along
the curve, output is at its natural level and the interest rate is at the level needed
to keep the equilibrium on the money market. Starting from a point on the curve
(where y = ȳ), a higher p (for a given e) has two negative effects on output: on
the one hand, through a real exchange rate appreciation, it decreases net exports;
on the other hand, through a reduction in real money supply, it causes an increase
of the interest rate, which makes investment, and therefore aggregate demand, to
decline. Output is now below the natural level and an exchange rate depreciation
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(i.e. an increase of e) is needed to restore the equality y = ȳ. This explains the
positive slope of the ṗ = 0 curve.12

Off the stationary locus, production is different from natural output. Indeed,
at all points above the curve, y > ȳ (because an increase of e for a given p
stimulates net exports, whereby increasing output) and the price level increases
over time according to (2.3): ṗ > 0, as shown by the horizontal arrows in Figure
5(a). The opposite dynamics occurs at all points below the curve, where y < ȳ
and therefore ṗ < 0. Given the assumption of gradual adjustment, the price level
behaves in the model as a predetermined variable: when current output deviates
from its natural level, the price level does not adjust instantaneously (no "jump"
in p is allowed in response to unanticipated events) but follows a dynamic path
pointing towards its stationary locus.

Figure 5

Similarly, we obtain the stationary locus for the exchange rate e by setting
ė = 0 in (2.4) and using again the money market condition (2.2) to eliminate the
12From (2.10) we note that the slope is greater than 1 if α > 0. In fact, when α = 0, the

interest rate does not affect aggregate demand and the second negative effect on output described
in the text does not occur. In this case, the necessary variation in the exchange rate is simply
proportional to the change in p, yielding a unitary slope of the stationary locus.
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interest rate r:
1

h
y − 1

h
(m− p) = r∗

Now, using the aggregate demand equation (with r = r∗) to substitute out y,
and rearranging terms, we get a second relation between the price level and the
exchange rate as

e =
β − 1
β

p+
1

β
m− γ

β
g +

h+ α

β
r∗ − p∗ (2.11)

Along this stationary locus for e the domestic and the foreign interest rates are
equal and the money market is in equilibrium. Differently from the case of ṗ = 0,
here the slope of the stationary locus ė = 0 depends on the sign of the coefficient
on p:

de

dp

¯̄̄̄
ė=0

=
β − 1
β
≷ 0 if β ≷ 1

This ambiguity stems from the twofold effect of an increase of p (for a given level
of e) on the demand and the supply of money. On the demand side, through
the real exchange rate appreciation, leading to a reduction of y, money demand
decreases, pushing the interest rate r downwards. On the supply side, the increase
in p reduces real money supply, with an upward pressure on the interest rate. The
slope of the stationary locus for the exchange rate then depends on which effect
dominates. To proceed, we assume that the dominant effect is on the money
supply side: an increase in the price level causes a rise in the domestic interest
rate. A reduction in the exchange rate is then necessary to bring the interest rate
back to a level equal to the (exogenous) foreign interest rate r∗. This offsetting
effect works through the appreciation of the real exchange rate and the ensuing
reduction of output and of the demand for money. Thus, in what follows, we
assume that β < 1 and draw the ė = 0 locus as a downward sloping line in Figure
5(b).13 Off the stationary locus, the uncovered interest rate parity (no arbitrage)
condition still holds, but in the presence of a non-zero interest rate differential,
and therefore with a compensating expected change in the exchange rate. At all
points above the curve, since an increase in e (for a given p) increases output and
the demand for money, then r > r∗ and an expected depreciation of the domestic
currency is needed to restore equilibrium: ė > 0, as shown by the arrows pointing

13In the original paper by Dornbusch (1976), the assumption of output fixed at the natural
level determines a negative slope of the stationary locus for e without any additional condition
on the model’s parameters.
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(vertically) upwards in the figure. The opposite reasoning applies to all points
below the curve, with r < r∗ and an equilibrating appreciation of the exchange
rate, ė < 0.
Now, superimposing the two pictures in Figure 5, we can draw in Figure 6 the

phase diagram of the system, showing the dynamic path of the whole economy at
all points in the (e, p) plane. The steady-state equilibrium is at the point where the
two stationary loci (2.10) and (2.11) cross. Here the price level and the exchange
rate are constant over time, output is at its natural level, and the domestic and
foreign interest rates are equal. The arrows of motion show, in each region of
the picture delimited by the two curves, the joint effect of the forces driving the
dynamics of p and e already separately illustrated in Figure 5. As in the model by
Blanchard (1981), in the regions above and below the steady state, the dynamic
path points away from equilibrium, and such explosive trajectories are hardly
interpretable from the economic point of view. Moreover, even starting from points
located in the two regions at the left and right of the steady state (such as B and
C in Figure 6) the dynamic path may cross either the ṗ = 0 locus (vertically) or
the ė = 0 curve (horizontally), ending up in a "unstable" region, again on a non-
convergent trajectory. In the figure, however, a pair of dynamic paths is drawn
that start from points to the left and right of the steady state and continue towards
it, at gradually decreasing speed,14 without ever meeting the system’s stationari
loci. All points along such path are compatible with convergence towards the
steady state, and together form the saddlepath of the dynamic system. For any
given price level p, only one level of the exchange rate e puts the system on a
trajectory converging to the steady state. For example, given the price level p0
lower than the steady-state level, only the level of the exchange rate corresponding
to pointA in Figure 6 allows the system to travel along a path leading to the steady
state.All other values of e, such as those corresponding to points B and C in the
figure, would put the economy on an "explosive" path, gradually diverging from
the steady state at an increasing speed.15 Also in analyzing this model, for reasons
of economic interpretability, from now on we will focus attention only on "stable"
trajectories, converging to the unique steady-state equilibrium of the system.

14From the laws of motion of p and e (given by (2.3) and (2.4)), their changes are larger,
the larger are, respectively, the deviation of output from its natural level (y − ȳ), and the
domestic-foreign interest rate differential r − r∗.
15Also in this model, the dynamic properties of p and e off their stationary loci, and the

relative slopes of the ṗ = 0 and ė = 0 curves ensure the uniqueness of the saddlepath converging
to the steady state.
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Figure 6

Starting from point A in Figure 6 (where y > ȳ and r < r∗), the dynamic
behavior of the economy along the saddlepath may be rationalized as follows. A
level of production above natural output pushes the price level up, and an interest
rate differential in favor of foreign assets causes an appreciation of the nominal
exchange rate. Both effects determine an appreciation of the real exchange rate,
which tends to bring output back to ȳ. Moreover, the increase in p reduces real
money supply, with an upward pressure on the domestic interest rate, which re-
duces the interest rate differential. Travelling along the saddlepath, the deviation
of y from ȳ and of r from r∗ gradually decrease and smaller and smaller changes of
p and e are necessary to lead the economy towards the steady-state equilibrium.
Using the dynamic model of the economy developed above, we can study the

effects of macroeconomic policies on output, prices, the interest rate and the
exchange rate. In Dornbusch’s model, the dynamic adjustment of prices and
of the exchange rate, governed by the two dynamic equations (2.3) and (2.4),
have fundamentally different features. As mentioned previously, the price level is
a predetermined variable, reacting only gradually to deviations of current from
natural output. Instead, with agents forming expectations rationally, the exchange
rate is a forward-looking variable, immediately reacting to changes in expected
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future differentials between domestic and foreign interest rates over the whole
infinite horizon. Therefore, e can display instantaneous adjustments ("jumps") in
the face of events or news that change the expected future path of interest rates,
for example as a consequence of the implementation (or even the announcement)
of monetary and fiscal policy measures.

2.4. Monetary policy

Let us consider an expansionary monetary policy, implemented by means of an
unexpected permanent increase of the money supply m at time t0. Up to t0 the
economy is in a steady-state equilibrium at point A in Figure 7(a). The steady-
state properties of the system studied above ensure that in the long run money
neutrality prevails: an increase in m entails an increase in p and e of the same
magnitude. The new steady state equilibrium is at point C in the figure. The
shifts of the stationary loci caused by the money supply increase can be formally
derived from (2.10) and (2.11). We have:

de

dm

¯̄̄̄
ṗ=0

= − α

βh
< 0

which implies a downward shift of the ṗ = 0 locus,16 and

de

dm

¯̄̄̄
ė=0

=
1

β
> 0

which implies an upward shift of the ė = 0 curve. Then, in the long run, the
monetary expansion causes a depreciation of the nominal exchange rate and an
increase of the price level, so that the real exchange rate (e + p∗ − p) is brought
back to its initial level.
The adjustment towards the final steady state follows the saddlepath shown in

Figure 7(a). Along the path, the nominal exchange rate appreciates (e decreases)
and p gradually increases: both effects make the real exchange rate to appreciate
as well. At t0, when the unanticipated monetary policy is implemented, the price
level does not react (as a predetermined variable, it cannot respond immediately to
deviations between current production and natural output), whereas the nominal

16Note that in the case of α = 0, the stationary locus for p has a unitary slope and does not
shift in the face of changes in m. Both the initial and the final steady-state equilibria are on the
same (unchanged) ṗ = 0 curve.
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exchange rate e instantaneously adjusts, jumping to point B onto the saddlepath
converging to the new steady state. At t0, then, a depreciation of the nominal
(and real) exchange rate occurs, with e reaching a higher level then in the long-run
equilibrium (at C). This (apparently) excessive impact response of the exchange
rate with respect to its long-run level is the most notable result of the Dornbusch’s
model, known as exchange rate overshooting.
The depreciation of the nominal exchange rate at t0 in the face of an increase

in money supply can be rationalized by considering what happens on the money
market. With p still fixed at its initial level, the increase in m determines an
increase in real money supply, with a downward pressure on the domestic interest
rate r. In their portfolio allocation decisions, investors will then favor foreign
bonds, causing a capital outflow and a depreciation of the domestic currency (i.e.
an increase in e). The magnitude of this depreciation is such as to restore the
no-arbitrage condition on financial markets: with an interest rate differential in
favor of foreign bonds (r < r∗), only an expected appreciation (ė < 0) can en-
sure the equality of returns. The initial change (depreciation) of the exchange
rate must then be large enough to generate an expected appreciation equal to the
interest rate differential: for this reason, at t0 the exchange rate e increases be-
yond ("overshoots") its long-run equilibrium level. After t0, e gradually decreases
(appreciates) along the converging saddlepath.
The exchange rate overshooting result is due to the different adjustment speed

of p and e to the monetary expansion: the nominal exchange rate reacts im-
mediately to the interest rate differential, whereas p responds only gradually to
deviations of y from ȳ. If also the price level could adjust immediately to the new
money supply, then m, p and e would all increase at t0 by the same amount, and
no further dynamic adjustment would be necessary: the economy would reach
instantaneously the new steady state. Instead, with an initially fixed price level,
the excess money supply must be offset by a decrease of the interest rate r, which
induces investors to shift their portfolios towards foreign bonds, making the ex-
change rate to depreciate. This capital outflow, and the ensuing depreciation, will
stop only when the expected future appreciation exactly offsets the interest rate
differential, making investors again indifferent between holding foreign or domestic
bonds in their asset portfolios.
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Figure 7

The dynamic behavior of all variables in the model is shown in Figure 7(b).
Output increases at t0 due to the real exchange rate depreciation; the positive
deviation from its natural level causes a gradual increase in the price level. On the
money market, from t0 onwards, as p increases, the reduction in real money supply
(only partially offset by a reduction in money demand due to a decreasing output)
pushes the interest rate r up towards its initial steady-state equilibrium level,
gradually eliminating the interest rate differential. At the end of the adjustment
process, output will be back at ȳ, and the real exchange rate and the interest rate
will be back at their initial steady-state values.
In conclusion, the model provides a rationale for wide fluctuations in the nomi-

nal and real exchange rates in the face of monetary policy actions, with contrasting
behavior in the short and long run: in the case of a monetary expansion, a strong
depreciation on impact, followed by a prolonged appreciation.
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Problems

1. (Dynamic IS-LM model with the stock market) Suppose that, differently
from the assumption of Section 1, stocks and short-term bonds are not
perfect substitutes in investors’ portfolios. Now stocks are perceived as
riskier than bonds: therefore, investors will be willing to hold stocks only if
they are compensated for the higher risk with a rate of return higher than
r. Let this compensation, or "risk premium", be θ0 > 0 in the economy’s
initial steady-state equilibrium.

(a) Modify the no-arbitrage condition (1.3) appropriately in the presence
of the risk premium on stocks; derive the new stationary locus for q
and explain how changes in θ may affect the q̇ = 0 curve;

(b) suppose now that at time t0 an unexpected and permanent reduction of
the risk premium occurs, from θ0 to θ1 (with θ0 > θ1 > 0). Derive and
explain the effect of this change in θ on the steady-state equilibrium
and on the dynamic adjustment of output, share prices, and the interest
rate.

2. (Dynamic IS-LM model with the stock market) We assumed in Section 1
that the "interest rate effect" dominates on the "dividend effect" in deter-
mining stock price changes. Let us now suppose that the "dividend effect"
dominates.

(a) Give a precise characterization of the q̇(t) = 0 schedule and of the
dynamic properties of the system under the new assumption;

(b) analyze the effects of an anticipated permanent fiscal restriction (an-
nounced at t0 and implemented at t1) and contrast the results with
those reported in Section 1.

3. (Expectations and exchange rate dynamics) Starting from the Dornbusch
model of Section 2, let us now assume that β > 1.

(a) Under this assumption, plot the stationary locus for the exchange rate
and explain its slope;

(b) draw the phase diagram in this case, and characterize the dynamics of
e and p in the various regions of the picture; draw the saddlepath and
describe its economics properties;
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(c) analyze the effects of an unexpected, permanent expansionary mone-
tary policy and compare the dynamics of the endogenous variables with
the case presented in Section 2, explaining the differences.

4. (Expectations and exchange rate dynamics) Consider the following modified
version of the Dornbusch model:

yD = −α r + β (e+ p∗ − p̄) (aggregate demand)

m− p̄ = y − h r (money market equilibrium )

r = r∗ + ė (uncovered interest rate parity)

ẏ = ϕ (yD − y) (output adjustment)

where yD denotes the aggregate demand for goods. The price level is now
fixed (p̄), as in the IS − LM model, and output gradually adjust over time
to excess demand for (or excess supply of) goods, as in Blanchard (1981).
The assumption of perfect foresight has already been introduced into the
uncovered interest rate parity equation.

(a) Derive the properties of the steady-state equilibrium of the model, and
of the dynamics (the shape of the stationary loci and of the saddlepath
converging to long-run equilibrium);

(b) what are the dynamic effects of an expansionary monetary policy (un-
expected and permanent) on the interest rate, output, and the exchange
rate?
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