Monetary Policy in DSGE Models

Marco Airaudo^a

^aDrexel University

University of Turin Nov. 22, 2022

Objectives

 Main objective: introduce students to the baseline New Keynesian (NK) model

Objectives

- Main objective: introduce students to the baseline New Keynesian (NK) model
- The NK model is a small-scale Dynamic Stochastic General Equilibrium (DSGE) model which constitutes the backbone of larger-scale DSGE models currently used for monetary policy analysis by central banks in developed and developing countries.

NY Fed Model:

https://www.newyorkfed.org/research/policy/dsge#/overview

- Main objective: introduce students to the baseline New Keynesian (NK) model
- The NK model is a small-scale Dynamic Stochastic General Equilibrium (DSGE) model which constitutes the backbone of larger-scale DSGE models currently used for monetary policy analysis by central banks in developed and developing countries.
 NY Fed Model:
 - https://www.newyorkfed.org/research/policy/dsge#/overview
- The NK-DSGE model is a natural extension of the frictionless RBC model where

- Main objective: introduce students to the baseline New Keynesian (NK) model
- The NK model is a small-scale Dynamic Stochastic General Equilibrium (DSGE) model which constitutes the backbone of larger-scale DSGE models currently used for monetary policy analysis by central banks in developed and developing countries.
 NY Fed Model:
 - https://www.newyorkfed.org/research/policy/dsge#/overview
- The NK-DSGE model is a natural extension of the frictionless RBC model where
 - changes in total factor productivity (TFP) are the main drivers of business cycle fluctuations

- Main objective: introduce students to the baseline New Keynesian (NK) model
- The NK model is a small-scale Dynamic Stochastic General Equilibrium (DSGE) model which constitutes the backbone of larger-scale DSGE models currently used for monetary policy analysis by central banks in developed and developing countries.
 NY Fed Model:
 - https://www.newyorkfed.org/research/policy/dsge#/overview
- The NK-DSGE model is a natural extension of the frictionless RBC model where
 - changes in total factor productivity (TFP) are the main drivers of business cycle fluctuations
 - fluctuations are efficient responses of the economy to TFP (or other shocks) => minimal role of economic policy

- Main objective: introduce students to the baseline New Keynesian (NK) model
- The NK model is a small-scale Dynamic Stochastic General Equilibrium (DSGE) model which constitutes the backbone of larger-scale DSGE models currently used for monetary policy analysis by central banks in developed and developing countries.
 NY Fed Model:
 - https://www.newyorkfed.org/research/policy/dsge#/overview
- The NK-DSGE model is a natural extension of the frictionless RBC model where
 - changes in total factor productivity (TFP) are the main drivers of business cycle fluctuations
 - ② fluctuations are efficient responses of the economy to TFP (or other shocks) ⇒ minimal role of economic policy
 - money is redundant

Objectives

• The baseline NK-DSGE introduces one key distortion (nominal price rigidity) to discuss the real effects of monetary policy

- The baseline NK-DSGE introduces one key distortion (nominal price rigidity) to discuss the real effects of monetary policy
- Methodological approach remains similar to the RBC literature

- The baseline NK-DSGE introduces one key distortion (nominal price rigidity) to discuss the real effects of monetary policy
- Methodological approach remains similar to the RBC literature
 - fully optimizing decisions by economic agents

- The baseline NK-DSGE introduces one key distortion (nominal price rigidity) to discuss the real effects of monetary policy
- Methodological approach remains similar to the RBC literature
 - fully optimizing decisions by economic agents
 - model consistent treatment of expectations (i.e. rational expectations)

- The baseline NK-DSGE introduces one key distortion (nominal price rigidity) to discuss the real effects of monetary policy
- Methodological approach remains similar to the RBC literature
 - fully optimizing decisions by economic agents
 - model consistent treatment of expectations (i.e. rational expectations)
 - fluctuations driven by identifiable (exogenous) shocks amplified by (endogenous) frictions

- The baseline NK-DSGE introduces one key distortion (nominal price rigidity) to discuss the real effects of monetary policy
- Methodological approach remains similar to the RBC literature
 - fully optimizing decisions by economic agents
 - model consistent treatment of expectations (i.e. rational expectations)
 - fluctuations driven by identifiable (exogenous) shocks amplified by (endogenous) frictions
- The course provides a detailed derivation of the model and its policy implications

Objectives

- The baseline NK-DSGE introduces one key distortion (nominal price rigidity) to discuss the real effects of monetary policy
- Methodological approach remains similar to the RBC literature
 - fully optimizing decisions by economic agents
 - model consistent treatment of expectations (i.e. rational expectations)
 - fluctuations driven by identifiable (exogenous) shocks amplified by (endogenous) frictions
- The course provides a detailed derivation of the model and its policy implications

Main references

Monetary Policy, Inflation, and the Business Cycle (J. Gali) Interests and Prices (M. Woodford) Monetary Theory and Policy (C. Walsh)

Money and Monetary Policy in a Frictionless RBC model

- Money and Monetary Policy in a Frictionless RBC model
- Monetary Policy in Baseline NK model

- Money and Monetary Policy in a Frictionless RBC model
- Monetary Policy in Baseline NK model
- Optimal Monetary Policy

- Money and Monetary Policy in a Frictionless RBC model
- Monetary Policy in Baseline NK model
- Optimal Monetary Policy
- Extension: the Credit Channel

- Money and Monetary Policy in a Frictionless RBC model
- Monetary Policy in Baseline NK model
- Optimal Monetary Policy
- Extension: the Credit Channel
- Unconventional Monetary Policy: Forward Guidance

What is the Role of Money?

• In the real world, money serves three main roles

- In the real world, money serves three main roles
 - unit of account: a way to denominate prices (but we could denominate prices in any other commodity/good)

- In the real world, money serves three main roles
 - unit of account: a way to denominate prices (but we could denominate prices in any other commodity/good)
 - store of value: an instrument to transfer wealth over time (but it has a negative return)

- In the real world, money serves three main roles
 - unit of account: a way to denominate prices (but we could denominate prices in any other commodity/good)
 - store of value: an instrument to transfer wealth over time (but it has a negative return)
 - a medium of exchange: it overcomes the "double-coincidence-of-wants" problem typical of barter (exchange of goods for goods)

- In the real world, money serves three main roles
 - unit of account: a way to denominate prices (but we could denominate prices in any other commodity/good)
 - store of value: an instrument to transfer wealth over time (but it has a negative return)
 - a medium of exchange: it overcomes the "double-coincidence-of-wants" problem typical of barter (exchange of goods for goods)
- There is no money in the baseline real business cycle (RBC) model

- In the real world, money serves three main roles
 - unit of account: a way to denominate prices (but we could denominate prices in any other commodity/good)
 - store of value: an instrument to transfer wealth over time (but it has a negative return)
 - a medium of exchange: it overcomes the "double-coincidence-of-wants" problem typical of barter (exchange of goods for goods)
- There is no money in the baseline real business cycle (RBC) model
 - all variables are real

- In the real world, money serves three main roles
 - unit of account: a way to denominate prices (but we could denominate prices in any other commodity/good)
 - store of value: an instrument to transfer wealth over time (but it has a negative return)
 - a medium of exchange: it overcomes the "double-coincidence-of-wants" problem typical of barter (exchange of goods for goods)
- There is no money in the baseline real business cycle (RBC) model
 - all variables are real
 - prices are all relative to a numeraire (a reference good)

- In the real world, money serves three main roles
 - unit of account: a way to denominate prices (but we could denominate prices in any other commodity/good)
 - store of value: an instrument to transfer wealth over time (but it has a negative return)
 - a medium of exchange: it overcomes the "double-coincidence-of-wants" problem typical of barter (exchange of goods for goods)
- There is no money in the baseline real business cycle (RBC) model
 - all variables are real
 - prices are all relative to a numeraire (a reference good)
- With money, we have to distinguish between real and nominal variables, such as real vs. nominal wage, real vs. nominal interest rates, etc.

Money in RBC Model

• We can study fluctuations in key monetary variables such as

- We can study fluctuations in key monetary variables such as
 - inflation (percentage change in the aggregate price level)

- We can study fluctuations in key monetary variables such as
 - inflation (percentage change in the aggregate price level)
 - short-term nominal interest rate (key monetary policy instrument)

- We can study fluctuations in key monetary variables such as
 - inflation (percentage change in the aggregate price level)
 - short-term nominal interest rate (key monetary policy instrument)
 - (real) money demand

- We can study fluctuations in key monetary variables such as
 - inflation (percentage change in the aggregate price level)
 - short-term nominal interest rate (key monetary policy instrument)
 - (real) money demand
- We introduce money into a simplified RBC model (no capital accumulation) stressing its role as medium of exchange (while maintaining also the other two roles)

- We can study fluctuations in key monetary variables such as
 - inflation (percentage change in the aggregate price level)
 - short-term nominal interest rate (key monetary policy instrument)
 - (real) money demand
- We introduce money into a simplified RBC model (no capital accumulation) stressing its role as medium of exchange (while maintaining also the other two roles)
- Alternative ways of doing it. Two most common are:

$$M_t \geq \alpha P_t C_t$$
 or $U_t = U\left(C_t, H_t, rac{M_t}{P_t}
ight)$ money-in-utility (MIU)

Money in RBC Model

- We can study fluctuations in key monetary variables such as
 - inflation (percentage change in the aggregate price level)
 - short-term nominal interest rate (key monetary policy instrument)
 - (real) money demand
- We introduce money into a simplified RBC model (no capital accumulation) stressing its role as medium of exchange (while maintaining also the other two roles)
- Alternative ways of doing it. Two most common are:

$$M_t \geq \alpha P_t C_t$$
 or $U_t = U\left(C_t, H_t, rac{M_t}{P_t}
ight)$ money-in-utility (MIU)

• Others are *transaction-cost* (cash is not subject to fees) and *shopping-time* (cash saves you time in shopping) models.

Methodological Approach

• As for the RBC, DSGE models feature two kinds of equilibria

Methodological Approach

- As for the RBC, DSGE models feature two kinds of equilibria
 - **1 Steady State Equilibrium** (SSE): where exogenous random variables (TFP and other shocks) are equal to their unconditional mean (ex: TFP $Z_t = \bar{Z}$) and all endogenous variables are therefore constant

Background and Motivation

Methodological Approach

- As for the RBC, DSGE models feature two kinds of equilibria
 - **1 Steady State Equilibrium** (SSE): where exogenous random variables (TFP and other shocks) are equal to their unconditional mean (ex: TFP $Z_t = \bar{Z}$) and all endogenous variables are therefore constant
 - Oynamic (Rational Expectations) Equilibrium (REE): where fluctuations in exogenous random variables temporarily move the equilibrium away from the steady state

Background and Motivation

Methodological Approach

- As for the RBC, DSGE models feature two kinds of equilibria
 - **1 Steady State Equilibrium** (SSE): where exogenous random variables (TFP and other shocks) are equal to their unconditional mean (ex: TFP $Z_t = \bar{Z}$) and all endogenous variables are therefore constant
 - Opnamic (Rational Expectations) Equilibrium (REE): where fluctuations in exogenous random variables temporarily move the equilibrium away from the steady state
- Shocks can be **highly persistent**, but are **stationary** (non-explosive)
 if the shock occurs once, the economy will eventually revert back to steady state

Background and Motivation

Methodological Approach

- As for the RBC, DSGE models feature two kinds of equilibria
 - **1 Steady State Equilibrium** (SSE): where exogenous random variables (TFP and other shocks) are equal to their unconditional mean (ex: TFP $Z_t = \bar{Z}$) and all endogenous variables are therefore constant
 - Oynamic (Rational Expectations) Equilibrium (REE): where fluctuations in exogenous random variables temporarily move the equilibrium away from the steady state
- Shocks can be highly persistent, but are stationary (non-explosive)
 if the shock occurs once, the economy will eventually revert back to steady state
- Shocks follow a 1st order autoregressive (AR1) process

$$\mathbf{x}_t = \underset{\mathsf{lagged \ term}}{\rho} \mathbf{x}_{t-1} + \underset{\mathsf{noise}}{\varepsilon_t}, \quad \varepsilon_t \sim \mathsf{iid} \, \mathcal{N} \left(\mathbf{0}, \sigma_{\varepsilon}^2 \right), \quad |\rho| < 1 \qquad (1)$$

 \implies k-period ahead forecast: $E_t x_{t+k} = \rho^k x_t$

• The SEE represents the *long-run*: it might change over time, though slowly, because of technological innovations, and other sources of long-run growth.

- The SEE represents the *long-run*: it might change over time, though slowly, because of technological innovations, and other sources of long-run growth.
- RBC and DSGE literatures are not concerned about this, but "require" the model to have a well-defined SEE.

- The SEE represents the *long-run*: it might change over time, though slowly, because of technological innovations, and other sources of long-run growth.
- RBC and DSGE literatures are not concerned about this, but "require" the model to have a well-defined SEE.
- We would like the REE to capture key features of economic fluctuations (around long-run trends) seen in data.

- The SEE represents the *long-run*: it might change over time, though slowly, because of technological innovations, and other sources of long-run growth.
- RBC and DSGE literatures are not concerned about this, but "require" the model to have a well-defined SEE.
- We would like the REE to capture key features of economic fluctuations (around long-run trends) seen in data.
- The REE features several non-linear stochastic difference equations
 analytically intractable:!
 - ⇒ linear approximation around the SSE (hence, uniqueness is highly desirable)

- The SEE represents the *long-run*: it might change over time, though slowly, because of technological innovations, and other sources of long-run growth.
- RBC and DSGE literatures are not concerned about this, but "require" the model to have a well-defined SEE.
- We would like the REE to capture key features of economic fluctuations (around long-run trends) seen in data.
- The REE features several non-linear stochastic difference equations
 analytically intractable:!
 - ⇒ linear approximation around the SSE (hence, uniqueness is highly desirable)
- We start by analyzing money and monetary policy in a frictionless RBC-like model.

Households

 Similar to RBC model: large number of infinitely-lived households (a continuum), all identical

Households

- Similar to RBC model: large number of infinitely-lived households (a continuum), all identical
- Representative household seeks to maximize his expected lifetime welfare

$$\max E_0 \sum_{t=0}^{\infty} \beta^t U\left(C_t, H_t, \frac{M_t}{P_t}\right)$$
 (2)

subject to a budget constraint holding in every $t \geq 0$

$$P_t C_t + M_t + B_t = M_{t-1} + R_{t-1} B_{t-1} + W_t H_t + T_t$$
 (3)

Households

- Similar to RBC model: large number of infinitely-lived households (a continuum), all identical
- Representative household seeks to maximize his expected lifetime welfare

$$\max E_0 \sum_{t=0}^{\infty} \beta^t U\left(C_t, H_t, \frac{M_t}{P_t}\right)$$
 (2)

subject to a budget constraint holding in every $t \geq 0$

$$P_t C_t + M_t + B_t = M_{t-1} + R_{t-1} B_{t-1} + W_t H_t + T_t$$
 (3)

• The household's resources are given by money M_{t-1} , gross returns from risk-free bonds $R_{t-1}B_{t-1}$, labor income W_tH_t , and a transfer from the government T_t

Households

- Similar to RBC model: large number of infinitely-lived households (a continuum), all identical
- Representative household seeks to maximize his expected lifetime welfare

$$\max E_0 \sum_{t=0}^{\infty} \beta^t U\left(C_t, H_t, \frac{M_t}{P_t}\right)$$
 (2)

subject to a budget constraint holding in every $t \geq 0$

$$P_t C_t + M_t + B_t = M_{t-1} + R_{t-1} B_{t-1} + W_t H_t + T_t$$
 (3)

- The household's resources are given by money M_{t-1} , gross returns from risk-free bonds $R_{t-1}B_{t-1}$, labor income W_tH_t , and a transfer from the government T_t
- Resources are spent to buy consumption P_tC_t , get cash new M_t , and buy new bonds B_t

Households

The household's problem is

$$\max L = E_0 \sum_{t=0}^{\infty} \beta^t \left[U \left(C_t, H_t, \frac{M_t}{P_t} \right) + \lambda_t (M_{t-1} + R_{t-1}B_{t-1} + W_t H_t + T_t - P_t C_t - M_t - B_t) \right]$$
(4)

• The household's problem is

$$\max L = E_0 \sum_{t=0}^{\infty} \beta^t \left[U \left(C_t, H_t, \frac{M_t}{P_t} \right) + \lambda_t (M_{t-1} + R_{t-1}B_{t-1} + W_t H_t + T_t - P_t C_t - M_t - B_t) \right]$$
(4)

 To get transparent results (without loss of generality), let's consider the following utility specification (common in the literature)

$$U\left(C_t, H_t, \frac{M_t}{P_t}\right) = \frac{C_t^{1-\sigma}}{1-\sigma} - \psi \frac{H_t^{1+\chi}}{1+\chi} + \nu \frac{\left(\frac{M_t}{P_t}\right)^{1-\gamma}}{1-\gamma}$$

NOTE: instead of putting *leisure* as a source of utility, I have put hours worked H_t as a source of dis-utility. Leisure would be given by $1 - H_t$

• First order conditions give

$$FOC(C_t) : C_t^{-\sigma} - \lambda_t P_t = 0$$
 (5)

$$FOC(H_t) : -\psi H_t^{\chi} + \lambda_t W_t = 0$$
 (6)

$$FOC(B_t) : -\lambda_t + \beta R_t E_t \lambda_{t+1} = 0$$
 (7)

FOC(
$$M_t$$
):
$$\frac{\nu\left(\frac{M_t}{P_t}\right)^{-\gamma}}{P_t} - \lambda_t + \beta E_t \lambda_{t+1} = 0$$
 (8)

Labor Supply and Euler Equation

 Combining (5)-(6) gives the optimal trade-off between working and taking leisure (MB = marginal benefit, MC = marginal cost)

$$\underbrace{\psi H_t^{\chi}}_{\text{MC of working}} = \underbrace{\frac{W_t}{P_t} C_t^{-\sigma}}_{\text{MB of working}}$$
(9)

Labor Supply and Euler Equation

 Combining (5)-(6) gives the optimal trade-off between working and taking leisure (MB = marginal benefit, MC = marginal cost)

$$\underbrace{\psi H_t^{\chi}}_{\text{MC of working}} = \underbrace{\frac{W_t}{P_t} C_t^{-\sigma}}_{\text{MB of working}}$$
(9)

• Combining (5)-(7) gives optimal **consuming vs saving trade-off**

$$\underbrace{\lambda_t}_{C_t^{-\sigma}/P_t} = \beta R_t \underbrace{E_t \lambda_{t+1}}_{C_{t+1}^{-\sigma}/P_{t+1}} \implies \underbrace{C_t^{-\sigma}}_{\text{MB of consuming today}} = \underbrace{\beta R_t E_t \left[\frac{C_{t+1}^{-\sigma}}{\Pi_{t+1}} \right]}_{\text{MB of consuming tomorrow}}$$

B of consuming tomorr (10)

Nov. 22, 2022

where $\Pi_{t+1} \equiv rac{P_{t+1}}{P_t}$ is gross inflation

Money Demand

• From the FOC of money (8):

$$\frac{\nu\left(\frac{M_t}{P_t}\right)^{-\gamma}}{P_t} = \lambda_t - \beta E_t \lambda_{t+1} = \lambda_t \left(1 - \beta \frac{E_t \lambda_{t+1}}{\lambda_t}\right)$$

$$= \lambda_t \left(1 - \frac{1}{R_t}\right) \text{ (from eq.(7))}$$

• From the FOC of money (8):

$$\frac{\nu\left(\frac{M_t}{P_t}\right)^{-\gamma}}{P_t} = \lambda_t - \beta E_t \lambda_{t+1} = \lambda_t \left(1 - \beta \frac{E_t \lambda_{t+1}}{\lambda_t}\right)$$

$$= \lambda_t \left(1 - \frac{1}{R_t}\right) \text{ (from eq.(7))}$$

Hence

$$\nu\left(\frac{M_t}{P_t}\right)^{-\gamma} = \lambda_t P_t\left(\frac{R_t - 1}{R_t}\right) \underset{\mathsf{FOC}(C)}{=} C_t^{-\sigma}\left(\frac{R_t - 1}{R_t}\right)$$

Money Demand

$$\frac{M_t}{P_t} = \left(\nu C_t^{\sigma} \frac{R_t}{R_t - 1}\right)^{\frac{1}{\gamma}} \tag{11}$$

Money Demand

 Rearranging terms in previous equation gives the expression for real money demand

$$\frac{M_t}{P_t} = \left(\nu C_t^{\sigma} \frac{R_t}{R_t - 1}\right)^{\frac{1}{\gamma}} \tag{11}$$

• Simple calculus shows that the demand for *real money balances* $\frac{M_t}{P_t}$ is

$$\frac{M_t}{P_t} = \left(\nu C_t^{\sigma} \frac{R_t}{R_t - 1}\right)^{\frac{1}{\gamma}} \tag{11}$$

- \bullet Simple calculus shows that the demand for real money balances $\frac{M_t}{P_t}$ is
 - strictly increasing in consumption C_t (money as medium of exchange)

$$\frac{M_t}{P_t} = \left(\nu C_t^{\sigma} \frac{R_t}{R_t - 1}\right)^{\frac{1}{\gamma}} \tag{11}$$

- \bullet Simple calculus shows that the demand for real money balances $\frac{M_t}{P_t}$ is
 - strictly increasing in consumption C_t (money as medium of exchange)
 - strictly decreasing in R_t (opportunity cost of holding cash)

$$\frac{M_t}{P_t} = \left(\nu C_t^{\sigma} \frac{R_t}{R_t - 1}\right)^{\frac{1}{\gamma}} \tag{11}$$

- \bullet Simple calculus shows that the demand for real money balances $\frac{M_t}{P_t}$ is
 - strictly increasing in consumption C_t (money as medium of exchange)
 - strictly decreasing in R_t (opportunity cost of holding cash)
- NOTE: if we had $\nu=0$ (no utility from holding cash), then $\frac{M_t}{P_t}=0$ (no demand for money)

Firms

• Large number of firms (a continuum) operates under *perfect* competition and *flexible prices*: they are price takers!

Firms

- Large number of firms (a continuum) operates under *perfect* competition and *flexible prices*: they are price takers!
- Labor is the only input (supplied by households through a perfectly competitive labor market)

$$Y_t = Z_t H_t^f \tag{12}$$

where Z_t is total factor productivity (as in RBC model)

Firms

- Large number of firms (a continuum) operates under *perfect* competition and *flexible prices*: they are price takers!
- Labor is the only input (supplied by households through a perfectly competitive labor market)

$$Y_t = Z_t H_t^f \tag{12}$$

where Z_t is total factor productivity (as in RBC model)

NOTE: no capital accumulation, hence no physical investments

- Large number of firms (a continuum) operates under *perfect* competition and *flexible prices*: they are price takers!
- Labor is the only input (supplied by households through a perfectly competitive labor market)

$$Y_t = Z_t H_t^f \tag{12}$$

where Z_t is total factor productivity (as in RBC model)

- NOTE: no capital accumulation, hence no physical investments
- Profit maximization:

$$\max_{H_t^f} P_t Z_t H_t^f - W_t H_t^f \underset{\mathsf{FOC}(H_t^f)}{\Longrightarrow} P_t Z_t = W_t \Longrightarrow W_t^r \equiv \frac{W_t}{P_t} = Z_t \quad (13)$$

The Fed: Targets and Instruments

• What is the Fed targeting? What is the policy instrument?

The Fed: Targets and Instruments

- What is the Fed targeting? What is the policy instrument?
- A central bank is the monopolist supplier of the legal tender/national currency
 - ⇒ like in any monopoly, it CANNOT choose both the price and quantity of what it produces

The Fed: Targets and Instruments

- What is the Fed targeting? What is the policy instrument?
- A central bank is the monopolist supplier of the legal tender/national currency
 - \Longrightarrow like in any monopoly, it CANNOT choose both the price and quantity of what it produces
- Assume (for simplicity) the central bank can control real money supply. Money market equilibrium requires

$$\frac{M_t}{P_t}^s = (\nu C_t^{\sigma})^{\frac{1}{\gamma}} \left(\frac{R_t}{R_t - 1}\right)^{\frac{1}{\gamma}} \tag{14}$$
oney supply

For given C_t by households, the central bank could either

The Fed: Targets and Instruments

- What is the Fed targeting? What is the policy instrument?
- A central bank is the monopolist supplier of the legal tender/national currency
 - \Longrightarrow like in any monopoly, it CANNOT choose both the price and quantity of what it produces
- Assume (for simplicity) the central bank can control real money supply. Money market equilibrium requires

$$\frac{M_t}{P_t}^s = (\nu C_t^{\sigma})^{\frac{1}{\gamma}} \left(\frac{R_t}{R_t - 1}\right)^{\frac{1}{\gamma}}$$
 oney supply money demand (14)

For given C_t by households, the central bank could either

• choose $\frac{M_t}{P_t}^s$ and let eq. (14) determine R_t , or

◆ロト ◆問 > ◆注 > ◆注 > 注 り < ②</p>

The Fed: Targets and Instruments

- What is the Fed targeting? What is the policy instrument?
- A central bank is the monopolist supplier of the legal tender/national currency
 - \Longrightarrow like in any monopoly, it CANNOT choose both the price and quantity of what it produces
- Assume (for simplicity) the central bank can control real money supply. Money market equilibrium requires

$$\frac{M_t}{P_t}^s = (\nu C_t^{\sigma})^{\frac{1}{\gamma}} \left(\frac{R_t}{R_t - 1}\right)^{\frac{1}{\gamma}}$$
oney supply money demand

For given C_t by households, the central bank could either

- choose $\frac{M_t}{P_t}$ and let eq. (14) determine R_t , or
- choose R_t , and then let eq. (14) determine money supply $\frac{M_t}{P_t}$

Monetary Policy in the U.S.

 U.S. monetary history is often split into a pre-Volcker (up to 1981) and post-Volcker (post 1981) era: Paul Volcker became Fed's Chairman in 1979.

Monetary Policy in the U.S.

- U.S. monetary history is often split into a pre-Volcker (up to 1981) and post-Volcker (post 1981) era: Paul Volcker became Fed's Chairman in 1979.
- Pre-Volcker: Fed seemed mostly concerned about the rate of money growth

Monetary Policy in the U.S.

- U.S. monetary history is often split into a pre-Volcker (up to 1981) and post-Volcker (post 1981) era: Paul Volcker became Fed's Chairman in 1979.
- Pre-Volcker: Fed seemed mostly concerned about the rate of money growth
 - General consensus was that $inflation \approx money growth rate$ \implies money growth rate was the key target/instrument

- U.S. monetary history is often split into a pre-Volcker (up to 1981) and post-Volcker (post 1981) era: Paul Volcker became Fed's Chairman in 1979.
- Pre-Volcker: Fed seemed mostly concerned about the rate of money growth
 - General consensus was that $inflation \approx money growth rate$ \implies money growth rate was the key target/instrument
 - Evidence: double-digit inflation and interest rates

- U.S. monetary history is often split into a pre-Volcker (up to 1981) and post-Volcker (post 1981) era: Paul Volcker became Fed's Chairman in 1979.
- Pre-Volcker: Fed seemed mostly concerned about the rate of money growth
 - General consensus was that $inflation \approx money \ growth \ rate \implies money \ growth \ rate \ was the key target/instrument$
 - Evidence: double-digit inflation and interest rates
- Post-Volcker: Volcker was extremely hawkish

- U.S. monetary history is often split into a pre-Volcker (up to 1981) and post-Volcker (post 1981) era: Paul Volcker became Fed's Chairman in 1979.
- Pre-Volcker: Fed seemed mostly concerned about the rate of money growth
 - General consensus was that $inflation \approx money growth rate$ \implies money growth rate was the key target/instrument
 - Evidence: double-digit inflation and interest rates
- Post-Volcker: Volcker was extremely hawkish
 - He effectively made the FFR the key target and instrument (raised it up to 20%)

- U.S. monetary history is often split into a pre-Volcker (up to 1981) and post-Volcker (post 1981) era: Paul Volcker became Fed's Chairman in 1979.
- Pre-Volcker: Fed seemed mostly concerned about the rate of money growth
 - General consensus was that $inflation \approx money growth rate$ \implies money growth rate was the key target/instrument
 - Evidence: double-digit inflation and interest rates
- Post-Volcker: Volcker was extremely hawkish
 - He effectively made the FFR the key target and instrument (raised it up to 20%)
 - Evidence: Volcker was successful at curbing inflation (or just lucky, since '70s oil crises faded away)

Annual Money (M1) Growth and CPI Inflation

Avg. Money Growth: 1960-1980 = 5.1%; 1981-2019 = 6.1%

Avg. Inflation: 1960-1980 = 5.1%; 1981-2019 = 3%

Annual Money (M1) Growth and PCE Inflation

Avg. Money Growth: 1960-1980 = 5.1%; 1981-2019 = 6.1%

Avg. Inflation: 1960-1980 = 4.6%; 1981-2019 = 2.6%

Fed Funds Rate and PCE Inflation

Taylor Rule

$$\frac{R_t}{R^*} = f\left(\frac{\Pi_t}{\Pi^*}\right) \tag{15}$$

Taylor Rule

• Monetary policy takes the form of a **Taylor Rule**: the Fed sets R_t as function of inflation

$$\frac{R_t}{R^*} = f\left(\frac{\Pi_t}{\Pi^*}\right) \tag{15}$$

• f(1)=1: if inflation is at target $(\Pi_t=\Pi^*)$, no hikes or cuts in the FFR $(R_t=R^*)$

Taylor Rule

$$\frac{R_t}{R^*} = f\left(\frac{\Pi_t}{\Pi^*}\right) \tag{15}$$

- f(1)=1: if inflation is at target $(\Pi_t=\Pi^*)$, no hikes or cuts in the FFR $(R_t=R^*)$
- $f'\left(\frac{\Pi_t}{\Pi^*}\right) > 0$: the FFR is raised (respectively, cut) when inflation is above (resp. below) target

Taylor Rule

$$\frac{R_t}{R^*} = f\left(\frac{\Pi_t}{\Pi^*}\right) \tag{15}$$

- f(1)=1: if inflation is at target $(\Pi_t=\Pi^*)$, no hikes or cuts in the FFR $(R_t=R^*)$
- $f'\left(\frac{\Pi_t}{\Pi^*}\right) > 0$: the FFR is raised (respectively, cut) when inflation is above (resp. below) target
- Standard assumption:

Taylor Rule

$$\frac{R_t}{R^*} = f\left(\frac{\Pi_t}{\Pi^*}\right) \tag{15}$$

- f(1)=1: if inflation is at target $(\Pi_t=\Pi^*)$, no hikes or cuts in the FFR $(R_t=R^*)$
- $f'\left(\frac{\Pi_t}{\Pi^*}\right) > 0$: the FFR is raised (respectively, cut) when inflation is above (resp. below) target
- Standard assumption:
 - **Pre-Volcker**: elasticity of $\frac{R_t}{R^*}$ to $\frac{\Pi_t}{\Pi^*}$ LESS than 1 (dovish Fed) \implies a 1% inflation increase (above target) triggers a less than 1% FFR increase (above target)

Taylor Rule

$$\frac{R_t}{R^*} = f\left(\frac{\Pi_t}{\Pi^*}\right) \tag{15}$$

- f(1)=1: if inflation is at target $(\Pi_t=\Pi^*)$, no hikes or cuts in the FFR $(R_t=R^*)$
- $f'\left(\frac{\Pi_t}{\Pi^*}\right) > 0$: the FFR is raised (respectively, cut) when inflation is above (resp. below) target
- Standard assumption:
 - **Pre-Volcker**: elasticity of $\frac{R_t}{R^*}$ to $\frac{\Pi_t}{\Pi^*}$ LESS than 1 (dovish Fed) \implies a 1% inflation increase (above target) triggers a less than 1% FFR increase (above target)
 - Post-Volcker: elasticity of $\frac{R_t}{R^*}$ to $\frac{\Pi_t}{\Pi^*}$ LARGER than 1(hawkish Fed) \implies a 1% inflation increase (above target) triggers a more than 1% FFR increase (above target)

Real Variables

• In equilibrium, all markets clear

$$Y_t = C_t, \qquad H_t = H_t^f, \qquad M_t = M_t^s, \qquad Y_t = Z_t H_t$$

Real Variables

In equilibrium, all markets clear

$$Y_t = C_t$$
, $H_t = H_t^f$, $M_t = M_t^s$, $Y_t = Z_t H_t$

• Combine eq. (9) with firm's optimality (13), and market clearing:

$$\psi H_t^{\chi} = W_t^r C_t^{-\sigma} \Longrightarrow \psi \left(\frac{Y_t}{Z_t}\right)^{\chi} = Z_t Y_t^{-\sigma}$$

Real Variables

In equilibrium, all markets clear

$$Y_t = C_t$$
, $H_t = H_t^f$, $M_t = M_t^s$, $Y_t = Z_t H_t$

Combine eq. (9) with firm's optimality (13), and market clearing:

$$\psi H_t^{\chi} = W_t^r C_t^{-\sigma} \Longrightarrow \psi \left(\frac{Y_t}{Z_t}\right)^{\chi} = Z_t Y_t^{-\sigma}$$

• Solving for Y_t (and C_t)

$$Y_t = C_t = \left(\frac{1}{\psi}\right)^{\frac{1}{\sigma+\chi}} Z_t^{\frac{1+\chi}{\sigma+\chi}} \tag{16}$$

Real Variables

In equilibrium, all markets clear

$$Y_t = C_t$$
, $H_t = H_t^f$, $M_t = M_t^s$, $Y_t = Z_t H_t$

• Combine eq. (9) with firm's optimality (13), and market clearing:

$$\psi H_t^{\chi} = W_t^r C_t^{-\sigma} \Longrightarrow \psi \left(\frac{Y_t}{Z_t}\right)^{\chi} = Z_t Y_t^{-\sigma}$$

• Solving for Y_t (and C_t)

$$Y_t = C_t = \left(\frac{1}{\psi}\right)^{\frac{1}{\sigma+\chi}} Z_t^{\frac{1+\chi}{\sigma+\chi}} \tag{16}$$

Hence, hours worked are:

$$H_t = \frac{Y_t}{Z_t} = \left(\frac{1}{\psi}\right)^{\frac{1}{\sigma + \chi}} Z_t^{\frac{1 - \sigma}{\sigma + \chi}} \tag{17}$$

Real Variables

In equilibrium, all markets clear

$$Y_t = C_t$$
, $H_t = H_t^f$, $M_t = M_t^s$, $Y_t = Z_t H_t$

• Combine eq. (9) with firm's optimality (13), and market clearing:

$$\psi H_t^{\chi} = W_t^r C_t^{-\sigma} \Longrightarrow \psi \left(\frac{Y_t}{Z_t}\right)^{\chi} = Z_t Y_t^{-\sigma}$$

• Solving for Y_t (and C_t)

$$Y_t = C_t = \left(\frac{1}{\psi}\right)^{\frac{1}{\sigma+\chi}} Z_t^{\frac{1+\chi}{\sigma+\chi}} \tag{16}$$

• Hence, hours worked are:

$$H_t = \frac{Y_t}{Z_t} = \left(\frac{1}{\psi}\right)^{\frac{1}{\sigma + \chi}} Z_t^{\frac{1 - \sigma}{\sigma + \chi}} \tag{17}$$

All variables driven by TFP!

Fluctuations around the Steady State

• Let \bar{X} denote the steady state of any variable X_t .

Fluctuations around the Steady State

- Let \bar{X} denote the steady state of any variable X_t .
- Consider equilibrium output in equation (16). It must also hold in steady state:

$$ar{Y} = \left(rac{1}{\psi}
ight)^{rac{1}{\sigma+\chi}} ar{Z}^{rac{1+\chi}{\sigma+\chi}}$$
 (18)

Fluctuations around the Steady State

- Let \bar{X} denote the steady state of any variable X_t .
- Consider equilibrium output in equation (16). It must also hold in steady state:

$$ar{Y} = \left(rac{1}{\psi}
ight)^{rac{1}{\sigma+\chi}} ar{Z}^{rac{1+\chi}{\sigma+\chi}}$$
 (18)

• Taking logs of both (16) and (18), with $y = \ln Y$ and $z = \ln Z$:

$$egin{array}{lll} y_t &=& \ln \left[\left(rac{1}{\psi}
ight)^{rac{1}{\sigma + \chi}}
ight] + rac{1 + \chi}{\sigma + \chi} z_t \ ar{y} &=& \ln \left[\left(rac{1}{\psi}
ight)^{rac{1}{\sigma + \chi}}
ight] + rac{1 + \chi}{\sigma + \chi} ar{z} \end{array}$$

Fluctuations around the Steady State

- Let \bar{X} denote the steady state of any variable X_t .
- Consider equilibrium output in equation (16). It must also hold in steady state:

$$ar{Y} = \left(rac{1}{\psi}
ight)^{rac{1}{\sigma+\chi}} ar{Z}^{rac{1+\chi}{\sigma+\chi}}$$
 (18)

• Taking logs of both (16) and (18), with $y = \ln Y$ and $z = \ln Z$:

$$y_t = \ln \left[\left(\frac{1}{\psi} \right)^{\frac{1}{\sigma + \chi}} \right] + \frac{1 + \chi}{\sigma + \chi} z_t$$
 $\bar{y} = \ln \left[\left(\frac{1}{\psi} \right)^{\frac{1}{\sigma + \chi}} \right] + \frac{1 + \chi}{\sigma + \chi} \bar{z}$

• Subtract the latter from the former

$$y_t - \bar{y} = \frac{1 + \chi}{\sigma + \chi} \left(z_t - \bar{z} \right) \tag{19}$$

A Little Technicality

• Let \hat{x}_t be the percent deviation of any variable X_t from its steady state \bar{X} :

$$\hat{x}_t = rac{X_t - ar{X}}{ar{X}} \quad \Longrightarrow \quad X_t = ar{X} \left(1 + \hat{x}_t
ight)$$

A Little Technicality

• Let \hat{x}_t be the percent deviation of any variable X_t from its steady state \bar{X} :

$$\hat{x}_t = rac{X_t - ar{X}}{ar{X}} \quad \Longrightarrow \quad X_t = ar{X} \left(1 + \hat{x}_t
ight)$$

• Then:

$$x_t - \bar{x} = \ln\left(\frac{X_t}{\bar{X}}\right) = \ln\left(\frac{\bar{X}\left(1 + \hat{x}_t\right)}{\bar{X}}\right) = \ln\left(1 + \hat{x}_t\right) \underset{\hat{x}_t \text{ small}}{\approx} \hat{x}_t \quad (20)$$

A Little Technicality

• Let \hat{x}_t be the percent deviation of any variable X_t from its steady state \bar{X} :

$$\hat{x}_t = rac{X_t - ar{X}}{ar{X}} \quad \Longrightarrow \quad X_t = ar{X}\left(1 + \hat{x}_t
ight)$$

Then:

$$x_t - \bar{x} = \ln\left(\frac{X_t}{\bar{X}}\right) = \ln\left(\frac{\bar{X}\left(1 + \hat{x}_t\right)}{\bar{X}}\right) = \ln\left(1 + \hat{x}_t\right) \underset{\hat{x}_t \text{ small}}{\approx} \hat{x}_t \quad (20)$$

• REMARK: since we require \hat{x}_t to be *small*, this approach is valid for *small* fluctuations around the steady state \implies model cannot handle large shocks (ex: financial crisis, covid, large rare events, etc.)

Output, Consumption and Labor

Since the approx. holds for any variable, we can write (19) as

$$\hat{y}_t = \underbrace{\frac{1+\chi}{\sigma+\chi}}_{\eta_{\chi,\zeta}} \hat{z}_t \tag{21}$$

 \implies a 1% deviation of TFP from steady state $(\hat{z}_t=1)$ implies a $\frac{1+\chi}{\sigma+\chi}$ percent deviation of output from steady state

Output, Consumption and Labor

Since the approx. holds for any variable, we can write (19) as

$$\hat{y}_t = \underbrace{\frac{1+\chi}{\sigma+\chi}}_{\eta_{\chi,\zeta}} \hat{z}_t \tag{21}$$

 \implies a 1% deviation of TFP from steady state $(\hat{z}_t=1)$ implies a $\frac{1+\chi}{\sigma+\chi}$ percent deviation of output from steady state

• From equilibrium conditions (16) and (17) it then follows that

$$\hat{c}_t = \eta_{y,z} \hat{z}_t, \qquad \hat{h}_t = \underbrace{\frac{1 - \sigma}{\sigma + \chi}}_{n_t} \hat{z}_t \tag{22}$$

NOTE: sign of $\eta_{h,z}$ depend on $\sigma \gtrsim 1$. So labor can be pro (counter) cyclical for σ less (more) than 1.

Euler Equation and the Real Interest Rate

Back to the Euler equation (10):

$$C_t^{-\sigma} = \beta E_t \left[\frac{R_t}{\Pi_{t+1}} C_{t+1}^{-\sigma} \right]$$
 (23)

REMARK: similar to the Euler eq. of RBC model, with $\frac{R_t}{\Pi_{t+1}}$ (the *ex ante* real interest rate) replacing the real return from capital investment $R_{t+1}^k = Z_{t+1}F'(K_{t+1}) + 1 - \delta$

Euler Equation and the Real Interest Rate

Back to the Euler equation (10):

$$C_t^{-\sigma} = \beta E_t \left[\frac{R_t}{\Pi_{t+1}} C_{t+1}^{-\sigma} \right]$$
 (23)

REMARK: similar to the Euler eq. of RBC model, with $\frac{R_t}{\Pi_{t+1}}$ (the *ex ante* real interest rate) replacing the real return from capital investment $R_{t+1}^k = Z_{t+1}F'\left(K_{t+1}\right) + 1 - \delta$

 Take logs of both side of (23) (using lower case notation) and its SS counterpart

$$-\sigma c_t = \ln \beta + r_t - \sigma E_t c_{t+1} - E_t \pi_{t+1}$$

$$-\sigma \bar{c} = \ln \beta + \bar{r} - \sigma \bar{c} - \bar{\pi}$$

Euler Equation and the Real Interest Rate

Back to the Euler equation (10):

$$C_t^{-\sigma} = \beta E_t \left[\frac{R_t}{\Pi_{t+1}} C_{t+1}^{-\sigma} \right]$$
 (23)

REMARK: similar to the Euler eq. of RBC model, with $\frac{R_t}{\Pi_{t+1}}$ (the *ex ante* real interest rate) replacing the real return from capital investment $R_{t+1}^k = Z_{t+1}F'(K_{t+1}) + 1 - \delta$

 Take logs of both side of (23) (using lower case notation) and its SS counterpart

$$-\sigma c_t = \ln \beta + r_t - \sigma E_t c_{t+1} - E_t \pi_{t+1}$$

$$-\sigma \bar{c} = \ln \beta + \bar{r} - \sigma \bar{c} - \bar{\pi}$$

• Take the difference, recalling that $x_t - \bar{x} = \hat{x}_t$:

$$\hat{c}_t = E_t \hat{c}_{t+1} - \sigma^{-1} \left(\hat{r}_t - E_t \hat{\pi}_{t+1} \right)$$
 (24)

Euler Equation and the Real Interest Rate

 In a NK-DSGE model, equation (24) will be the key channel of monetary policy transmission.

Euler Equation and the Real Interest Rate

- In a NK-DSGE model, equation (24) will be the key channel of monetary policy transmission.
- However, here, consumption is just driven by TFP. Hence:

$$\hat{c}_t = \eta_{y,z} \hat{z}_t, \qquad ext{and} \qquad E_t \hat{c}_{t+1} = \eta_{y,z} E_t \hat{z}_{t+1}$$

 \implies the Euler eq. (24) becomes

$$\eta_{y,z}\hat{z}_t = \eta_{y,z}E_t\hat{z}_{t+1} - \sigma^{-1}(\hat{r}_t - E_t\hat{\pi}_{t+1})$$

Euler Equation and the Real Interest Rate

- In a NK-DSGE model, equation (24) will be the key channel of monetary policy transmission.
- However, here, consumption is just driven by TFP. Hence:

$$\hat{c}_t = \eta_{y,z} \hat{z}_t, \qquad ext{and} \qquad E_t \hat{c}_{t+1} = \eta_{y,z} E_t \hat{z}_{t+1}$$

 \implies the Euler eq. (24) becomes

$$\eta_{y,z}\hat{z}_t = \eta_{y,z}E_t\hat{z}_{t+1} - \sigma^{-1}(\hat{r}_t - E_t\hat{\pi}_{t+1})$$

• We can re-write the latter as:

$$\hat{r}_{t} = E_{t} \hat{\pi}_{t+1} + \eta_{y,z} \sigma E_{t} \left(\hat{z}_{t+1} - \hat{z}_{t} \right)$$
 (25)

Euler Equation and the Real Interest Rate

• Assume TFP \hat{z}_t follows a simple AR(1) process:

$$\hat{z}_t = \rho_z \hat{z}_{t-1} + \varepsilon_t^z, \qquad \varepsilon_t^z \sim \mathrm{iid} N\left(0, \sigma_z^2\right), \ 0 \le \rho_z < 1$$
 (26)

 \Longrightarrow

$$E_t \hat{z}_{t+1} = E_t \left(\rho_z \hat{z}_t + \varepsilon_{t+1} \right) = \rho_z \hat{z}_t + E_t \left(\varepsilon_{t+1} \right) = \rho_z \hat{z}_t$$

Euler Equation and the Real Interest Rate

• Assume TFP \hat{z}_t follows a simple AR(1) process:

$$\hat{\mathbf{z}}_t = \rho_z \hat{\mathbf{z}}_{t-1} + \varepsilon_t^z$$
, $\varepsilon_t^z \sim \operatorname{iid} N\left(0, \sigma_z^2\right)$, $0 \le \rho_z < 1$ (26)

 \Longrightarrow

$$E_{t}\hat{z}_{t+1} = E_{t}\left(\rho_{z}\hat{z}_{t} + \varepsilon_{t+1}\right) = \rho_{z}\hat{z}_{t} + E_{t}\left(\varepsilon_{t+1}\right) = \rho_{z}\hat{z}_{t}$$

• By eq. (25), the real interest rate just depends on TFP

$$\widehat{rr_t} \equiv \hat{r}_t - E_t \hat{\pi}_{t+1} = \eta_{y,z} \sigma(\rho_z - 1) \,\hat{z}_t \tag{27}$$

Euler Equation and the Real Interest Rate

• Assume TFP \hat{z}_t follows a simple AR(1) process:

$$\hat{z}_t = \rho_z \hat{z}_{t-1} + \varepsilon_t^z$$
, $\varepsilon_t^z \sim \operatorname{iid} N\left(0, \sigma_z^2\right)$, $0 \le \rho_z < 1$ (26)

 \Longrightarrow

$$E_{t}\hat{z}_{t+1} = E_{t}\left(\rho_{z}\hat{z}_{t} + \varepsilon_{t+1}\right) = \rho_{z}\hat{z}_{t} + E_{t}\left(\varepsilon_{t+1}\right) = \rho_{z}\hat{z}_{t}$$

By eq. (25), the real interest rate just depends on TFP

$$\widehat{rr_t} \equiv \hat{r}_t - E_t \hat{\pi}_{t+1} = \eta_{y,z} \sigma(\rho_z - 1) \,\hat{z}_t \tag{27}$$

 The Euler equation, in this frictionless model, is just the Fisher equation:

$$\hat{r}_t = E_t \hat{\pi}_{t+1} + \widehat{rr_t} \tag{28}$$

Euler Equation and the Real Interest Rate

• Assume TFP \hat{z}_t follows a simple AR(1) process:

$$\hat{z}_t = \rho_z \hat{z}_{t-1} + \varepsilon_t^z$$
, $\varepsilon_t^z \sim \text{iid} N\left(0, \sigma_z^2\right)$, $0 \le \rho_z < 1$ (26)

 \Longrightarrow

$$E_{t}\hat{z}_{t+1} = E_{t}\left(\rho_{z}\hat{z}_{t} + \varepsilon_{t+1}\right) = \rho_{z}\hat{z}_{t} + E_{t}\left(\varepsilon_{t+1}\right) = \rho_{z}\hat{z}_{t}$$

By eq. (25), the real interest rate just depends on TFP

$$\widehat{rr_t} \equiv \hat{r}_t - E_t \hat{\pi}_{t+1} = \eta_{y,z} \sigma(\rho_z - 1) \hat{z}_t$$
 (27)

 The Euler equation, in this frictionless model, is just the Fisher equation:

$$\hat{r}_t = E_t \hat{\pi}_{t+1} + \widehat{rr_t} \tag{28}$$

• REMARK: up to here, I have not introduced monetary policy!

Nominal Interest Rate under a Taylor Rule

$$\hat{r}_t = \phi_\pi \hat{\pi}_t + \hat{v}_t \tag{29}$$

$$\hat{v}_t = \rho_v \hat{v}_{t-1} + \hat{\varepsilon}_t^v, \qquad \hat{\varepsilon}_t^v \sim \mathsf{iid} \, \mathcal{N} \left(0, \sigma_v^2 \right), \ 0 \le \rho_v < 1 \tag{30}$$

Nominal Interest Rate under a Taylor Rule

 Suppose the Fed adopts a Taylor rule of the following linear form (all again in deviation from SS):

$$\hat{r}_t = \phi_\pi \hat{\pi}_t + \hat{v}_t \tag{29}$$

$$\hat{v}_t = \rho_v \hat{v}_{t-1} + \hat{\varepsilon}_t^v, \qquad \hat{\varepsilon}_t^v \sim \mathsf{iid} N\left(0, \sigma_v^2\right), \ 0 \le \rho_v < 1 \tag{30}$$

Remarks

Nominal Interest Rate under a Taylor Rule

$$\hat{r}_t = \phi_\pi \hat{\pi}_t + \hat{v}_t \tag{29}$$

$$\hat{v}_t = \rho_v \hat{v}_{t-1} + \hat{\varepsilon}_t^v, \qquad \hat{\varepsilon}_t^v \sim \mathsf{iid} N\left(0, \sigma_v^2\right), \ 0 \le \rho_v < 1 \tag{30}$$

- Remarks
 - The coefficient ϕ_{π} is the *elasticity* of the nominal interest rate \hat{r}_t (the policy instrument) to the inflation rate $\hat{\pi}_t$

Nominal Interest Rate under a Taylor Rule

$$\hat{r}_t = \phi_\pi \hat{\pi}_t + \hat{v}_t \tag{29}$$

$$\hat{v}_t = \rho_v \hat{v}_{t-1} + \hat{\varepsilon}_t^v, \qquad \hat{\varepsilon}_t^v \sim \mathsf{iid} N\left(0, \sigma_v^2\right), \ 0 \le \rho_v < 1 \tag{30}$$

- Remarks
 - 1 The coefficient ϕ_{π} is the *elasticity* of the nominal interest rate \hat{r}_t (the policy instrument) to the inflation rate $\hat{\pi}_t$
 - $\phi_\pi >$ 1: a **HAWKISH** Fed (raises the nominal rate *MORE than one-to-one* with respect to inflation)

Nominal Interest Rate under a Taylor Rule

$$\hat{r}_t = \phi_\pi \hat{\pi}_t + \hat{v}_t \tag{29}$$

$$\hat{v}_t = \rho_v \hat{v}_{t-1} + \hat{\varepsilon}_t^v, \qquad \hat{\varepsilon}_t^v \sim \mathsf{iid} N\left(0, \sigma_v^2\right), \ 0 \le \rho_v < 1 \tag{30}$$

- Remarks
 - The coefficient ϕ_{π} is the *elasticity* of the nominal interest rate \hat{r}_t (the policy instrument) to the inflation rate $\hat{\pi}_t$
 - $\phi_{\pi} > 1$: a **HAWKISH** Fed (raises the nominal rate *MORE than one-to-one* with respect to inflation)
 - $0 \le \phi_\pi < 1$: a **DOVISH** Fed (raises the nominal rate *LESS than one-to-one* with respect to inflation)

Nominal Interest Rate under a Taylor Rule

$$\hat{r}_t = \phi_\pi \hat{\pi}_t + \hat{v}_t \tag{29}$$

$$\hat{v}_t = \rho_v \hat{v}_{t-1} + \hat{\varepsilon}_t^v, \qquad \hat{\varepsilon}_t^v \sim \mathsf{iid} N\left(0, \sigma_v^2\right), \ 0 \le \rho_v < 1 \tag{30}$$

- Remarks
 - The coefficient ϕ_{π} is the *elasticity* of the nominal interest rate \hat{r}_t (the policy instrument) to the inflation rate $\hat{\pi}_t$
 - $\phi_{\pi} >$ 1: a **HAWKISH** Fed (raises the nominal rate *MORE than one-to-one* with respect to inflation)
 - $0 \le \phi_\pi < 1$: a **DOVISH** Fed (raises the nominal rate *LESS than one-to-one* with respect to inflation)
 - Standard estimates: 1.5 < ϕ_π < 2 (post-Volcker), 0.5 < ϕ_π < 0.9 (pre-Volcker)

Nominal Interest Rate under a Taylor Rule

$$\hat{r}_t = \phi_\pi \hat{\pi}_t + \hat{v}_t \tag{29}$$

$$\hat{v}_t = \rho_v \hat{v}_{t-1} + \hat{\varepsilon}_t^v, \qquad \hat{\varepsilon}_t^v \sim \mathsf{iid} N\left(0, \sigma_v^2\right), \ 0 \le \rho_v < 1 \tag{30}$$

- Remarks
 - **1** The coefficient ϕ_{π} is the *elasticity* of the nominal interest rate \hat{r}_t (the policy instrument) to the inflation rate $\hat{\pi}_t$
 - $\phi_\pi >$ 1: a **HAWKISH** Fed (raises the nominal rate *MORE than one-to-one* with respect to inflation)
 - $0 \le \phi_\pi < 1$: a **DOVISH** Fed (raises the nominal rate *LESS than one-to-one* with respect to inflation)
 - Standard estimates: 1.5 $<\phi_\pi<$ 2 (post-Volcker), 0.5 $<\phi_\pi<$ 0.9 (pre-Volcker)
 - 2 \hat{v}_t is a monetary policy shock capturing either policy mistakes or unsystematic (discretionary) monetary policy decision

Actual vs Taylor Rule Predicted Interest Rate in the U.S.

Inflation under a Taylor Rule

• Plug Taylor rule (29) into (25):

$$\underbrace{\phi_{\pi}\hat{\pi}_{t} + \hat{v}_{t}}_{\hat{t}_{t}} = E_{t}\hat{\pi}_{t+1} + \eta_{y,z}\sigma(\rho_{z} - 1)\hat{z}_{t}$$
(31)

Inflation under a Taylor Rule

• Plug Taylor rule (29) into (25):

$$\underbrace{\phi_{\pi}\hat{\pi}_{t} + \hat{v}_{t}}_{\hat{r}_{t}} = E_{t}\hat{\pi}_{t+1} + \eta_{y,z}\sigma(\rho_{z} - 1)\,\hat{z}_{t}$$
(31)

Then, write it as a stochastic difference equation in inflation

$$\hat{\pi}_{t} = \underbrace{\frac{1}{\phi_{\pi}}}_{a} E_{t} \hat{\pi}_{t+1} + \underbrace{\frac{\eta_{y,z} \sigma(\rho_{z} - 1)}{\phi_{\pi}}}_{b < 0} \hat{z}_{t} \underbrace{-\frac{1}{\phi_{\pi}}}_{d < 0} \hat{v}_{t}$$
(32)

 \Longrightarrow

$$\hat{\pi}_t = aE_t\hat{\pi}_{t+1} + b\hat{z}_t + d\hat{v}_t \tag{33}$$

Inflation under a Taylor Rule

• Plug Taylor rule (29) into (25):

$$\underbrace{\phi_{\pi}\hat{\pi}_{t}+\hat{v}_{t}}_{\hat{r}_{t}}=E_{t}\hat{\pi}_{t+1}+\eta_{y,z}\sigma\left(\rho_{z}-1\right)\hat{z}_{t}$$
(31)

Then, write it as a stochastic difference equation in inflation

$$\hat{\pi}_{t} = \underbrace{\frac{1}{\phi_{\pi}}}_{z} E_{t} \hat{\pi}_{t+1} + \underbrace{\frac{\eta_{y,z} \sigma(\rho_{z} - 1)}{\phi_{\pi}}}_{b < 0} \hat{z}_{t} - \underbrace{\frac{1}{\phi_{\pi}}}_{d < 0} \hat{v}_{t}$$
(32)

 \Longrightarrow

$$\hat{\pi}_t = aE_t\hat{\pi}_{t+1} + b\hat{z}_t + d\hat{v}_t \tag{33}$$

• We can solve (33) by forward iteration or by method of undetermined coefficients

Same result as long as |a| < 1 (we need $\phi_\pi > 1$).

Solving by Method of Undetermined Coefficients (MUC)

ullet Conjecture a linear solution: $\hat{\pi}_t = \eta_{\pi,z} \hat{\mathbf{z}}_t + \eta_{\pi,v} \hat{\mathbf{v}}_t$

Solving by Method of Undetermined Coefficients (MUC)

- ullet Conjecture a linear solution: $\hat{\pi}_t = \eta_{\pi,z}\hat{z}_t + \eta_{\pi,v}\hat{v}_t$
- Compute expected inflation:

$$E_{t}\hat{\pi}_{t+1} = \eta_{\pi,z} \underbrace{E_{t}\hat{z}_{t+1}}_{\rho_{z}\hat{z}_{t}} + \eta_{\pi,v} \underbrace{E_{t}\hat{v}_{t+1}}_{\rho_{v}\hat{v}_{t}}$$
(34)

Solving by Method of Undetermined Coefficients (MUC)

- Conjecture a linear solution: $\hat{\pi}_t = \eta_{\pi,z} \hat{z}_t + \eta_{\pi,v} \hat{v}_t$
- Compute expected inflation:

$$E_{t}\hat{\pi}_{t+1} = \eta_{\pi,z} \underbrace{E_{t}\hat{z}_{t+1}}_{\rho_{z}\hat{z}_{t}} + \eta_{\pi,v} \underbrace{E_{t}\hat{v}_{t+1}}_{\rho_{v}\hat{v}_{t}}$$
(34)

Plug the latter back into (33):

$$\hat{\pi}_t = a \left(\eta_{\pi,z} \rho_z \hat{z}_t + \eta_{\pi,v} \rho_v \hat{v}_t \right) + b \hat{z}_t + d \hat{v}_t$$
 (35)

$$= \left(a\eta_{\pi,z}\rho_z + b\right)\hat{z}_t + \left(a\eta_{\pi,v}\rho_v + d\right)\hat{v}_t \tag{36}$$

Solving by Method of Undetermined Coefficients (MUC)

- Conjecture a linear solution: $\hat{\pi}_t = \eta_{\pi,z} \hat{z}_t + \eta_{\pi,v} \hat{v}_t$
- Compute expected inflation:

$$E_{t}\hat{\pi}_{t+1} = \eta_{\pi,z} \underbrace{E_{t}\hat{z}_{t+1}}_{\rho_{z}\hat{z}_{t}} + \eta_{\pi,v} \underbrace{E_{t}\hat{v}_{t+1}}_{\rho_{v}\hat{v}_{t}}$$
(34)

Plug the latter back into (33):

$$\hat{\pi}_t = a \left(\eta_{\pi,z} \rho_z \hat{z}_t + \eta_{\pi,v} \rho_v \hat{v}_t \right) + b \hat{z}_t + d \hat{v}_t$$
 (35)

$$= (a\eta_{\pi,z}\rho_z + b) \hat{z}_t + (a\eta_{\pi,v}\rho_v + d) \hat{v}_t$$
 (36)

ullet Initial guesses $\eta_{\pi,z}$ and $\eta_{\pi,v}$ are correct if

$$a\eta_{\pi,z}\rho_z + b = \eta_{\pi,z} \implies \eta_{\pi,z} = b/(1 - a\rho_z)$$

 $a\eta_{\pi,v}\rho_v + d = \eta_{\pi,v} \implies \eta_{\pi,v} = d/(1 - a\rho_v)$

Solving by Forward Iteration

• Forward (33) by one period and take expectations E_t (where $E_t E_{t+1} \hat{\pi}_{t+2} = E_t \hat{\pi}_{t+2}$ by law of iterated expectations):

$$E_t \hat{\pi}_{t+1} = a E_t \hat{\pi}_{t+2} + b E_t \hat{z}_{t+1} + d E_t \hat{v}_{t+1}$$
 (37)

Solving by Forward Iteration

• Forward (33) by one period and take expectations E_t (where $E_t E_{t+1} \hat{\pi}_{t+2} = E_t \hat{\pi}_{t+2}$ by law of iterated expectations):

$$E_t \hat{\pi}_{t+1} = a E_t \hat{\pi}_{t+2} + b E_t \hat{z}_{t+1} + d E_t \hat{v}_{t+1}$$
 (37)

Plug the latter back into (33):

$$\hat{\pi}_{t} = a^{2} E_{t} \hat{\pi}_{t+2} + b \left(\hat{z}_{t} + a E_{t} \hat{z}_{t+1} \right) + d \left(\hat{v}_{t} + a E_{t} \hat{v}_{t+1} \right)$$
(38)

Solving by Forward Iteration

• Forward (33) by one period and take expectations E_t (where $E_t E_{t+1} \hat{\pi}_{t+2} = E_t \hat{\pi}_{t+2}$ by law of iterated expectations):

$$E_t \hat{\pi}_{t+1} = a E_t \hat{\pi}_{t+2} + b E_t \hat{z}_{t+1} + d E_t \hat{v}_{t+1}$$
 (37)

Plug the latter back into (33):

$$\hat{\pi}_{t} = a^{2} E_{t} \hat{\pi}_{t+2} + b \left(\hat{z}_{t} + a E_{t} \hat{z}_{t+1} \right) + d \left(\hat{v}_{t} + a E_{t} \hat{v}_{t+1} \right)$$
(38)

• Repeat this procedure for $E_t \hat{\pi}_{t+j}$ (for j=2,3,...) and assume that $\lim_{j\to\infty} a^j E_t \hat{\pi}_{t+j} = 0$ (indeed $\lim_{j\to\infty} a^j = 0$ since $a = \frac{1}{\phi_\pi} < 1$), we find

$$\hat{\pi}_t = b \sum_{j=0}^{\infty} \mathbf{a}^j E_t \hat{\mathbf{z}}_{t+j} + dE_t \sum_{j=0}^{\infty} \mathbf{a}^j E_t \hat{v}_{t+j}$$

Inflation under a Hawkish Taylor Rule

• Recognizing that $E_t\hat{z}_{t+j}=
ho_z^j\hat{z}_t$ and $E_t\hat{v}_{t+j}=
ho_v^j\hat{v}_t$, we can write

$$\begin{array}{lcl} \hat{\pi}_t & = & b \sum_{j=0}^{\infty} \left(a \rho_z \right)^j \hat{z}_t + d \sum_{j=0}^{\infty} \left(a \rho_v \right)^j \hat{v}_t \\ \\ \Longrightarrow & \hat{\pi}_t = \frac{b}{1 - a \rho_z} \hat{z}_t + \frac{d}{1 - a \rho_v} \hat{v}_t \end{array}$$

Inflation under a Hawkish Taylor Rule

Both methods give

$$\hat{\pi}_t = rac{b}{1-\mathsf{a}
ho_z}\hat{\mathsf{z}}_t + rac{d}{1-\mathsf{a}
ho_v}\hat{v}_t$$

Inflation under a Hawkish Taylor Rule

Both methods give

$$\hat{\pi}_t = rac{b}{1 - a
ho_z}\hat{z}_t + rac{d}{1 - a
ho_v}\hat{v}_t$$

• Using definitions of a, b and d in (32), inflation is

$$\hat{\pi}_t = -\frac{(1-\rho_z)}{\phi_\pi - \rho_z} \frac{\sigma(1+\chi)}{\sigma + \chi} \hat{z}_t - \frac{1}{\phi_\pi - \rho_z} \hat{v}_t \tag{39}$$

Inflation under a Hawkish Taylor Rule

Both methods give

$$\hat{\pi}_t = rac{b}{1 - a
ho_z}\hat{z}_t + rac{d}{1 - a
ho_v}\hat{v}_t$$

• Using definitions of a, b and d in (32), inflation is

$$\hat{\pi}_t = -\frac{(1-\rho_z)}{\phi_\pi - \rho_z} \frac{\sigma(1+\chi)}{\sigma + \chi} \hat{z}_t - \frac{1}{\phi_\pi - \rho_z} \hat{v}_t \tag{39}$$

ullet Since $\phi_\pi > 1 >
ho_z$, in this frictionless monetary model

Inflation under a Hawkish Taylor Rule

Both methods give

$$\hat{\pi}_t = rac{b}{1-\mathsf{a}
ho_z}\hat{\mathsf{z}}_t + rac{d}{1-\mathsf{a}
ho_v}\hat{v}_t$$

• Using definitions of a, b and d in (32), inflation is

$$\hat{\pi}_t = -\frac{(1-\rho_z)}{\phi_\pi - \rho_z} \frac{\sigma(1+\chi)}{\sigma + \chi} \hat{z}_t - \frac{1}{\phi_\pi - \rho_z} \hat{v}_t \tag{39}$$

- Since $\phi_\pi > 1 > \rho_z$, in this frictionless monetary model
 - **1** inflation responds *negatively* both to TFP, \hat{z}_t , and to the policy rate shock, \hat{v}_t ;

Inflation under a Hawkish Taylor Rule

Both methods give

$$\hat{\pi}_t = rac{b}{1 - a
ho_z}\hat{z}_t + rac{d}{1 - a
ho_v}\hat{v}_t$$

• Using definitions of a, b and d in (32), inflation is

$$\hat{\pi}_t = -\frac{(1-\rho_z)}{\phi_\pi - \rho_z} \frac{\sigma(1+\chi)}{\sigma + \chi} \hat{z}_t - \frac{1}{\phi_\pi - \rho_z} \hat{v}_t \tag{39}$$

- Since $\phi_\pi > 1 > \rho_z$, in this frictionless monetary model
 - inflation responds negatively both to TFP, \hat{z}_t , and to the policy rate shock, \hat{v}_t ;
 - 2 being more hawkish (higher ϕ_{π}) reduces inflation volatility

◆ロト ◆母 ト ◆ 差 ト ◆ 差 ・ 釣 へ ②

Inflation under a Hawkish Taylor Rule

Both methods give

$$\hat{\pi}_t = rac{b}{1-\mathsf{a}
ho_z}\hat{\mathsf{z}}_t + rac{d}{1-\mathsf{a}
ho_v}\hat{v}_t$$

• Using definitions of a, b and d in (32), inflation is

$$\hat{\pi}_t = -\frac{(1-\rho_z)}{\phi_\pi - \rho_z} \frac{\sigma(1+\chi)}{\sigma + \chi} \hat{z}_t - \frac{1}{\phi_\pi - \rho_z} \hat{v}_t \tag{39}$$

- Since $\phi_\pi > 1 > \rho_z$, in this frictionless monetary model
 - **1** inflation responds negatively both to TFP, \hat{z}_t , and to the policy rate shock, \hat{v}_t ;
 - 2 being more hawkish (higher ϕ_{π}) reduces inflation volatility
 - lacktriangledown a dovish Fed $(\phi_\pi o
 ho_z)$ makes inflation extremely volatile

Nominal Interest Rate under a Hawkish Taylor Rule

• Recall that the nominal interest rate is $\hat{r}_t = \phi_\pi \hat{\pi}_t + \hat{v}_t$. Plugging in the solution (39) for inflation

$$\hat{r}_t = -\phi_\pi \frac{(1 - \rho_z)}{\phi_\pi - \rho_z} \frac{\sigma (1 + \chi)}{\sigma + \chi} \hat{z}_t - \frac{\rho_v}{\phi_\pi - \rho_v} \hat{v}_t \tag{40}$$

Hence, as long as $\rho_v > 0$, a positive interest rate shock ends up lowering the interest rate as well (!!).

Nominal Interest Rate under a Hawkish Taylor Rule

• Recall that the nominal interest rate is $\hat{r}_t = \phi_\pi \hat{\pi}_t + \hat{v}_t$. Plugging in the solution (39) for inflation

$$\hat{r}_t = -\phi_\pi \frac{(1 - \rho_z)}{\phi_\pi - \rho_z} \frac{\sigma (1 + \chi)}{\sigma + \chi} \hat{z}_t - \frac{\rho_v}{\phi_\pi - \rho_v} \hat{v}_t \tag{40}$$

Hence, as long as $\rho_v > 0$, a positive interest rate shock ends up lowering the interest rate as well (!!).

• It seems counter-intuitive, but there are two channels at work

$$\hat{r}_t = \underbrace{\phi_{\pi} \hat{\pi}_t}_{\text{systematic policy}} + \underbrace{\hat{v}_t}_{\text{random policy}} \uparrow$$

$$(41)$$

Key Takeaways and What's Next

Money fully neutral in baseline RBC: all real variables just driven by TFP

Key Takeaways and What's Next

- Money fully neutral in baseline RBC: all real variables just driven by TFP
- Only the nominal interest rate and inflation respond to monetary policy shocks

Key Takeaways and What's Next

- Money fully neutral in baseline RBC: all real variables just driven by TFP
- Only the nominal interest rate and inflation respond to monetary policy shocks
- This is in contrast with VAR evidence showing real effects of MP

Key Takeaways and What's Next

- Money fully neutral in baseline RBC: all real variables just driven by TFP
- Only the nominal interest rate and inflation respond to monetary policy shocks
- This is in contrast with VAR evidence showing real effects of MP
- We need to introduce some nominal friction to create non-neutrality!
 ⇒ New Keynesian Model of Nominal Rigidities