The New Keynesian Model

Marco Airaudo ${ }^{\text {a }}$
${ }^{a}$ Drexel University
University of Turin
Nov. 21-22, 2022

Overview

Empirical Motivation I: Monetary Policy Non-Neutrality

- Vector Autoregression (VAR) evidence shows that exogenous monetary policy shocks have significant effects on real variables: output, consumption, employment, etc.

Overview

Empirical Motivation I: Monetary Policy Non-Neutrality

- Vector Autoregression (VAR) evidence shows that exogenous monetary policy shocks have significant effects on real variables: output, consumption, employment, etc.
- These shocks are not easy to identify since, as discussed, monetary policy is made of both a systematic (Taylor rule response to inflation and output) and unsystematic (policy shock) component

Overview

Empirical Motivation I: Monetary Policy Non-Neutrality

- Vector Autoregression (VAR) evidence shows that exogenous monetary policy shocks have significant effects on real variables: output, consumption, employment, etc.
- These shocks are not easy to identify since, as discussed, monetary policy is made of both a systematic (Taylor rule response to inflation and output) and unsystematic (policy shock) component
- Non-monetary RBC model (seen with Prof. Bagliano) and frictionless monetary model (seen with me) clearly not suitable to talk about non-neutrality and a stabilizing role for central banks

Overview

Empirical Motivation I: Monetary Policy Non-Neutrality

- Vector Autoregression (VAR) evidence shows that exogenous monetary policy shocks have significant effects on real variables: output, consumption, employment, etc.
- These shocks are not easy to identify since, as discussed, monetary policy is made of both a systematic (Taylor rule response to inflation and output) and unsystematic (policy shock) component
- Non-monetary RBC model (seen with Prof. Bagliano) and frictionless monetary model (seen with me) clearly not suitable to talk about non-neutrality and a stabilizing role for central banks
- Key source of neutrality: FULL PRICE FLEXIBILITY \Longrightarrow inflation fully absorbs the impact of any nominal shock

Overview

Empirical Motivation II: Nominal Rigidities

- Prices of goods and services display sluggish adjustments to both real and nominal shocks

Overview

Empirical Motivation II: Nominal Rigidities

- Prices of goods and services display sluggish adjustments to both real and nominal shocks
- AGGREGATE (MACRO) EVIDENCE

Overview

Empirical Motivation II: Nominal Rigidities

- Prices of goods and services display sluggish adjustments to both real and nominal shocks
- AGGREGATE (MACRO) EVIDENCE
- in VARs, inflation responds negatively but with lags to contractionary MP shock

Overview

Empirical Motivation II: Nominal Rigidities

- Prices of goods and services display sluggish adjustments to both real and nominal shocks
- AGGREGATE (MACRO) EVIDENCE
- in VARs, inflation responds negatively but with lags to contractionary MP shock
- GOOD-SPECIFIC (MICRO) EVIDENCE

Overview

Empirical Motivation II: Nominal Rigidities

- Prices of goods and services display sluggish adjustments to both real and nominal shocks
- AGGREGATE (MACRO) EVIDENCE
- in VARs, inflation responds negatively but with lags to contractionary MP shock
- GOOD-SPECIFIC (MICRO) EVIDENCE
- estimated median price duration for U.S. goods/services is between 8-11 months (Steinsson-Nakamura, QJE, '08)

Overview

Empirical Motivation II: Nominal Rigidities

- Prices of goods and services display sluggish adjustments to both real and nominal shocks
- AGGREGATE (MACRO) EVIDENCE
- in VARs, inflation responds negatively but with lags to contractionary MP shock
- GOOD-SPECIFIC (MICRO) EVIDENCE
- estimated median price duration for U.S. goods/services is between 8-11 months (Steinsson-Nakamura, QJE, '08)
- some sectors more flexible than others (unprocessed food and energy)

Overview

Empirical Motivation II: Nominal Rigidities

- Prices of goods and services display sluggish adjustments to both real and nominal shocks
- AGGREGATE (MACRO) EVIDENCE
- in VARs, inflation responds negatively but with lags to contractionary MP shock
- GOOD-SPECIFIC (MICRO) EVIDENCE
- estimated median price duration for U.S. goods/services is between 8-11 months (Steinsson-Nakamura, QJE, '08)
- some sectors more flexible than others (unprocessed food and energy)
- similar evidence for Euro Area

Overview

Empirical Motivation II: Nominal Rigidities

- Prices of goods and services display sluggish adjustments to both real and nominal shocks
- AGGREGATE (MACRO) EVIDENCE
- in VARs, inflation responds negatively but with lags to contractionary MP shock
- GOOD-SPECIFIC (MICRO) EVIDENCE
- estimated median price duration for U.S. goods/services is between 8-11 months (Steinsson-Nakamura, QJE, '08)
- some sectors more flexible than others (unprocessed food and energy)
- similar evidence for Euro Area
- similar evidence for nominal wages (avg. duration around 1 year)

Overview

VAR (Aggregate) Evidence

Source: Gali's Textbook

Overview

Micro Evidence

Source: Nakamura and Steinsson (Annual Rev. Econ, '13)

Table 1 Frequency of price change in consumer prices

	Median		Mean	
	Frequency (\% per month)	Implied duration (months)	Frequency (\% per month)	Implied duration (months)
Nakamura \& Steinsson (2008)				
Regular prices (excluding substitutions 1988-1997)	11.9	7.9	18.9	10.8
Regular prices (excluding substitutions 1998-2005)	9.9	9.6	21.5	11.7
Regular prices (including substitutions 1988-1997)	13.0	7.2	20.7	9.0
Regular prices (including substitutions 1998-2005)	11.8	8.0	23.1	9.3
Posted prices (including substitutions 1998-2005)	20.5	4.4	27.7	7.7
Klenow \& Kryvtsov (2008)				
Regular prices (including substitutions 1988-2005)	13.9	7.2	29.9	8.6
Posted prices (including substitutions 1988-2005)	27.3	3.7	36.2	6.8

Overview

Key Elements

- Household (demand) side identical to the frictionless monetary model

Overview

Key Elements

- Household (demand) side identical to the frictionless monetary model
- Key changes are all on the firms (supply) side, split into two sectors: retail (final good sector) and wholesale (intermediate goods sector)

Overview
 ```Key Elements```

- Household (demand) side identical to the frictionless monetary model
- Key changes are all on the firms (supply) side, split into two sectors: retail (final good sector) and wholesale (intermediate goods sector)
- Key elements

Overview Key Elements

- Household (demand) side identical to the frictionless monetary model
- Key changes are all on the firms (supply) side, split into two sectors: retail (final good sector) and wholesale (intermediate goods sector)
- Key elements
(1) Wholesale market is imperfectly competitive
\Longrightarrow firms produce their own differentiated intermediate product, sold to the retail sector
\Longrightarrow market power allows us to model them as price makers

Overview

Key Elements

- Household (demand) side identical to the frictionless monetary model
- Key changes are all on the firms (supply) side, split into two sectors: retail (final good sector) and wholesale (intermediate goods sector)
- Key elements
(1) Wholesale market is imperfectly competitive
\Longrightarrow firms produce their own differentiated intermediate product, sold to the retail sector
\Longrightarrow market power allows us to model them as price makers
(2) Though prices are set optimally, wholesale firms cannot adjust them at will due to resource costs (menu costs) or long-term contracts \Longrightarrow aggregate price level will not fully absorb nominal shocks \Longrightarrow some real quantities will have to adjust (non-neutral effects)

Overview
Key Elements

Supply Side

Retail Sector

- Perfectly competitive: a representative firm assembles imperfectly substitutable intermediate products to produce a final good

Supply Side

Retail Sector

- Perfectly competitive: a representative firm assembles imperfectly substitutable intermediate products to produce a final good
- Its technology is a CES function (Dixit-Stiglitz aggregator)

$$
Y_{t}=\left[\int_{0}^{1} Y_{t}(i)^{\frac{\epsilon-1}{\epsilon}} d i\right]^{\frac{\epsilon}{\epsilon-1}}
$$

Supply Side

Retail Sector

- Perfectly competitive: a representative firm assembles imperfectly substitutable intermediate products to produce a final good
- Its technology is a CES function (Dixit-Stiglitz aggregator)

$$
Y_{t}=\left[\int_{0}^{1} Y_{t}(i)^{\frac{\epsilon-1}{\epsilon}} d i\right]^{\frac{\epsilon}{\epsilon-1}}
$$

- REMARKS

Supply Side

Retail Sector

- Perfectly competitive: a representative firm assembles imperfectly substitutable intermediate products to produce a final good
- Its technology is a CES function (Dixit-Stiglitz aggregator)

$$
Y_{t}=\left[\int_{0}^{1} Y_{t}(i)^{\frac{\epsilon-1}{\epsilon}} d i\right]^{\frac{\epsilon}{\epsilon-1}}
$$

- REMARKS
(1) think of this "integral" as the sum of infinite many terms, each corresponding to an intermediate product, indexed by a real number i, for $i \in[0,1]$

Supply Side

Retail Sector

- Perfectly competitive: a representative firm assembles imperfectly substitutable intermediate products to produce a final good
- Its technology is a CES function (Dixit-Stiglitz aggregator)

$$
Y_{t}=\left[\int_{0}^{1} Y_{t}(i)^{\frac{\epsilon-1}{\epsilon}} d i\right]^{\frac{\epsilon}{\epsilon-1}}
$$

- REMARKS
(1) think of this "integral" as the sum of infinite many terms, each corresponding to an intermediate product, indexed by a real number i, for $i \in[0,1]$
(2) $\epsilon>1$ is the (constant) elasticity of substitution (in production) between any two intermediate products, say $Y_{t}(i)$ and $Y_{t}\left(i^{\prime}\right)$

Supply Side

Retail Sector

- Perfectly competitive: a representative firm assembles imperfectly substitutable intermediate products to produce a final good
- Its technology is a CES function (Dixit-Stiglitz aggregator)

$$
Y_{t}=\left[\int_{0}^{1} Y_{t}(i)^{\frac{\epsilon-1}{\epsilon}} d i\right]^{\frac{\epsilon}{\epsilon-1}}
$$

- REMARKS
(1) think of this "integral" as the sum of infinite many terms, each corresponding to an intermediate product, indexed by a real number i, for $i \in[0,1]$
(2) $\epsilon>1$ is the (constant) elasticity of substitution (in production) between any two intermediate products, say $Y_{t}(i)$ and $Y_{t}\left(i^{\prime}\right)$
(3) for $\epsilon \rightarrow \infty$, we have $Y_{t}=\int_{0}^{1} Y_{t}(i) d i$ (perfect substitutability)

Supply Side

Retail Sector

- The firm chooses intermediate products $Y_{t}(i)$ to maximize profits

$$
\begin{equation*}
\max _{Y_{t}(i),, i \in[0,1]} P_{t}\left[\int_{0}^{1} Y_{t}(i)^{\frac{\epsilon-1}{\epsilon}} d i\right]^{\frac{\epsilon}{\epsilon-1}}-\int_{0}^{1} P_{t}(i) Y_{t}(i) d i \tag{1}
\end{equation*}
$$

Supply Side

Retail Sector

- The firm chooses intermediate products $Y_{t}(i)$ to maximize profits

$$
\begin{equation*}
\max _{Y_{t}(i), i \in[0,1]} P_{t}\left[\int_{0}^{1} Y_{t}(i)^{\frac{\epsilon-1}{\epsilon}} d i\right]^{\frac{\epsilon}{\epsilon-1}}-\int_{0}^{1} P_{t}(i) Y_{t}(i) d i \tag{1}
\end{equation*}
$$

- Its solutions gives optimal demand of inputs:

$$
\begin{equation*}
Y_{t}^{d}(i) \equiv Y_{t}(i)=\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\epsilon} Y_{t} \tag{2}
\end{equation*}
$$

A higher relative price $\frac{P_{t}(i)}{P_{t}}$ lowers demand for intermediate product $Y_{t}(i)$ with elasticity ϵ

Supply Side

Retail Sector

- The firm chooses intermediate products $Y_{t}(i)$ to maximize profits

$$
\begin{equation*}
\max _{Y_{t}(i),, i \in[0,1]} P_{t}\left[\int_{0}^{1} Y_{t}(i)^{\frac{\epsilon-1}{\epsilon}} d i\right]^{\frac{\epsilon}{\epsilon-1}}-\int_{0}^{1} P_{t}(i) Y_{t}(i) d i \tag{1}
\end{equation*}
$$

- Its solutions gives optimal demand of inputs:

$$
\begin{equation*}
Y_{t}^{d}(i) \equiv Y_{t}(i)=\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\epsilon} Y_{t} \tag{2}
\end{equation*}
$$

A higher relative price $\frac{P_{t}(i)}{P_{t}}$ lowers demand for intermediate product $Y_{t}(i)$ with elasticity ϵ

- A zero profit condition (due to perfect competition) gives:

$$
\begin{equation*}
P_{t}=\left[\int_{0}^{1} P_{t}(i)^{1-\epsilon} d i\right]^{\frac{1}{1-\epsilon}} \tag{3}
\end{equation*}
$$

Supply Side

Supply Side: Wholesale Sector under Flexible Prices

- A continuum of monopolistically competitive firms produces differentiated products by hiring homogeneous labor

$$
\begin{equation*}
Y_{t}^{s}(i) \equiv Y_{t}(i)=Z_{t} H_{t}(i) \tag{4}
\end{equation*}
$$

Supply Side

- A continuum of monopolistically competitive firms produces differentiated products by hiring homogeneous labor

$$
\begin{equation*}
Y_{t}^{s}(i) \equiv Y_{t}(i)=Z_{t} H_{t}(i) \tag{4}
\end{equation*}
$$

- Each firm i maximizes profits, facing a downward-sloping demand (by retail sector)

$$
\begin{equation*}
\max P_{t}(i) Y_{t}(i)-W_{t} H_{t}(i) \tag{5}
\end{equation*}
$$

subject to technology (4) and demand (2)

Supply Side

- A continuum of monopolistically competitive firms produces differentiated products by hiring homogeneous labor

$$
\begin{equation*}
Y_{t}^{s}(i) \equiv Y_{t}(i)=Z_{t} H_{t}(i) \tag{4}
\end{equation*}
$$

- Each firm i maximizes profits, facing a downward-sloping demand (by retail sector)

$$
\begin{equation*}
\max P_{t}(i) Y_{t}(i)-W_{t} H_{t}(i) \tag{5}
\end{equation*}
$$

subject to technology (4) and demand (2)

- REMARK: labor hired by firms is demand determined (this is in the spirit of J.M. Keynes General Theory)

Supply Side

- A continuum of monopolistically competitive firms produces differentiated products by hiring homogeneous labor

$$
\begin{equation*}
Y_{t}^{s}(i) \equiv Y_{t}(i)=Z_{t} H_{t}(i) \tag{4}
\end{equation*}
$$

- Each firm i maximizes profits, facing a downward-sloping demand (by retail sector)

$$
\begin{equation*}
\max P_{t}(i) Y_{t}(i)-W_{t} H_{t}(i) \tag{5}
\end{equation*}
$$

subject to technology (4) and demand (2)

- REMARK: labor hired by firms is demand determined (this is in the spirit of J.M. Keynes General Theory)
- firms sets prices (optimally)

Supply Side

- A continuum of monopolistically competitive firms produces differentiated products by hiring homogeneous labor

$$
\begin{equation*}
Y_{t}^{s}(i) \equiv Y_{t}(i)=Z_{t} H_{t}(i) \tag{4}
\end{equation*}
$$

- Each firm i maximizes profits, facing a downward-sloping demand (by retail sector)

$$
\begin{equation*}
\max P_{t}(i) Y_{t}(i)-W_{t} H_{t}(i) \tag{5}
\end{equation*}
$$

subject to technology (4) and demand (2)

- REMARK: labor hired by firms is demand determined (this is in the spirit of J.M. Keynes General Theory)
- firms sets prices (optimally)
- demand will determine how much they should produce at optimal price

Supply Side

- A continuum of monopolistically competitive firms produces differentiated products by hiring homogeneous labor

$$
\begin{equation*}
Y_{t}^{s}(i) \equiv Y_{t}(i)=Z_{t} H_{t}(i) \tag{4}
\end{equation*}
$$

- Each firm i maximizes profits, facing a downward-sloping demand (by retail sector)

$$
\begin{equation*}
\max P_{t}(i) Y_{t}(i)-W_{t} H_{t}(i) \tag{5}
\end{equation*}
$$

subject to technology (4) and demand (2)

- REMARK: labor hired by firms is demand determined (this is in the spirit of J.M. Keynes General Theory)
- firms sets prices (optimally)
- demand will determine how much they should produce at optimal price
- given TFP, technology will determine how much labor to hire

Supply Side

Supply Side: Wholesale Sector under Flexible Prices

- Substituting $Y_{t}(i)=\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\epsilon} Y_{t}$ and $H_{t}(i)=\frac{Y_{t}(i)}{Z_{t}}=\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\epsilon} \frac{Y_{t}}{Z_{t}}$ in profits (5), and taking FOC with respect to $P_{t}(i)$, gives

$$
\begin{equation*}
\underbrace{P_{t}^{*}(i)=P_{t}^{*}}_{\text {optimal (ideal) price }}=\underbrace{\frac{\epsilon}{\epsilon-1}}_{\mu \text { (price markup) }} * \underbrace{\frac{W_{t}}{Z_{t}}}_{M C_{t} \text { (nom.marg.cost) }} \tag{6}
\end{equation*}
$$

Supply Side

Supply Side: Wholesale Sector under Flexible Prices

- Substituting $Y_{t}(i)=\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\epsilon} Y_{t}$ and $H_{t}(i)=\frac{Y_{t}(i)}{Z_{t}}=\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\epsilon} \frac{Y_{t}}{Z_{t}}$ in profits (5), and taking FOC with respect to $P_{t}(i)$, gives

$$
\begin{equation*}
\underbrace{P_{t}^{*}(i)=P_{t}^{*}}_{\text {optimal (ideal) price }}=\underbrace{\frac{\epsilon}{\epsilon-1}}_{\mu(\text { price markup) }} * \underbrace{\frac{W_{t}}{Z_{t}}}_{M C_{t} \text { (nom.marg.cost) }} \tag{6}
\end{equation*}
$$

- REMARKS

Supply Side

Supply Side: Wholesale Sector under Flexible Prices

- Substituting $Y_{t}(i)=\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\epsilon} Y_{t}$ and $H_{t}(i)=\frac{Y_{t}(i)}{Z_{t}}=\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\epsilon} \frac{Y_{t}}{Z_{t}}$ in profits (5), and taking FOC with respect to $P_{t}(i)$, gives

$$
\begin{equation*}
\underbrace{P_{t}^{*}(i)=P_{t}^{*}}_{\text {optimal (ideal) price }}=\underbrace{\frac{\epsilon}{\epsilon-1}}_{\mu(\text { price markup) }} * \underbrace{\frac{W_{t}}{Z_{t}}}_{M C_{t} \text { (nom.marg.cost) }} \tag{6}
\end{equation*}
$$

- REMARKS
(1) Since all firms face same $M C$ and markup μ, the optimal price is the same across firms: $P_{t}(i)=P_{t}=\mu M C_{t}$, for all i

Supply Side

Supply Side: Wholesale Sector under Flexible Prices

- Substituting $Y_{t}(i)=\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\epsilon} Y_{t}$ and $H_{t}(i)=\frac{Y_{t}(i)}{Z_{t}}=\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\epsilon} \frac{Y_{t}}{Z_{t}}$ in profits (5), and taking FOC with respect to $P_{t}(i)$, gives

$$
\begin{equation*}
\underbrace{P_{t}^{*}(i)=P_{t}^{*}}_{\text {optimal (ideal) price }}=\underbrace{\frac{\epsilon}{\epsilon-1}}_{\mu \text { (price markup) }} * \underbrace{\frac{W_{t}}{Z_{t}}}_{M C_{t} \text { (nom.marg.cost) }} \tag{6}
\end{equation*}
$$

- REMARKS
(1) Since all firms face same $M C$ and markup μ, the optimal price is the same across firms: $P_{t}(i)=P_{t}=\mu M C_{t}$, for all i
(2) Under flexible prices, real marginal costs are constant:

$$
M C_{t}^{r}=\frac{M C_{t}}{P_{t}}=\frac{1}{\mu}
$$

Supply Side

Supply Side: Wholesale Sector under Flexible Prices

- Substituting $Y_{t}(i)=\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\epsilon} Y_{t}$ and $H_{t}(i)=\frac{Y_{t}(i)}{Z_{t}}=\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\epsilon} \frac{Y_{t}}{Z_{t}}$ in profits (5), and taking FOC with respect to $P_{t}(i)$, gives

$$
\begin{equation*}
\underbrace{P_{t}^{*}(i)=P_{t}^{*}}_{\text {optimal (ideal) price }}=\underbrace{\frac{\epsilon}{\epsilon-1}}_{\mu(\text { price markup) }} * \underbrace{\frac{W_{t}}{Z_{t}}}_{M C_{t} \text { (nom.marg.cost) }} \tag{6}
\end{equation*}
$$

- REMARKS
(1) Since all firms face same $M C$ and markup μ, the optimal price is the same across firms: $P_{t}(i)=P_{t}=\mu M C_{t}$, for all i
(2) Under flexible prices, real marginal costs are constant:
$M C_{t}^{r}=\frac{M C_{t}}{P_{t}}=\frac{1}{\mu}$
(3) For $\epsilon \rightarrow \infty$, then $\mu \rightarrow 1$: optimal price is equal to nominal marginal costs (no market power)

Supply Side

Supply Side: Wholesale Sector under Flexible Prices

- Substituting $Y_{t}(i)=\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\epsilon} Y_{t}$ and $H_{t}(i)=\frac{Y_{t}(i)}{Z_{t}}=\left[\frac{P_{t}(i)}{P_{t}}\right]^{-\epsilon} \frac{Y_{t}}{Z_{t}}$ in profits (5), and taking FOC with respect to $P_{t}(i)$, gives

$$
\begin{equation*}
\underbrace{P_{t}^{*}(i)=P_{t}^{*}}_{\text {optimal (ideal) price }}=\underbrace{\frac{\epsilon}{\epsilon-1}}_{\mu \text { (price markup) }} * \underbrace{\frac{W_{t}}{Z_{t}}}_{M C_{t} \text { (nom.marg.cost) }} \tag{6}
\end{equation*}
$$

- REMARKS
(1) Since all firms face same $M C$ and markup μ, the optimal price is the same across firms: $P_{t}(i)=P_{t}=\mu M C_{t}$, for all i
(2) Under flexible prices, real marginal costs are constant:
$M C_{t}^{r}=\frac{M C_{t}}{P_{t}}=\frac{1}{\mu}$
(3) For $\epsilon \rightarrow \infty$, then $\mu \rightarrow 1$: optimal price is equal to nominal marginal costs (no market power)
- If we stopped here, monetary policy would remain neutral since firms are still able to move prices freely

Price Stickiness

Calvo Pricing

- Most common approach to introduce price rigidities is due to an old paper by Argentinian economist G. Calvo (1983)

Price Stickiness

Calvo Pricing

- Most common approach to introduce price rigidities is due to an old paper by Argentinian economist G. Calvo (1983)
- Empirical background: in data, firms adjust their prices infrequently (see initial discussion)

Price Stickiness

Calvo Pricing

- Most common approach to introduce price rigidities is due to an old paper by Argentinian economist G. Calvo (1983)
- Empirical background: in data, firms adjust their prices infrequently (see initial discussion)
- Modeling device: in every period t, each firm in wholesale can reset (optimally) its price with constant probability $1-\theta$, for $\theta \in[0,1]$.

Price Stickiness

Calvo Pricing

- Most common approach to introduce price rigidities is due to an old paper by Argentinian economist G. Calvo (1983)
- Empirical background: in data, firms adjust their prices infrequently (see initial discussion)
- Modeling device: in every period t, each firm in wholesale can reset (optimally) its price with constant probability $1-\theta$, for $\theta \in[0,1]$.
- By law of large numbers, in every period t, a fraction θ of the continuum of firms in wholesale will NOT be able to reset its price: hence

$$
\begin{equation*}
\text { Expected Avg. Price Duration }=\sum_{k=0}^{\infty} \theta^{k}=\frac{1}{1-\theta} \tag{7}
\end{equation*}
$$

Price Stickiness

Calvo Pricing

- Most common approach to introduce price rigidities is due to an old paper by Argentinian economist G. Calvo (1983)
- Empirical background: in data, firms adjust their prices infrequently (see initial discussion)
- Modeling device: in every period t, each firm in wholesale can reset (optimally) its price with constant probability $1-\theta$, for $\theta \in[0,1]$.
- By law of large numbers, in every period t, a fraction θ of the continuum of firms in wholesale will NOT be able to reset its price: hence

$$
\begin{equation*}
\text { Expected Avg. Price Duration }=\sum_{k=0}^{\infty} \theta^{k}=\frac{1}{1-\theta} \tag{7}
\end{equation*}
$$

- REMARKS

Price Stickiness

Calvo Pricing

- Most common approach to introduce price rigidities is due to an old paper by Argentinian economist G. Calvo (1983)
- Empirical background: in data, firms adjust their prices infrequently (see initial discussion)
- Modeling device: in every period t, each firm in wholesale can reset (optimally) its price with constant probability $1-\theta$, for $\theta \in[0,1]$.
- By law of large numbers, in every period t, a fraction θ of the continuum of firms in wholesale will NOT be able to reset its price: hence

$$
\begin{equation*}
\text { Expected Avg. Price Duration }=\sum_{k=0}^{\infty} \theta^{k}=\frac{1}{1-\theta} \tag{7}
\end{equation*}
$$

- REMARKS
(1) probability of being (or not being) able to reset the price is history independent

Price Stickiness

Calvo Pricing

- Most common approach to introduce price rigidities is due to an old paper by Argentinian economist G. Calvo (1983)
- Empirical background: in data, firms adjust their prices infrequently (see initial discussion)
- Modeling device: in every period t, each firm in wholesale can reset (optimally) its price with constant probability $1-\theta$, for $\theta \in[0,1]$.
- By law of large numbers, in every period t, a fraction θ of the continuum of firms in wholesale will NOT be able to reset its price: hence

$$
\begin{equation*}
\text { Expected Avg. Price Duration }=\sum_{k=0}^{\infty} \theta^{k}=\frac{1}{1-\theta} \tag{7}
\end{equation*}
$$

- REMARKS
(1) probability of being (or not being) able to reset the price is history independent
(2) newly set price $\tilde{P}_{t}(i)$ likely not aligned with optimal price $P_{t}^{*}(i)$

Price Stickiness
Calve Pricing

CONTINUUR of FIRMS

(STUCK WITH OLD PRICE) (ABLE TO RESET)

Price Stickiness

Aggregate Price Index

- Recall the aggregate price (a.k.a. Consumer Price Index, CPI)

$$
\begin{equation*}
P_{t}=\left[\int_{0}^{1} P_{t}(i)^{1-\epsilon} d i\right]^{\frac{1}{1-\epsilon}} \Longrightarrow P_{t}^{1-\epsilon}=\int_{0}^{1} P_{t}(i)^{1-\epsilon} d i \tag{8}
\end{equation*}
$$

Price Stickiness

Aggregate Price Index

- Recall the aggregate price (a.k.a. Consumer Price Index, CPI)

$$
\begin{equation*}
P_{t}=\left[\int_{0}^{1} P_{t}(i)^{1-\epsilon} d i\right]^{\frac{1}{1-\epsilon}} \Longrightarrow P_{t}^{1-\epsilon}=\int_{0}^{1} P_{t}(i)^{1-\epsilon} d i \tag{8}
\end{equation*}
$$

- By Calvo pricing

$$
\begin{equation*}
P_{t}^{1-\epsilon}=\underbrace{\int_{0}^{1-\theta} \tilde{P}_{t}(i)^{1-\epsilon} d i}_{(1-\theta) \tilde{P}_{t}^{1-\epsilon}}+\int_{1-\theta}^{1} P_{t-1}(i)^{1-\epsilon} d i \tag{9}
\end{equation*}
$$

Price Stickiness

Aggregate Price Index

- Recall the aggregate price (a.k.a. Consumer Price Index, CPI)

$$
\begin{equation*}
P_{t}=\left[\int_{0}^{1} P_{t}(i)^{1-\epsilon} d i\right]^{\frac{1}{1-\epsilon}} \Longrightarrow P_{t}^{1-\epsilon}=\int_{0}^{1} P_{t}(i)^{1-\epsilon} d i \tag{8}
\end{equation*}
$$

- By Calvo pricing

$$
\begin{equation*}
P_{t}^{1-\epsilon}=\underbrace{\int_{0}^{1-\theta} \tilde{P}_{t}(i)^{1-\epsilon} d i}_{(1-\theta) \tilde{P}_{t}^{1-\epsilon}}+\int_{1-\theta}^{1} P_{t-1}(i)^{1-\epsilon} d i \tag{9}
\end{equation*}
$$

- Skipping some technical details, CPI evolves as

$$
\begin{equation*}
P_{t}^{1-\epsilon}=(1-\theta) \tilde{P}_{t}^{1-\epsilon}+\theta P_{t-1}^{1-\epsilon} \tag{10}
\end{equation*}
$$

Price Stickiness

Approximate Price Index and Inflation

- CPI motion is approximately (with $\hat{x}_{t}=\frac{X_{t}-\bar{X}}{\bar{X}} \approx \ln \frac{X_{t}}{\bar{X}}$):

$$
\begin{equation*}
\hat{p}_{t}=\theta \hat{p}_{t-1}+(1-\theta) \widehat{\tilde{p}}_{t} \tag{11}
\end{equation*}
$$

Price Stickiness

Approximate Price Index and Inflation

- CPI motion is approximately (with $\hat{x}_{t}=\frac{x_{t}-\bar{X}}{\bar{X}} \approx \ln \frac{x_{t}}{X}$):

$$
\begin{equation*}
\hat{p}_{t}=\theta \hat{p}_{t-1}+(1-\theta) \widehat{\tilde{p}}_{t} \tag{11}
\end{equation*}
$$

- Let gross inflation be $\Pi_{t} \equiv \frac{P_{t}}{P_{t-1}}$ and assume $\bar{\Pi}=1$ (zero steady state net inflation), we have that

$$
\pi_{t} \equiv \ln \Pi_{t}=p_{t}-p_{t-1}, \quad \bar{\pi} \equiv \ln \bar{\Pi}=0
$$

Price Stickiness

Approximate Price Index and Inflation

- CPI motion is approximately (with $\hat{x}_{t}=\frac{x_{t}-\bar{X}}{\bar{X}} \approx \ln \frac{X_{t}}{\bar{X}}$):

$$
\begin{equation*}
\hat{p}_{t}=\theta \hat{p}_{t-1}+(1-\theta) \widehat{\tilde{p}}_{t} \tag{11}
\end{equation*}
$$

- Let gross inflation be $\Pi_{t} \equiv \frac{P_{t}}{P_{t-1}}$ and assume $\bar{\Pi}=1$ (zero steady state net inflation), we have that

$$
\pi_{t} \equiv \ln \Pi_{t}=p_{t}-p_{t-1}, \quad \bar{\pi} \equiv \ln \bar{\Pi}=0
$$

- Then

$$
\begin{gather*}
\hat{\pi}_{t} \equiv \pi_{t}-\bar{\pi}=\underbrace{\left(p_{t}-\bar{p}\right)}_{\hat{p}_{t}}-\underbrace{\left(p_{t-1}-\bar{p}\right)}_{\hat{p}_{t-1}} \\
\underset{\text { eq. }(11)}{=}(1-\theta)\left(\widehat{\tilde{p}}_{t}-\hat{p}_{t-1}\right) \tag{12}
\end{gather*}
$$

Price Stickiness

Approximate Price Index and Inflation

- CPI motion is approximately (with $\hat{x}_{t}=\frac{x_{t}-\bar{X}}{\bar{X}} \approx \ln \frac{X_{t}}{X}$):

$$
\begin{equation*}
\hat{p}_{t}=\theta \hat{p}_{t-1}+(1-\theta) \widehat{\tilde{p}}_{t} \tag{11}
\end{equation*}
$$

- Let gross inflation be $\Pi_{t} \equiv \frac{P_{t}}{P_{t-1}}$ and assume $\bar{\Pi}=1$ (zero steady state net inflation), we have that

$$
\pi_{t} \equiv \ln \Pi_{t}=p_{t}-p_{t-1}, \quad \bar{\pi} \equiv \ln \bar{\Pi}=0
$$

- Then

$$
\begin{gather*}
\hat{\pi}_{t} \equiv \pi_{t}-\bar{\pi}=\underbrace{\left(p_{t}-\bar{p}\right)}_{\hat{p}_{t}}-\underbrace{\left(p_{t-1}-\bar{p}\right)}_{\hat{p}_{t-1}} \\
\underset{\text { eq. }(11)}{=}(1-\theta)\left(\widehat{\tilde{p}}_{t}-\hat{p}_{t-1}\right) \tag{12}
\end{gather*}
$$

- Hence, inflation occurs when the newly set price $\widehat{\tilde{p}}_{t}$ is above the average price of the previous period, \hat{p}_{t-1}

Price Stickiness

Optimal Price Setting under Calvo Rigidity

- Calvo's original set-up: firm i chooses the optimal price $\widehat{\tilde{p}}_{t}(i)$ to solve

$$
\begin{equation*}
\min _{\hat{\tilde{p}}_{t}(i)} \frac{1}{2} E_{t} \sum_{k=0}^{\infty}(\theta \beta)^{k}\left[\widehat{\tilde{p}}_{t}(i)-\hat{p}_{t+k}^{*}(i)\right]^{2} \tag{13}
\end{equation*}
$$

that is, it seeks to minimize the discrepancy with the ideal price $\hat{p}_{t+k}^{*}(i) \equiv \ln P_{t+k}^{*}(i)$ (defined in eq. (6)). Note:

Price Stickiness

Optimal Price Setting under Calvo Rigidity

- Calvo's original set-up: firm i chooses the optimal price $\widehat{\tilde{p}}_{t}(i)$ to solve

$$
\begin{equation*}
\min _{\hat{\tilde{p}}_{t}(i)} \frac{1}{2} E_{t} \sum_{k=0}^{\infty}(\theta \beta)^{k}\left[\widehat{\tilde{p}}_{t}(i)-\hat{p}_{t+k}^{*}(i)\right]^{2} \tag{13}
\end{equation*}
$$

that is, it seeks to minimize the discrepancy with the ideal price $\hat{p}_{t+k}^{*}(i) \equiv \ln P_{t+k}^{*}(i)$ (defined in eq. (6)). Note:
(1) adjustment costs are discounted both by β (patience) and θ (per period probability of being stuck with same price)

Price Stickiness

Optimal Price Setting under Calvo Rigidity

- Calvo's original set-up: firm i chooses the optimal price $\widehat{\tilde{p}}_{t}(i)$ to solve

$$
\begin{equation*}
\min _{\hat{\tilde{p}}_{t}(i)} \frac{1}{2} E_{t} \sum_{k=0}^{\infty}(\theta \beta)^{k}\left[\widehat{\tilde{p}}_{t}(i)-\hat{p}_{t+k}^{*}(i)\right]^{2} \tag{13}
\end{equation*}
$$

that is, it seeks to minimize the discrepancy with the ideal price $\hat{p}_{t+k}^{*}(i) \equiv \ln P_{t+k}^{*}(i)$ (defined in eq. (6)). Note:
(1) adjustment costs are discounted both by β (patience) and θ (per period probability of being stuck with same price)
(2) each period $t+k$ is characterized by a different ideal price $\hat{p}_{t+k}^{*}(i)$, since economic conditions are different

Price Stickiness

Optimal Price Setting under Calvo Rigidity

- Calvo's original set-up: firm i chooses the optimal price $\widehat{\tilde{p}}_{t}(i)$ to solve

$$
\begin{equation*}
\min _{\hat{\tilde{p}}_{t}(i)} \frac{1}{2} E_{t} \sum_{k=0}^{\infty}(\theta \beta)^{k}\left[\widehat{\tilde{p}}_{t}(i)-\hat{p}_{t+k}^{*}(i)\right]^{2} \tag{13}
\end{equation*}
$$

that is, it seeks to minimize the discrepancy with the ideal price $\hat{p}_{t+k}^{*}(i) \equiv \ln P_{t+k}^{*}(i)$ (defined in eq. (6)). Note:
(1) adjustment costs are discounted both by β (patience) and θ (per period probability of being stuck with same price)
(2) each period $t+k$ is characterized by a different ideal price $\hat{p}_{t+k}^{*}(i)$, since economic conditions are different

- FOC of (13) with respect to $\widehat{\tilde{p}}_{t}(i)$ gives

$$
\begin{equation*}
E_{t} \sum_{k=0}^{\infty}(\theta \beta)^{k}\left[\widehat{\tilde{p}}_{t}(i)-\hat{p}_{t+k}^{*}(i)\right]=0 \tag{14}
\end{equation*}
$$

Price Stickiness

Optimal Price Setting under Calvo Rigidity

- Working out the summation

$$
\begin{align*}
& \widehat{\tilde{p}}_{t}(i)-\hat{p}_{t}^{*}(i)+\theta \beta\left[\widehat{\tilde{p}}_{t}(i)-E_{t} \hat{p}_{t+1}^{*}(i)\right]+ \\
& \quad+(\theta \beta)^{2}\left[\widehat{\tilde{p}}_{t}(i)-E_{t} \hat{p}_{t+2}^{*}(i)\right]+\ldots=0 \tag{15}
\end{align*}
$$

Price Stickiness

Optimal Price Setting under Calvo Rigidity

- Working out the summation

$$
\begin{align*}
\widehat{\tilde{p}}_{t}(i)- & \hat{p}_{t}^{*}(i)+\theta \beta\left[\widehat{\tilde{p}}_{t}(i)-E_{t} \hat{p}_{t+1}^{*}(i)\right]+ \\
& +(\theta \beta)^{2}\left[\widehat{\tilde{p}}_{t}(i)-E_{t} \hat{p}_{t+2}^{*}(i)\right]+\ldots=0 \tag{15}
\end{align*}
$$

$\bullet \Longrightarrow$

$$
\begin{align*}
& \widehat{\tilde{p}}_{t}(i) \underbrace{\left[1+\theta \beta+(\theta \beta)^{2}+. .\right]}_{1 /(1-\theta \beta) \text { since }|\theta \beta|<1} \\
= & E_{t}\left[\hat{p}_{t}^{*}(i)+\theta \beta \hat{p}_{t+1}^{*}(i)+(\theta \beta)^{2} \hat{p}_{t+2}^{*}(i)+. .\right] \tag{16}
\end{align*}
$$

Price Stickiness

Optimal Price Setting under Calvo Rigidity

- Working out the summation

$$
\begin{align*}
\widehat{\tilde{p}}_{t}(i)- & \hat{p}_{t}^{*}(i)+\theta \beta\left[\widehat{\tilde{p}}_{t}(i)-E_{t} \hat{p}_{t+1}^{*}(i)\right]+ \\
& +(\theta \beta)^{2}\left[\widehat{\tilde{p}}_{t}(i)-E_{t} \hat{p}_{t+2}^{*}(i)\right]+\ldots=0 \tag{15}
\end{align*}
$$

$\bullet \Longrightarrow$

$$
\begin{align*}
& \widehat{\tilde{p}}_{t}(i) \underbrace{\left[1+\theta \beta+(\theta \beta)^{2}+. .\right]}_{1 /(1-\theta \beta) \text { since }|\theta \beta|<1} \\
= & E_{t}\left[\hat{p}_{t}^{*}(i)+\theta \beta \hat{p}_{t+1}^{*}(i)+(\theta \beta)^{2} \hat{p}_{t+2}^{*}(i)+. .\right] \tag{16}
\end{align*}
$$

- \Longrightarrow if able to reset, firm's optimal price chosen at t is

$$
\begin{equation*}
\widehat{\tilde{p}}_{t}(i)=(1-\theta \beta) E_{t} \sum_{k=0}^{\infty}(\theta \beta)^{k} \hat{p}_{t+k}^{*}(i) \tag{17}
\end{equation*}
$$

Price Stickiness

Optimal Price Setting under Calvo Rigidity

- Recall that the optimal (flex) price was $P_{t}^{*}(i)=P_{t}^{*}=\mu M C_{t}$ (see equation (6))
\Longrightarrow in a generic period $t+k$

$$
P_{t+k}^{*}=\mu M C_{t+k} \quad \underset{\text { usual steps }}{\Longrightarrow} \quad \hat{p}_{t+k}^{*}=\widehat{m c}_{t+k}
$$

Price Stickiness

Optimal Price Setting under Calvo Rigidity

- Recall that the optimal (flex) price was $P_{t}^{*}(i)=P_{t}^{*}=\mu M C_{t}$ (see equation (6))
\Longrightarrow in a generic period $t+k$

$$
P_{t+k}^{*}=\mu M C_{t+k} \quad \underset{\text { usual steps }}{\Longrightarrow} \quad \hat{p}_{t+k}^{*}=\widehat{m c}_{t+k}
$$

- Hence, the optimal (sticky) price is proportional to the expected PDV of future nominal marginal costs

$$
\begin{equation*}
\widehat{\tilde{p}}_{t}(i)=\widehat{\tilde{p}}_{t}=(1-\theta \beta) E_{t} \sum_{k=0}^{\infty}(\theta \beta)^{k} \widehat{m c}_{t+k} \tag{18}
\end{equation*}
$$

NOTE: if $\theta=0$, optimal (flex) price would be $\widehat{\tilde{p}}_{t}=\hat{p}_{t}^{*}=\widehat{m c}_{t}$.

New Keynesian Phillips Curve

Optimal Price in Recursive Form

- We start by writing the optimal pricing condition (18) recursively:

$$
\begin{aligned}
\widehat{\tilde{p}}_{t} & =(1-\theta \beta)\left[\widehat{m c}_{t}+\theta \beta E_{t} \widehat{m c}_{t+1}+(\theta \beta)^{2} E_{t} \widehat{m c}_{t+2}+. .\right] \\
& =(1-\theta \beta) \widehat{m c}_{t}+\theta \beta(1-\theta \beta)\left[E_{t} \widehat{m c}_{t+1}+\theta \beta E_{t} \widehat{m c}_{t+2}+. .\right] \\
& =(1-\theta \beta) \widehat{m c}_{t}+\theta \beta E_{t} \underbrace{\left[(1-\theta \beta) E_{t+1} \sum_{k=0}^{\infty}(\theta \beta)^{k} \widehat{m c}_{t+1+k}\right]}_{\widehat{\tilde{p}}_{t+1}}
\end{aligned}
$$

New Keynesian Phillips Curve

Optimal Price in Recursive Form

- We start by writing the optimal pricing condition (18) recursively:

$$
\begin{aligned}
\widehat{\tilde{p}}_{t} & =(1-\theta \beta)\left[\widehat{m c}_{t}+\theta \beta E_{t} \widehat{m c}_{t+1}+(\theta \beta)^{2} E_{t} \widehat{m c}_{t+2}+. .\right] \\
& =(1-\theta \beta) \widehat{m c}_{t}+\theta \beta(1-\theta \beta)\left[E_{t} \widehat{m c}_{t+1}+\theta \beta E_{t} \widehat{m c}_{t+2}+. .\right] \\
& =(1-\theta \beta) \widehat{m c}_{t}+\theta \beta E_{t} \underbrace{\left[(1-\theta \beta) E_{t+1} \sum_{k=0}^{\infty}(\theta \beta)^{k} \widehat{m c}_{t+1+k}\right]}_{\widehat{p}_{t+1}}
\end{aligned}
$$

- In summary:

$$
\begin{equation*}
\widehat{\tilde{p}}_{t}=(1-\theta \beta) \widehat{m c}_{t}+\theta \beta E_{t} \widehat{\tilde{p}}_{t+1} \tag{19}
\end{equation*}
$$

New Keynesian Phillips Curve

The NKPC

- Two additional ingredients

New Keynesian Phillips Curve

The NKPC

- Two additional ingredients
(1) Define real marginal costs

$$
\begin{equation*}
M C_{t}^{r}=\frac{M C_{t}}{P_{t}} \underset{\text { usual steps }}{\Longrightarrow} \widehat{m c}_{t}^{r}=\widehat{m c} t-\hat{p}_{t} \Longrightarrow \widehat{m c}_{t}=\widehat{m c}_{t}^{r}+\hat{p}_{t} \tag{20}
\end{equation*}
$$

New Keynesian Phillips Curve

The NKPC

- Two additional ingredients
(1) Define real marginal costs

$$
\begin{equation*}
M C_{t}^{r}=\frac{M C_{t}}{P_{t}} \underset{\text { usual steps }}{\Longrightarrow}{\widehat{m c_{t}}}_{t}^{r}=\widehat{m c}{ }_{t}-\hat{p}_{t} \Longrightarrow \widehat{m c}_{t}=\widehat{m c}_{t}^{r}+\hat{p}_{t} \tag{20}
\end{equation*}
$$

(2) Using equation (12)

$$
\begin{equation*}
\widehat{\tilde{p}}_{t}=\frac{\hat{\pi}_{t}}{(1-\theta)}+\hat{p}_{t-1} \tag{21}
\end{equation*}
$$

New Keynesian Phillips Curve

The NKPC

- Two additional ingredients
(1) Define real marginal costs

$$
\begin{equation*}
M C_{t}^{r}=\frac{M C_{t}}{P_{t}} \underset{\text { usual steps }}{\Longrightarrow} \widehat{m c}_{t}^{r}=\widehat{m c}_{t}-\hat{p}_{t} \Longrightarrow \widehat{m c}_{t}=\widehat{m c}_{t}^{r}+\hat{p}_{t} \tag{20}
\end{equation*}
$$

(2) Using equation (12)

$$
\begin{equation*}
\widehat{\tilde{p}}_{t}=\frac{\hat{\pi}_{t}}{(1-\theta)}+\hat{p}_{t-1} \tag{21}
\end{equation*}
$$

- Plugging (20)-(21) into (19), simple algebra yields the NKPC

$$
\begin{equation*}
\hat{\pi}_{t}=\beta E_{t} \hat{\pi}_{t+1}+\underbrace{\frac{(1-\theta)(1-\theta \beta)}{\theta}}_{\kappa} \widehat{m c}_{t}^{r} \tag{22}
\end{equation*}
$$

New Keynesian Phillips Curve

NKPC: a Closer Look

- Let's look more closely at the NKPC (22)

$$
\begin{equation*}
\hat{\pi}_{t}=\beta E_{t} \hat{\pi}_{t+1}+\kappa \widehat{m c}_{t}^{r} \tag{23}
\end{equation*}
$$

New Keynesian Phillips Curve

- Let's look more closely at the NKPC (22)

$$
\begin{equation*}
\hat{\pi}_{t}=\beta E_{t} \hat{\pi}_{t+1}+\kappa \widehat{m c}_{t}^{r} \tag{23}
\end{equation*}
$$

(1) the coefficient on marginal costs, κ, is strictly decreasing in price stickiness $\theta: \frac{\partial \kappa}{\partial \theta}<0$
\Longrightarrow as prices get stickier (longer expected duration), firms respond less to current marginal costs, putting (relatively) more emphasis on expected future inflation

New Keynesian Phillips Curve

- Let's look more closely at the NKPC (22)

$$
\begin{equation*}
\hat{\pi}_{t}=\beta E_{t} \hat{\pi}_{t+1}+\kappa \widehat{m c}_{t}^{r} \tag{23}
\end{equation*}
$$

(1) the coefficient on marginal costs, κ, is strictly decreasing in price stickiness $\theta: \frac{\partial \kappa}{\partial \theta}<0$
\Longrightarrow as prices get stickier (longer expected duration), firms respond less to current marginal costs, putting (relatively) more emphasis on expected future inflation
(2) iterating forward (23),

$$
\hat{\pi}_{t}=\kappa E_{t} \sum_{k=0}^{\infty} \beta^{k} \widehat{m c}_{t+k}^{r}
$$

\Longrightarrow it is enough to expect marginal cost to increase at some point in the future (even if very far) for inflation to move today

Demand Side

Households

- The household side is identical to what we have seen in the frictionless monetary model

Demand Side

Households

- The household side is identical to what we have seen in the frictionless monetary model
- a representative households consumes the final good produced by retail, and supplies labor to the wholesale firms

Demand Side

Households

- The household side is identical to what we have seen in the frictionless monetary model
- a representative households consumes the final good produced by retail, and supplies labor to the wholesale firms
- he saves through riskless bonds and holds cash for transaction purposes (MIU set-up)

Demand Side

Households

- The household side is identical to what we have seen in the frictionless monetary model
- a representative households consumes the final good produced by retail, and supplies labor to the wholesale firms
- he saves through riskless bonds and holds cash for transaction purposes (MIU set-up)
- Letting $W_{t}^{r} \equiv \frac{W_{t}}{P_{t}}$ be the real wage, his optimal behavior is summarized by the following two relationships

$$
\begin{aligned}
\psi H_{t}^{\chi} & =W_{t}^{r} C_{t}^{-\sigma} \\
C_{t}^{-\sigma} & =\beta R_{t} E_{t}\left[\frac{C_{t+1}^{-\sigma}}{\Pi_{t+1}}\right]
\end{aligned}
$$

Demand Side

Households

- The household side is identical to what we have seen in the frictionless monetary model
- a representative households consumes the final good produced by retail, and supplies labor to the wholesale firms
- he saves through riskless bonds and holds cash for transaction purposes (MIU set-up)
- Letting $W_{t}^{r} \equiv \frac{W_{t}}{P_{t}}$ be the real wage, his optimal behavior is summarized by the following two relationships

$$
\begin{aligned}
\psi H_{t}^{\chi} & =W_{t}^{r} C_{t}^{-\sigma} \\
C_{t}^{-\sigma} & =\beta R_{t} E_{t}\left[\frac{C_{t+1}^{-\sigma}}{\Pi_{t+1}}\right]
\end{aligned}
$$

- Their approximation gives

$$
\begin{align*}
& \text { Labor Supply }: \quad \hat{w}_{t}^{r}=\chi \hat{h}_{t}+\sigma \hat{c}_{t} \tag{24}\\
& \text { Euler Equation }: \quad \hat{c}_{t}=E_{t} \hat{c}_{t+1}-\sigma_{\square}^{-1}\left(\hat{r}_{t-}-E_{t} \hat{\pi}_{t+1}\right) \\
& \text { UK-DSGE }
\end{align*}
$$

Demand Side

Households

- Recall from firm's problem (see eq. (6)) that

$$
\begin{equation*}
M C_{t}^{r}=\frac{W_{t}^{r}}{Z_{t}} \quad \underset{\text { usual steps }}{\Longrightarrow} \quad \widehat{m c}_{t}^{r}=\hat{w}_{t}^{r}-\hat{z}_{t} \tag{26}
\end{equation*}
$$

Demand Side

Households

- Recall from firm's problem (see eq. (6)) that

$$
\begin{equation*}
M C_{t}^{r}=\frac{W_{t}^{r}}{Z_{t}} \underset{\text { usual steps }}{\Longrightarrow} \widehat{m c}_{t}^{r}=\hat{w}_{t}^{r}-\hat{z}_{t} \tag{26}
\end{equation*}
$$

- We use labor supply $\hat{w}_{t}^{r}=\chi \hat{h}_{t}+\sigma \hat{c}_{t}$ and equilibrium conditions,

$$
C_{t}=Y_{t} \underset{\text { usual steps }}{\Longrightarrow} \hat{c}_{t}=\hat{y}_{t}, \quad \text { and } \quad Y_{t}=Z_{t} H_{t} \underset{\text { usual steps }}{\Longrightarrow} \hat{h}_{t}=\hat{y}_{t}-\hat{z}_{t}
$$

to write real marginal cost (26) as

$$
\widehat{m c}_{t}^{r}=\underbrace{\chi \hat{h}_{t}+\sigma \hat{c}_{t}}_{\hat{w}_{t}^{t}}-\hat{z}_{t}=(\chi+\sigma) \hat{y}_{t}-(1+\chi) \hat{z}_{t}
$$

Demand Side

Households

- Recall from firm's problem (see eq. (6)) that

$$
\begin{equation*}
M C_{t}^{r}=\frac{W_{t}^{r}}{Z_{t}} \underset{\text { usual steps }}{\Longrightarrow} \widehat{m c}_{t}^{r}=\hat{w}_{t}^{r}-\hat{z}_{t} \tag{26}
\end{equation*}
$$

- We use labor supply $\hat{w}_{t}^{r}=\chi \hat{h}_{t}+\sigma \hat{c}_{t}$ and equilibrium conditions,

$$
C_{t}=Y_{t} \underset{\text { usual steps }}{\Longrightarrow} \hat{c}_{t}=\hat{y}_{t}, \quad \text { and } \quad Y_{t}=Z_{t} H_{t} \underset{\text { usual steps }}{\Longrightarrow} \hat{h}_{t}=\hat{y}_{t}-\hat{z}_{t}
$$

to write real marginal cost (26) as

$$
\widehat{m c}_{t}^{r}=\underbrace{\chi \hat{h}_{t}+\sigma \hat{c}_{t}}_{\hat{w}_{t}^{r}}-\hat{z}_{t}=(\chi+\sigma) \hat{y}_{t}-(1+\chi) \hat{z}_{t}
$$

- We plug the latter back into the NKPC (23)

$$
\begin{equation*}
\hat{\pi}_{t}=\beta E_{t} \hat{\pi}_{t+1}+\kappa(\chi+\sigma) \hat{y}_{t}-\kappa(1+\chi) \hat{z}_{t} \tag{27}
\end{equation*}
$$

Equilibrium System

The AD and AS Curves

- If we use $\hat{c}_{t}=\hat{y}_{t}$ also in the Euler equation (25), we have the equilibrium system describing the dynamics of our economy around the steady state

$$
\begin{aligned}
& \text { AD Curve }: \hat{y}_{t}=E_{t} \hat{y}_{t+1}-\sigma^{-1}\left(\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}\right) \\
& \text { AS Curve }: \\
& \hat{\pi}_{t}=\beta E_{t} \hat{\pi}_{t+1}+\kappa(\chi+\sigma) \hat{y}_{t}-\kappa(1+\chi) \hat{z}_{t}
\end{aligned}
$$

Equilibrium System

The AD and AS Curves

- If we use $\hat{c}_{t}=\hat{y}_{t}$ also in the Euler equation (25), we have the equilibrium system describing the dynamics of our economy around the steady state

$$
\begin{aligned}
& \text { AD Curve }: \hat{y}_{t}=E_{t} \hat{y}_{t+1}-\sigma^{-1}\left(\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}\right) \\
& \text { AS Curve }: \\
& \hat{\pi}_{t}=\beta E_{t} \hat{\pi}_{t+1}+\kappa(\chi+\sigma) \hat{y}_{t}-\kappa(1+\chi) \hat{z}_{t}
\end{aligned}
$$

- Let's look at them more closely.

Equilibrium System

The AD and AS Curves

- If we use $\hat{c}_{t}=\hat{y}_{t}$ also in the Euler equation (25), we have the equilibrium system describing the dynamics of our economy around the steady state

$$
\begin{align*}
& \text { AD Curve }: \hat{y}_{t}=E_{t} \hat{y}_{t+1}-\sigma^{-1}\left(\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}\right) \tag{28}\\
& \text { AS Curve }: \\
& \hat{\pi}_{t}=\beta E_{t} \hat{\pi}_{t+1}+\kappa(\chi+\sigma) \hat{y}_{t}-\kappa(1+\chi) \hat{z}_{t}(29)
\end{align*}
$$

- Let's look at them more closely.
- For now, let's take expectations $E_{t} \hat{y}_{t+1}$ and $E_{t} \hat{\pi}_{t+1}$ as given (of course, they are both endogenous...we'll deal with it later)

Equilibrium System

The AD Curve

- AD curve (sometimes called IS)

$$
\begin{equation*}
\hat{y}_{t}=E_{t} \hat{y}_{t+1}-\underbrace{\sigma^{-1}}_{\delta}\left(\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}\right) \tag{30}
\end{equation*}
$$

Equilibrium System

The AD Curve

- AD curve (sometimes called IS)

$$
\begin{equation*}
\hat{y}_{t}=E_{t} \hat{y}_{t+1}-\underbrace{\sigma^{-1}}_{\delta}\left(\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}\right) \tag{30}
\end{equation*}
$$

- ECONOMIC INTUITION

Equilibrium System

The AD Curve

- AD curve (sometimes called IS)

$$
\begin{equation*}
\hat{y}_{t}=E_{t} \hat{y}_{t+1}-\underbrace{\sigma^{-1}}_{\delta}\left(\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}\right) \tag{30}
\end{equation*}
$$

- ECONOMIC INTUITION
- It defines a negative relationship between current output \hat{y}_{t} and the real interest rate $\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}$

Equilibrium System

The AD Curve

- AD curve (sometimes called IS)

$$
\begin{equation*}
\hat{y}_{t}=E_{t} \hat{y}_{t+1}-\underbrace{\sigma^{-1}}_{\delta}\left(\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}\right) \tag{30}
\end{equation*}
$$

- ECONOMIC INTUITION
- It defines a negative relationship between current output \hat{y}_{t} and the real interest rate $\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}$
- A higher real rate lowers current activity as households have an incentive to save more (hence consume less)

Equilibrium System

The AD Curve

- AD curve (sometimes called IS)

$$
\begin{equation*}
\hat{y}_{t}=E_{t} \hat{y}_{t+1}-\underbrace{\sigma^{-1}}_{\delta}\left(\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}\right) \tag{30}
\end{equation*}
$$

- ECONOMIC INTUITION
- It defines a negative relationship between current output \hat{y}_{t} and the real interest rate $\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}$
- A higher real rate lowers current activity as households have an incentive to save more (hence consume less)
- This is the classic demand side channel of monetary policy transmission

Equilibrium System

The AD Curve

- AD curve (sometimes called IS)

$$
\begin{equation*}
\hat{y}_{t}=E_{t} \hat{y}_{t+1}-\underbrace{\sigma^{-1}}_{\delta}\left(\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}\right) \tag{30}
\end{equation*}
$$

- ECONOMIC INTUITION
- It defines a negative relationship between current output \hat{y}_{t} and the real interest rate $\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}$
- A higher real rate lowers current activity as households have an incentive to save more (hence consume less)
- This is the classic demand side channel of monetary policy transmission
- Strength of this channel depends on the intertemporal elasticity of substitution (IES) δ

Equilibrium System

The AS Curve

- AS curve is

$$
\begin{equation*}
\hat{\pi}_{t}=\beta E_{t} \hat{\pi}_{t+1}+\kappa(\chi+\sigma) \hat{y}_{t}-\kappa(1+\chi) \hat{z}_{t} \tag{31}
\end{equation*}
$$

Equilibrium System

The AS Curve

- AS curve is

$$
\begin{equation*}
\hat{\pi}_{t}=\beta E_{t} \hat{\pi}_{t+1}+\kappa(\chi+\sigma) \hat{y}_{t}-\kappa(1+\chi) \hat{z}_{t} \tag{31}
\end{equation*}
$$

- ECONOMIC INTUITION

Equilibrium System

The AS Curve

- AS curve is

$$
\begin{equation*}
\hat{\pi}_{t}=\beta E_{t} \hat{\pi}_{t+1}+\kappa(\chi+\sigma) \hat{y}_{t}-\kappa(1+\chi) \hat{z}_{t} \tag{31}
\end{equation*}
$$

- ECONOMIC INTUITION
- It defines a positive relationship between current inflation $\hat{\pi}_{t}$ and real activity \hat{y}_{t}, with TFP \hat{z}_{t} acting as a shifter

Equilibrium System

The AS Curve

- AS curve is

$$
\begin{equation*}
\hat{\pi}_{t}=\beta E_{t} \hat{\pi}_{t+1}+\kappa(\chi+\sigma) \hat{y}_{t}-\kappa(1+\chi) \hat{z}_{t} \tag{31}
\end{equation*}
$$

- ECONOMIC INTUITION
- It defines a positive relationship between current inflation $\hat{\pi}_{t}$ and real activity \hat{y}_{t}, with TFP \hat{z}_{t} acting as a shifter
- Higher output (driven by higher demand by households) requires firms to hire more labor \hat{h}_{t}

Equilibrium System

The AS Curve

- AS curve is

$$
\begin{equation*}
\hat{\pi}_{t}=\beta E_{t} \hat{\pi}_{t+1}+\kappa(\chi+\sigma) \hat{y}_{t}-\kappa(1+\chi) \hat{z}_{t} \tag{31}
\end{equation*}
$$

- ECONOMIC INTUITION
- It defines a positive relationship between current inflation $\hat{\pi}_{t}$ and real activity \hat{y}_{t}, with TFP \hat{z}_{t} acting as a shifter
- Higher output (driven by higher demand by households) requires firms to hire more labor \hat{h}_{t}
- Higher labor drives up the real wage (through labor supply equation)

Equilibrium System

The AS Curve

- AS curve is

$$
\begin{equation*}
\hat{\pi}_{t}=\beta E_{t} \hat{\pi}_{t+1}+\kappa(\chi+\sigma) \hat{y}_{t}-\kappa(1+\chi) \hat{z}_{t} \tag{31}
\end{equation*}
$$

- ECONOMIC INTUITION
- It defines a positive relationship between current inflation $\hat{\pi}_{t}$ and real activity \hat{y}_{t}, with TFP \hat{z}_{t} acting as a shifter
- Higher output (driven by higher demand by households) requires firms to hire more labor \hat{h}_{t}
- Higher labor drives up the real wage (through labor supply equation)
- As marginal costs increase, firms raise prices

Equilibrium System

The AS Curve

- AS curve is

$$
\begin{equation*}
\hat{\pi}_{t}=\beta E_{t} \hat{\pi}_{t+1}+\kappa(\chi+\sigma) \hat{y}_{t}-\kappa(1+\chi) \hat{z}_{t} \tag{31}
\end{equation*}
$$

- ECONOMIC INTUITION
- It defines a positive relationship between current inflation $\hat{\pi}_{t}$ and real activity \hat{y}_{t}, with TFP \hat{z}_{t} acting as a shifter
- Higher output (driven by higher demand by households) requires firms to hire more labor \hat{h}_{t}
- Higher labor drives up the real wage (through labor supply equation)
- As marginal costs increase, firms raise prices
- Strength of this channel depends on the slope of the Phillips curve κ (higher with more flex prices) and pro-cyclicality of wages $(\chi+\sigma)$ (slope of labor supply)

Equilibrium System

The AS Curve

- AS curve is

$$
\begin{equation*}
\hat{\pi}_{t}=\beta E_{t} \hat{\pi}_{t+1}+\kappa(\chi+\sigma) \hat{y}_{t}-\kappa(1+\chi) \hat{z}_{t} \tag{31}
\end{equation*}
$$

- ECONOMIC INTUITION
- It defines a positive relationship between current inflation $\hat{\pi}_{t}$ and real activity \hat{y}_{t}, with TFP \hat{z}_{t} acting as a shifter
- Higher output (driven by higher demand by households) requires firms to hire more labor \hat{h}_{t}
- Higher labor drives up the real wage (through labor supply equation)
- As marginal costs increase, firms raise prices
- Strength of this channel depends on the slope of the Phillips curve κ (higher with more flex prices) and pro-cyclicality of wages $(\chi+\sigma)$ (slope of labor supply)
- REMARK: in the baseline model changes in the real interest rate do not have direct impact on the NKPC

Equilibrium System

Output Gap

- It is useful to re-write system in terms of deviation from the flexible price level of output

Equilibrium System

Output Gap

- It is useful to re-write system in terms of deviation from the flexible price level of output
- This is identical to the frictionless monetary model (but you can also solve for it here by setting $\theta=0$):

$$
\begin{equation*}
\hat{y}_{t}^{F}=\underbrace{\frac{1+\chi}{\sigma+\chi}}_{\eta_{y, z}^{F}} \hat{z}_{t} \tag{32}
\end{equation*}
$$

If prices were flexible, output would be just driven by TFP, with

$$
\begin{equation*}
\hat{z}_{t}=\rho_{z} \hat{z}_{t-1}+\hat{\varepsilon}_{t}^{z} \tag{33}
\end{equation*}
$$

Equilibrium System

Output Gap

- It is useful to re-write system in terms of deviation from the flexible price level of output
- This is identical to the frictionless monetary model (but you can also solve for it here by setting $\theta=0$):

$$
\begin{equation*}
\hat{y}_{t}^{F}=\underbrace{\frac{1+\chi}{\sigma+\chi}}_{\eta_{y, z}^{F}} \hat{z}_{t} \tag{32}
\end{equation*}
$$

If prices were flexible, output would be just driven by TFP, with

$$
\begin{equation*}
\hat{z}_{t}=\rho_{z} \hat{z}_{t-1}+\hat{\varepsilon}_{t}^{z} \tag{33}
\end{equation*}
$$

- Define the output gap:

$$
\begin{equation*}
\hat{x}_{t} \equiv \hat{y}_{t}-\hat{y}_{t}^{F} \quad \Longrightarrow \quad \hat{y}_{t}=\hat{x}_{t}+\hat{y}_{t}^{F} \tag{34}
\end{equation*}
$$

Equilibrium System

The NKPC and the Output Gap

- Plug this into the NKPC

$$
\begin{align*}
\hat{\pi}_{t} & =\beta E_{t} \hat{\pi}_{t+1}+\kappa(\chi+\sigma) \underbrace{\left(\hat{x}_{t}+\hat{y}_{t}^{F}\right)}_{\hat{y}_{t}}-\kappa(1+\chi) \hat{z}_{t} \\
& =\beta E_{t} \hat{\pi}_{t+1}+\kappa(\chi+\sigma) \hat{x}_{t}+\kappa(\chi+\sigma) \frac{1+\chi}{\sigma+\chi} \hat{z}-\kappa(1+\chi) \hat{z}_{t} \\
& =\beta E_{t} \hat{\pi}_{t+1}+\underbrace{\kappa(\chi+\sigma)}_{\kappa_{x}} \hat{x}_{t} \tag{35}
\end{align*}
$$

Equilibrium System

The NKPC and the Output Gap

- Plug this into the NKPC

$$
\begin{align*}
\hat{\pi}_{t} & =\beta E_{t} \hat{\pi}_{t+1}+\kappa(\chi+\sigma) \underbrace{\left(\hat{x}_{t}+\hat{y}_{t}^{F}\right)}_{\hat{y}_{t}}-\kappa(1+\chi) \hat{z}_{t} \\
& =\beta E_{t} \hat{\pi}_{t+1}+\kappa(\chi+\sigma) \hat{x}_{t}+\kappa(\chi+\sigma) \frac{1+\chi}{\sigma+\chi} \hat{z}-\kappa(1+\chi) \hat{z}_{t} \\
& =\beta E_{t} \hat{\pi}_{t+1}+\underbrace{\kappa(\chi+\sigma)}_{\kappa_{x}} \hat{x}_{t} \tag{35}
\end{align*}
$$

- This is a dynamic version (because of $\beta E_{t} \hat{\pi}_{t+1}$ term) of the original equation Peter C. Phillips estimated on U.S. data to show inverse relationship between inflation and the rate of unemployment

Equilibrium System

The NKPC and the Output Gap

- Plug this into the NKPC

$$
\begin{align*}
\hat{\pi}_{t} & =\beta E_{t} \hat{\pi}_{t+1}+\kappa(\chi+\sigma) \underbrace{\left(\hat{x}_{t}+\hat{y}_{t}^{F}\right)}_{\hat{y}_{t}}-\kappa(1+\chi) \hat{z}_{t} \\
& =\beta E_{t} \hat{\pi}_{t+1}+\kappa(\chi+\sigma) \hat{x}_{t}+\kappa(\chi+\sigma) \frac{1+\chi}{\sigma+\chi} \hat{z}-\kappa(1+\chi) \hat{z}_{t} \\
& =\beta E_{t} \hat{\pi}_{t+1}+\underbrace{\kappa(\chi+\sigma)}_{\kappa_{x}} \hat{x}_{t} \tag{35}
\end{align*}
$$

- This is a dynamic version (because of $\beta E_{t} \hat{\pi}_{t+1}$ term) of the original equation Peter C. Phillips estimated on U.S. data to show inverse relationship between inflation and the rate of unemployment
- Here the relationship is with the output gap, which is negatively related to unemployment (in the data, NOT here since there is no unemployment in the baseline NK model)

Equilibrium System

Visual Fit of the Phillips Curve

(a) Inflation and Unemployment, 1950-1969

(b) Inflation and Unemployment, 1970-2019

Equilibrium System

The AD Curve and the Output Gap

- We can re-write also the AD curve in output gap terms

$$
\begin{align*}
& \underbrace{\hat{x}_{t}+\hat{y}_{t}^{F}}_{\hat{y}_{t}}=E_{t} \underbrace{\left(\hat{x}_{t+1}+\hat{y}_{t+1}^{F}\right)}_{\hat{y}_{t+1}}-\delta\left(\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}\right) \\
\Longrightarrow & \hat{x}_{t}=E_{t} \hat{x}_{t+1}-\delta\left(\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}\right)+E_{t} \hat{y}_{t+1}^{F}-\hat{y}_{t}^{F} \tag{36}
\end{align*}
$$

Equilibrium System

The AD Curve and the Output Gap

- We can re-write also the AD curve in output gap terms

$$
\begin{align*}
& \underbrace{\hat{x}_{t}+\hat{y}_{t}^{F}}_{\hat{y}_{t}}=E_{t} \underbrace{\left(\hat{x}_{t+1}+\hat{y}_{t+1}^{F}\right)}_{\hat{y}_{t+1}}-\delta\left(\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}\right) \\
\Longrightarrow & \hat{x}_{t}=E_{t} \hat{x}_{t+1}-\delta\left(\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}\right)+E_{t} \hat{y}_{t+1}^{F}-\hat{y}_{t}^{F} \tag{36}
\end{align*}
$$

- Since $\hat{y}_{t}^{F}=\eta_{y, z}^{F} \hat{z}_{t}$ in (32) and $E_{t} \hat{z}_{t+1}=\rho_{z} \hat{z}_{t}$:

$$
\begin{equation*}
E_{t} \hat{y}_{t+1}^{F}-\hat{y}_{t}^{F}=\eta_{y, z}\left(\rho_{z}-1\right) \hat{z}_{t} \tag{37}
\end{equation*}
$$

Equilibrium System

The AD Curve and the Output Gap

- We can re-write also the AD curve in output gap terms

$$
\begin{align*}
& \underbrace{\hat{x}_{t}+\hat{y}_{t}^{F}}_{\hat{y}_{t}}=E_{t} \underbrace{\left(\hat{x}_{t+1}+\hat{y}_{t+1}^{F}\right)}_{\hat{y}_{t+1}}-\delta\left(\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}\right) \\
\Longrightarrow & \hat{x}_{t}=E_{t} \hat{x}_{t+1}-\delta\left(\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}\right)+E_{t} \hat{y}_{t+1}^{F}-\hat{y}_{t}^{F} \tag{36}
\end{align*}
$$

- Since $\hat{y}_{t}^{F}=\eta_{y, z}^{F} \hat{z}_{t}$ in (32) and $E_{t} \hat{z}_{t+1}=\rho_{z} \hat{z}_{t}$:

$$
\begin{equation*}
E_{t} \hat{y}_{t+1}^{F}-\hat{y}_{t}^{F}=\eta_{y, z}\left(\rho_{z}-1\right) \hat{z}_{t} \tag{37}
\end{equation*}
$$

- Then (recall $\delta=\sigma^{-1}$)

$$
\begin{equation*}
\hat{x}_{t}=E_{t} \hat{x}_{t+1}-\delta\left[\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}-\sigma \eta_{y, z}\left(\rho_{z}-1\right) \hat{z}_{t}\right] \tag{38}
\end{equation*}
$$

Equilibrium System

The AD Curve and the Output Gap

- Define

$$
\begin{equation*}
\widehat{r r}_{t}^{n} \equiv \sigma \eta_{y, z}\left(\rho_{z}-1\right) \hat{z}_{t} \tag{39}
\end{equation*}
$$

This is the so-called natural real interest rate we found in the frictionless (flexible price) model
NOTE: if there was zero output gap in every period
$\left(\hat{x}_{t}=E_{t} \hat{x}_{t+1}=0\right)$ the real interest rate would be equal to this

Equilibrium System

The AD Curve and the Output Gap

- Define

$$
\begin{equation*}
\widehat{r r}_{t}^{n} \equiv \sigma \eta_{y, z}\left(\rho_{z}-1\right) \hat{z}_{t} \tag{39}
\end{equation*}
$$

This is the so-called natural real interest rate we found in the frictionless (flexible price) model
NOTE: if there was zero output gap in every period
$\left(\hat{x}_{t}=E_{t} \hat{x}_{t+1}=0\right)$ the real interest rate would be equal to this

- Then, the final AD curve is

$$
\begin{equation*}
\hat{x}_{t}=E_{t} \hat{x}_{t+1}-\delta\left(\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}-\widehat{r} r_{t}^{n}\right) \tag{40}
\end{equation*}
$$

Equilibrium System

Cost-Push Shock and Need of Monetary Policy

- Let's summarize what we have

$$
\begin{align*}
\hat{x}_{t} & =E_{t} \hat{x}_{t+1}-\delta\left(\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}-\widehat{r r}_{t}^{n}\right) \tag{41}\\
\hat{\pi}_{t} & =\beta E_{t} \hat{\pi}_{t+1}+\kappa_{x} \hat{x}_{t}+\hat{u}_{t} \tag{42}
\end{align*}
$$

Equilibrium System

Cost-Push Shock and Need of Monetary Policy

- Let's summarize what we have

$$
\begin{align*}
\hat{x}_{t} & =E_{t} \hat{x}_{t+1}-\delta\left(\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}-\widehat{r r}_{t}^{n}\right) \tag{41}\\
\hat{\pi}_{t} & =\beta E_{t} \hat{\pi}_{t+1}+\kappa_{x} \hat{x}_{t}+\hat{u}_{t} \tag{42}
\end{align*}
$$

- NOTE: I have added an exogenous cost-push shock \hat{u}_{t} to the AS curve

Equilibrium System

Cost-Push Shock and Need of Monetary Policy

- Let's summarize what we have

$$
\begin{align*}
\hat{x}_{t} & =E_{t} \hat{x}_{t+1}-\delta\left(\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}-\widehat{r r}_{t}^{n}\right) \tag{41}\\
\hat{\pi}_{t} & =\beta E_{t} \hat{\pi}_{t+1}+\kappa_{x} \hat{x}_{t}+\hat{u}_{t} \tag{42}
\end{align*}
$$

- NOTE: I have added an exogenous cost-push shock \hat{u}_{t} to the AS curve
- \hat{u}_{t} allows to capture pure supply side shocks. Ex: oil price/energy shocks (relevant today!), mark-up shocks

Equilibrium System

Cost-Push Shock and Need of Monetary Policy

- Let's summarize what we have

$$
\begin{align*}
\hat{x}_{t} & =E_{t} \hat{x}_{t+1}-\delta\left(\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}-\widehat{r r}_{t}^{n}\right) \tag{41}\\
\hat{\pi}_{t} & =\beta E_{t} \hat{\pi}_{t+1}+\kappa_{x} \hat{x}_{t}+\hat{u}_{t} \tag{42}
\end{align*}
$$

- NOTE: I have added an exogenous cost-push shock \hat{u}_{t} to the AS curve
- \hat{u}_{t} allows to capture pure supply side shocks. Ex: oil price/energy shocks (relevant today!), mark-up shocks
- assume (as for other shocks) that

$$
\begin{equation*}
\hat{u}_{t}=\rho_{u} \hat{u}_{t}+\hat{\varepsilon}_{t}^{u}, \quad \hat{\varepsilon}_{t}^{u} \sim \operatorname{iid} N\left(0, \sigma_{u}^{2}\right), 0 \leq \rho_{u}<1 \tag{43}
\end{equation*}
$$

Equilibrium System

- Let's summarize what we have

$$
\begin{align*}
\hat{x}_{t} & =E_{t} \hat{x}_{t+1}-\delta\left(\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}-\widehat{r r}_{t}^{n}\right) \tag{41}\\
\hat{\pi}_{t} & =\beta E_{t} \hat{\pi}_{t+1}+\kappa_{x} \hat{x}_{t}+\hat{u}_{t} \tag{42}
\end{align*}
$$

- NOTE: I have added an exogenous cost-push shock \hat{u}_{t} to the AS curve
- \hat{u}_{t} allows to capture pure supply side shocks. Ex: oil price/energy shocks (relevant today!), mark-up shocks
- assume (as for other shocks) that

$$
\begin{equation*}
\hat{u}_{t}=\rho_{u} \hat{u}_{t}+\hat{\varepsilon}_{t}^{u}, \quad \hat{\varepsilon}_{t}^{u} \sim \operatorname{iid} N\left(0, \sigma_{u}^{2}\right), 0 \leq \rho_{u}<1 \tag{43}
\end{equation*}
$$

- The system (41)-(42) includes 2 EXOGENOUS ($\widehat{r r}_{t}^{n}$ and \hat{u}_{t}) and 3 ENDOGENOUS variables
\Longrightarrow we need a 3rd equation for monetary policy

Equilibrium System

Solving the Model with an Instrumental Taylor Rule

- Assume the Fed adopts a Taylor rule

Equilibrium System

Solving the Model with an Instrumental Taylor Rule

- Assume the Fed adopts a Taylor rule
- Its specification may differ based on what observable by the Fed

Equilibrium System

Solving the Model with an Instrumental Taylor Rule

- Assume the Fed adopts a Taylor rule
- Its specification may differ based on what observable by the Fed
(1) Fed observes inflation, the output gap and the natural rate (lots of info!)

$$
\begin{equation*}
\text { Taylor Rule I : } \hat{r}_{t}=\widehat{r}_{t}^{n}+\phi_{\pi} \hat{\pi}_{t}+\phi_{x} \hat{x}_{t}+\hat{v}_{t} \tag{44}
\end{equation*}
$$

Equilibrium System

Solving the Model with an Instrumental Taylor Rule

- Assume the Fed adopts a Taylor rule
- Its specification may differ based on what observable by the Fed
(1) Fed observes inflation, the output gap and the natural rate (lots of info!)

$$
\begin{equation*}
\text { Taylor Rule I : } \hat{r}_{t}=\widehat{r}_{t}^{n}+\phi_{\pi} \hat{\pi}_{t}+\phi_{x} \hat{x}_{t}+\hat{v}_{t} \tag{44}
\end{equation*}
$$

(2) Fed observes inflation and output only (more realistic)

$$
\begin{equation*}
\text { Taylor Rule II : } \hat{r}_{t}=\phi_{\pi} \hat{\pi}_{t}++\phi_{x} \hat{x}_{t}+\hat{v}_{t} \tag{45}
\end{equation*}
$$

Equilibrium System

Solving the Model with an Instrumental Taylor Rule

- Assume the Fed adopts a Taylor rule
- Its specification may differ based on what observable by the Fed
(1) Fed observes inflation, the output gap and the natural rate (lots of info!)

$$
\begin{equation*}
\text { Taylor Rule I }: \hat{r}_{t}=\widehat{r r}_{t}^{n}+\phi_{\pi} \hat{\pi}_{t}+\phi_{x} \hat{x}_{t}+\hat{v}_{t} \tag{44}
\end{equation*}
$$

(2) Fed observes inflation and output only (more realistic)

$$
\begin{equation*}
\text { Taylor Rule II : } \hat{r}_{t}=\phi_{\pi} \hat{\pi}_{t}++\phi_{x} \hat{x}_{t}+\hat{v}_{t} \tag{45}
\end{equation*}
$$

- In both cases, we assume $\phi_{\pi}>1$ and $\phi_{x} \geq 0$, with shock \hat{v}_{t}

$$
\begin{equation*}
\hat{v}_{t}=\rho_{v} \hat{v}_{t-1}+\hat{\varepsilon}_{t}^{v}, \quad \hat{\varepsilon}_{t}^{v} \sim \operatorname{iid} N\left(0, \sigma_{v}^{2}\right), 0 \leq \rho_{v}<1 \tag{46}
\end{equation*}
$$

capturing either Fed's discretionary decisions (independent from state of the economy) or, simply, policy mistakes

Equilibrium System

Solving the Model under Taylor Rule I (TR1)

- Fed adopts

$$
\begin{equation*}
\hat{r}_{t}=\widehat{r r}_{t}^{n}+\phi_{\pi} \hat{\pi}_{t}+\phi_{x} \hat{x}_{t}+\hat{v}_{t} \tag{47}
\end{equation*}
$$

Equilibrium System

Solving the Model under Taylor Rule I (TR1)

- Fed adopts

$$
\begin{equation*}
\hat{r}_{t}=\widehat{r r}_{t}^{n}+\phi_{\pi} \hat{\pi}_{t}+\phi_{x} \hat{x}_{t}+\hat{v}_{t} \tag{47}
\end{equation*}
$$

- Plugging the policy rule (47) into the system:

$$
\begin{align*}
\hat{x}_{t} & =E_{t} \hat{x}_{t+1}-\delta\left(\phi_{\pi} \hat{\pi}_{t}+\phi_{x} \hat{x}_{t}+\hat{v}_{t}-E_{t} \hat{\pi}_{t+1}\right) \tag{48}\\
\hat{\pi}_{t} & =\beta E_{t} \hat{\pi}_{t+1}+\kappa_{x} \hat{x}_{t}+\hat{u}_{t} \tag{49}
\end{align*}
$$

REMARK: as $\widehat{r r}_{t}^{n}$ drops out of the system, this rule fully neutralizes the effects of TFP!

Equilibrium System

Solving the Model under Taylor Rule I (TR1)

- Fed adopts

$$
\begin{equation*}
\hat{r}_{t}=\widehat{r r}_{t}^{n}+\phi_{\pi} \hat{\pi}_{t}+\phi_{x} \hat{x}_{t}+\hat{v}_{t} \tag{47}
\end{equation*}
$$

- Plugging the policy rule (47) into the system:

$$
\begin{align*}
\hat{x}_{t} & =E_{t} \hat{x}_{t+1}-\delta\left(\phi_{\pi} \hat{\pi}_{t}+\phi_{x} \hat{x}_{t}+\hat{v}_{t}-E_{t} \hat{\pi}_{t+1}\right) \tag{48}\\
\hat{\pi}_{t} & =\beta E_{t} \hat{\pi}_{t+1}+\kappa_{x} \hat{x}_{t}+\hat{u}_{t} \tag{49}
\end{align*}
$$

REMARK: as $\widehat{r r}_{t}^{n}$ drops out of the system, this rule fully neutralizes the effects of TFP!

- PROPOSITION: if $\phi_{\pi}>1$ and $\phi_{x} \geq 0$, the system has a unique Rational Expectations Equilibrium where

$$
\begin{align*}
\hat{\pi}_{t} & =\eta_{\pi, u} \hat{u}_{t}+\eta_{\pi, v} \hat{v}_{t} \tag{50}\\
\hat{x}_{t} & =\eta_{x, u} \hat{u}_{t}+\eta_{x, v} \hat{v}_{t} \tag{51}
\end{align*}
$$

Equilibrium Solution

Finding the MSV by Method of Undetermined Coefficients (MUC)

- We want to find expressions for coefficients $\left(\eta_{\pi, u}, \eta_{\pi, v}, \eta_{x, u}, \eta_{x, v}\right)$

Equilibrium Solution

Finding the MSV by Method of Undetermined Coefficients (MUC)

- We want to find expressions for coefficients $\left(\eta_{\pi, u}, \eta_{\pi, v}, \eta_{x, u}, \eta_{x, v}\right)$
- Underlying assumption: agents in our model (households and firms) know those coefficients (they have full knowledge of how the economy behaves in equilibrium), we do not!

Equilibrium Solution

Finding the MSV by Method of Undetermined Coefficients (MUC)

- We want to find expressions for coefficients $\left(\eta_{\pi, u}, \eta_{\pi, v}, \eta_{x, u}, \eta_{x, v}\right)$
- Underlying assumption: agents in our model (households and firms) know those coefficients (they have full knowledge of how the economy behaves in equilibrium), we do not!
- The MUC is a "guess and verify" process

Equilibrium Solution

Finding the MSV by Method of Undetermined Coefficients (MUC)

- We want to find expressions for coefficients $\left(\eta_{\pi, u}, \eta_{\pi, v}, \eta_{x, u}, \eta_{x, v}\right)$
- Underlying assumption: agents in our model (households and firms) know those coefficients (they have full knowledge of how the economy behaves in equilibrium), we do not!
- The MUC is a "guess and verify" process

1. Given initial guess $\left(\eta_{\pi, u}, \eta_{\pi, v}, \eta_{x, u}, \eta_{x, v}\right)$ we compute expectations

Equilibrium Solution

Finding the MSV by Method of Undetermined Coefficients (MUC)

- We want to find expressions for coefficients $\left(\eta_{\pi, u}, \eta_{\pi, v}, \eta_{x, u}, \eta_{x, v}\right)$
- Underlying assumption: agents in our model (households and firms) know those coefficients (they have full knowledge of how the economy behaves in equilibrium), we do not!
- The MUC is a "guess and verify" process

1. Given initial guess $\left(\eta_{\pi, u}, \eta_{\pi, v}, \eta_{X, u}, \eta_{x, v}\right)$ we compute expectations

2. Plug them back into system (41)-(42)

Equilibrium Solution

Finding the MSV by Method of Undetermined Coefficients (MUC)
3. Solve system for \hat{x}_{t} and $\hat{\pi}_{t}$: both will be linear functions of \hat{u}_{t} and \hat{v}_{t}

$$
\begin{align*}
\hat{\pi}_{t} & =N_{\pi, u} \hat{u}_{t}+N_{\pi, v} \hat{v}_{t} \tag{52}\\
\hat{x}_{t} & =N_{x, u} \hat{u}_{t}+N_{x, v} \hat{v}_{t} \tag{53}
\end{align*}
$$

with the N coefficients depending on both structural parameters of the model ($\beta, \sigma, \chi, \kappa, \rho_{u}, \rho_{v}$), policy parameters (ϕ_{π}, ϕ_{x}) and "guesses" $\left(\eta_{\pi, u}, \eta_{\pi, v}, \eta_{x, u}, \eta_{x, v}\right)$

Equilibrium Solution

Finding the MSV by Method of Undetermined Coefficients (MUC)
3. Solve system for \hat{x}_{t} and $\hat{\pi}_{t}$: both will be linear functions of \hat{u}_{t} and \hat{v}_{t}

$$
\begin{align*}
\hat{\pi}_{t} & =N_{\pi, u} \hat{u}_{t}+N_{\pi, v} \hat{v}_{t} \tag{52}\\
\hat{x}_{t} & =N_{x, u} \hat{u}_{t}+N_{x, v} \hat{v}_{t} \tag{53}
\end{align*}
$$

with the N coefficients depending on both structural parameters of the model ($\beta, \sigma, \chi, \kappa, \rho_{u}, \rho_{v}$), policy parameters (ϕ_{π}, ϕ_{x}) and "guesses"
$\left(\eta_{\pi, u}, \eta_{\pi, v}, \eta_{x, u}, \eta_{x, v}\right)$
4. A REE is found by matching coefficients (initial guesses are confirmed)

$$
\begin{array}{lll}
N_{\pi, u}=\eta_{\pi, u}, & N_{\pi, v}=\eta_{\pi, v} \\
N_{x, u}=\eta_{x, u}, & N_{x, v}=\eta_{x, v}
\end{array}
$$

Equilibrium Solution

Finding the MSV by Method of Undetermined Coefficients (MUC)

- Once we have solved for $\hat{\pi}_{t}$ and \hat{x}_{t}, we can find all remaining quantities using (linear) equilibrium conditions

Expected Output Gap : $E_{t} \hat{x}_{t+1}=\eta_{x, u} \rho_{u} \hat{u}_{t}+\eta_{x, v} \rho_{v} \hat{v}_{t}$ Expected Inflation : $E_{t} \hat{\pi}_{t+1}=\eta_{\pi, u} \rho_{u} \hat{u}_{t}+\eta_{\pi, v} \rho_{v} \hat{v}_{t}$
Output and Consumption : $\hat{y}_{t}=\hat{c}_{t}=\hat{x}_{t}+\hat{y}_{t}^{F}$,
Employment : $\hat{h}_{t}=\hat{y}_{t}-\hat{z}_{t}$
Nominal Rate : $\hat{r}_{t}=\widehat{r r}_{t}^{n}+\phi_{\pi} \hat{\pi}_{t}+\phi_{x} \hat{x}_{t}+\hat{v}_{t}$
Real Rate : $\hat{r}_{t}-E_{t} \hat{\pi}_{t+1}$

Equilibrium Solution

Analytical Solution

- This procedure is conceptually easy, but algebraically tedious

Equilibrium Solution

Analytical Solution

- This procedure is conceptually easy, but algebraically tedious
- Usually Matlab (most popular computation software used in macro these days) solves it in a split of a second

Equilibrium Solution

Analytical Solution

- This procedure is conceptually easy, but algebraically tedious
- Usually Matlab (most popular computation software used in macro these days) solves it in a split of a second
- Nevertheless, for this "simple" baseline model, it is instructive to inspect the analytical solution. For simplicity, I set $\phi_{x}=0$

Equilibrium Solution

Analytical Solution

- This procedure is conceptually easy, but algebraically tedious
- Usually Matlab (most popular computation software used in macro these days) solves it in a split of a second
- Nevertheless, for this "simple" baseline model, it is instructive to inspect the analytical solution. For simplicity, I set $\phi_{x}=0$
- The provided Excel file allows to study how the solution changes when we change the parameterization of the model, e.g. changes in price stickiness θ, IES δ, labor elasticity parameter χ, etc. More on parameterization below.

Equilibrium Solution

Analytical Solution

- This procedure is conceptually easy, but algebraically tedious
- Usually Matlab (most popular computation software used in macro these days) solves it in a split of a second
- Nevertheless, for this "simple" baseline model, it is instructive to inspect the analytical solution. For simplicity, I set $\phi_{x}=0$
- The provided Excel file allows to study how the solution changes when we change the parameterization of the model, e.g. changes in price stickiness θ, IES δ, labor elasticity parameter χ, etc. More on parameterization below.
- Usually, we perturb the model with one shock at a time Ex: we feed in a cost-push shock \hat{u}_{t}, but shut down the policy shock $\hat{v}_{t}=0$ (and viceversa)

Cost Push Shock

Analytical Solution

- Recall that $\hat{\pi}_{t}=\eta_{\pi, u} \hat{u}_{t}, \hat{x}_{t}=\eta_{x, u} \hat{u}_{t}$. Simple algebra yields

$$
\begin{aligned}
\eta_{\pi, u} & =\frac{1-\rho_{u}}{\left(1-\rho_{u}\right)\left(1-\beta \rho_{u}\right)+\kappa_{x} \delta\left(\phi_{\pi}-\rho_{u}\right)}>0 \\
\eta_{x, u} & =-\frac{\delta\left(\phi_{\pi}-\rho_{u}\right)}{\left(1-\rho_{u}\right)\left(1-\beta \rho_{u}\right)+\kappa_{x} \delta\left(\phi_{\pi}-\rho_{u}\right)}<0
\end{aligned}
$$

Cost Push Shock

Analytical Solution

- Recall that $\hat{\pi}_{t}=\eta_{\pi, u} \hat{u}_{t}, \hat{x}_{t}=\eta_{x, u} \hat{u}_{t}$. Simple algebra yields

$$
\begin{aligned}
\eta_{\pi, u} & =\frac{1-\rho_{u}}{\left(1-\rho_{u}\right)\left(1-\beta \rho_{u}\right)+\kappa_{x} \delta\left(\phi_{\pi}-\rho_{u}\right)}>0 \\
\eta_{x, u} & =-\frac{\delta\left(\phi_{\pi}-\rho_{u}\right)}{\left(1-\rho_{u}\right)\left(1-\beta \rho_{u}\right)+\kappa_{x} \delta\left(\phi_{\pi}-\rho_{u}\right)}<0
\end{aligned}
$$

- Key takeaways (related to ongoing real world events)

Cost Push Shock

Analytical Solution

- Recall that $\hat{\pi}_{t}=\eta_{\pi, u} \hat{u}_{t}, \hat{x}_{t}=\eta_{x, u} \hat{u}_{t}$. Simple algebra yields

$$
\begin{aligned}
\eta_{\pi, u} & =\frac{1-\rho_{u}}{\left(1-\rho_{u}\right)\left(1-\beta \rho_{u}\right)+\kappa_{x} \delta\left(\phi_{\pi}-\rho_{u}\right)}>0 \\
\eta_{x, u} & =-\frac{\delta\left(\phi_{\pi}-\rho_{u}\right)}{\left(1-\rho_{u}\right)\left(1-\beta \rho_{u}\right)+\kappa_{x} \delta\left(\phi_{\pi}-\rho_{u}\right)}<0
\end{aligned}
$$

- Key takeaways (related to ongoing real world events)

1. a positive cost push shock raises inflation but lowers the output gap Ex: gas price shock can generate stagflation (inflation + stagnation) INTUITION: as inflation increases, the CB hikes the interest rate (by Taylor rule)
\Longrightarrow a higher interest rate has a negative impact on real activity

Cost Push Shock

Analytical Solution

2. Should the central bank be "more hawkish", i.e. larger ϕ_{π} ? Harsh trade-off!

$$
\frac{\partial\left|\eta_{\pi, u}\right|}{\partial \phi_{\pi}}<0, \quad \text { and } \quad \frac{\partial\left|\eta_{x, u}\right|}{\partial \phi_{\pi}}>0
$$

Raising the nominal rate more aggressively tames the pressure on inflation, but leads to a worse recession
INTUITION: for given increase in inflation, a larger ϕ_{π} means a more contractionary MP

Cost Push Shock

Analytical Solution

2. Should the central bank be "more hawkish", i.e. larger ϕ_{π} ? Harsh trade-off!

$$
\frac{\partial\left|\eta_{\pi, u}\right|}{\partial \phi_{\pi}}<0, \quad \text { and } \quad \frac{\partial\left|\eta_{x, u}\right|}{\partial \phi_{\pi}}>0
$$

Raising the nominal rate more aggressively tames the pressure on inflation, but leads to a worse recession
INTUITION: for given increase in inflation, a larger ϕ_{π} means a more contractionary MP

- this creates a larger output gap drop via AD curve (worse recession)

Cost Push Shock

Analytical Solution

2. Should the central bank be "more hawkish", i.e. larger ϕ_{π} ? Harsh trade-off!

$$
\frac{\partial\left|\eta_{\pi, u}\right|}{\partial \phi_{\pi}}<0, \quad \text { and } \quad \frac{\partial\left|\eta_{x, u}\right|}{\partial \phi_{\pi}}>0
$$

Raising the nominal rate more aggressively tames the pressure on inflation, but leads to a worse recession
INTUITION: for given increase in inflation, a larger ϕ_{π} means a more contractionary MP

- this creates a larger output gap drop via AD curve (worse recession)
- as real activity declines, so does demand faced by firms, and hence their demand for workers

Cost Push Shock

Analytical Solution

2. Should the central bank be "more hawkish", i.e. larger ϕ_{π} ? Harsh trade-off!

$$
\frac{\partial\left|\eta_{\pi, u}\right|}{\partial \phi_{\pi}}<0, \quad \text { and } \quad \frac{\partial\left|\eta_{x, u}\right|}{\partial \phi_{\pi}}>0
$$

Raising the nominal rate more aggressively tames the pressure on inflation, but leads to a worse recession
INTUITION: for given increase in inflation, a larger ϕ_{π} means a more contractionary MP

- this creates a larger output gap drop via AD curve (worse recession)
- as real activity declines, so does demand faced by firms, and hence their demand for workers
- this policy-driven decline in wages counteracts the initial cost push shock via AS curve: inflation increases by less!

Cost Push Shock

Analytical Solution

3. Higher price stickiness makes both $\hat{\pi}_{t}$ and \hat{x}_{t} respond more to the shock

$$
\frac{\partial\left|\eta_{\pi, u}\right|}{\partial \theta}=\frac{\partial\left|\eta_{\pi, u}\right|}{\partial \kappa_{x}} \frac{\partial \kappa_{x}}{\partial \underline{\theta}}>0, \quad \text { and } \quad \frac{\partial\left|\eta_{x, u}\right|}{\partial \theta}=\frac{\partial\left|\eta_{x, u}\right|}{\partial \kappa_{x}} \frac{\partial \kappa_{x}}{\partial \underline{-}}>0
$$

NOTE: $\lim _{\theta \rightarrow 0} \eta_{\pi, u}=\lim _{\theta \rightarrow 0} \eta_{x, u}=0$
\Longrightarrow Under flexible prices all that matters is TFP!

Quantitative Analysis

Calibration/Parameterization of NK Model

- A quantitative assessment requires numerical values for structural parameters

Quantitative Analysis

Calibration/Parameterization of NK Model

- A quantitative assessment requires numerical values for structural parameters
- Calibration: we assign values so that the model matches

Quantitative Analysis

Calibration/Parameterization of NK Model

- A quantitative assessment requires numerical values for structural parameters
- Calibration: we assign values so that the model matches
(1) some long-run trends in data (model's steady state values $=$ long-run averages in data)

Quantitative Analysis

Calibration/Parameterization of NK Model

- A quantitative assessment requires numerical values for structural parameters
- Calibration: we assign values so that the model matches
(1) some long-run trends in data (model's steady state values $=$ long-run averages in data)
(2) micro evidence for parameters that we cannot infer from the steady state

Quantitative Analysis

Calibration/Parameterization of NK Model

- A quantitative assessment requires numerical values for structural parameters
- Calibration: we assign values so that the model matches
(1) some long-run trends in data (model's steady state values $=$ long-run averages in data)
(2) micro evidence for parameters that we cannot infer from the steady state
- INTUITION FOR CALIBRATION

Quantitative Analysis

Calibration/Parameterization of NK Model

- A quantitative assessment requires numerical values for structural parameters
- Calibration: we assign values so that the model matches
(1) some long-run trends in data (model's steady state values $=$ long-run averages in data)
(2) micro evidence for parameters that we cannot infer from the steady state
- INTUITION FOR CALIBRATION
- we want the model to fit perfectly long-run averages/trends

Quantitative Analysis

Calibration/Parameterization of NK Model

- A quantitative assessment requires numerical values for structural parameters
- Calibration: we assign values so that the model matches
(1) some long-run trends in data (model's steady state values $=$ long-run averages in data)
(2) micro evidence for parameters that we cannot infer from the steady state
- INTUITION FOR CALIBRATION
- we want the model to fit perfectly long-run averages/trends
- we want to assess how much it can explain of empirical fluctuations around those averages/trends (at quarterly frequency)

Quantitative Analysis

Calibration/Parameterization of NK Model

- A quantitative assessment requires numerical values for structural parameters
- Calibration: we assign values so that the model matches
(1) some long-run trends in data (model's steady state values $=$ long-run averages in data)
(2) micro evidence for parameters that we cannot infer from the steady state
- INTUITION FOR CALIBRATION
- we want the model to fit perfectly long-run averages/trends
- we want to assess how much it can explain of empirical fluctuations around those averages/trends (at quarterly frequency)
- no econometric estimation!

Quantitative Analysis

Key Parameters

- These are the key parameters and baseline values used in literature

$$
\begin{array}{rlrl}
\beta & =0.99 \Longrightarrow & \text { steady state real interest rate } \approx 4 \% \\
\chi & =1 \Longrightarrow & \text { labor elasticity to wage } 1 / \chi=1 \\
\theta & =2 / 3 \Longrightarrow & \begin{array}{l}
\text { avg. price duration } 1 /(1-\theta)=3 \text { qrts } \\
\\
\epsilon
\end{array}=8 \Longrightarrow \quad \begin{array}{l}
\text { price markup } \mu=\frac{\epsilon}{\epsilon-1}=1.14
\end{array} \\
\sigma & =1 \Longrightarrow \quad \begin{array}{l}
\text { risk aversion }=1
\end{array} \\
\rho_{z} & =0.9 \quad \rho_{v}=0.5 \quad \rho_{u}=0.8
\end{array}
$$

Quantitative Analysis

Impulse Responses to 1\% Cost-Push Shock

Interest Rate Shock

Analytical Solution

- Recall that $\hat{\pi}_{t}=\eta_{\pi, v} \hat{v}_{t}$ and $\hat{x}_{t}=\eta_{x, v} \hat{v}_{t}$. Simple algebra yields

$$
\begin{aligned}
\eta_{\pi, v} & =-\frac{\delta \kappa_{x}}{\left(1-\rho_{v}\right)\left(1-\beta \rho_{v}\right)+\kappa_{x} \delta\left(\phi_{\pi}-\rho_{v}\right)}<0 \\
\eta_{x, v} & =-\frac{\delta\left(1-\beta \rho_{v}\right)}{\left(1-\rho_{v}\right)\left(1-\beta \rho_{v}\right)+\kappa_{x} \delta\left(\phi_{\pi}-\rho_{v}\right)}<0
\end{aligned}
$$

Interest Rate Shock

Analytical Solution

- Recall that $\hat{\pi}_{t}=\eta_{\pi, v} \hat{v}_{t}$ and $\hat{x}_{t}=\eta_{x, v} \hat{v}_{t}$. Simple algebra yields

$$
\begin{aligned}
\eta_{\pi, v} & =-\frac{\delta \kappa_{x}}{\left(1-\rho_{v}\right)\left(1-\beta \rho_{v}\right)+\kappa_{x} \delta\left(\phi_{\pi}-\rho_{v}\right)}<0 \\
\eta_{x, v} & =-\frac{\delta\left(1-\beta \rho_{v}\right)}{\left(1-\rho_{v}\right)\left(1-\beta \rho_{v}\right)+\kappa_{x} \delta\left(\phi_{\pi}-\rho_{v}\right)}<0
\end{aligned}
$$

- Key takeaways

Interest Rate Shock

Analytical Solution

- Recall that $\hat{\pi}_{t}=\eta_{\pi, v} \hat{v}_{t}$ and $\hat{x}_{t}=\eta_{x, v} \hat{v}_{t}$. Simple algebra yields

$$
\begin{aligned}
\eta_{\pi, v} & =-\frac{\delta \kappa_{x}}{\left(1-\rho_{v}\right)\left(1-\beta \rho_{v}\right)+\kappa_{x} \delta\left(\phi_{\pi}-\rho_{v}\right)}<0 \\
\eta_{x, v} & =-\frac{\delta\left(1-\beta \rho_{v}\right)}{\left(1-\rho_{v}\right)\left(1-\beta \rho_{v}\right)+\kappa_{x} \delta\left(\phi_{\pi}-\rho_{v}\right)}<0
\end{aligned}
$$

- Key takeaways

1. a positive interest rate shock (contractionary MP shock) lowers both inflation and the output gap
INTUITION: a contractionary MP, $\hat{v}_{t}>0$, affects negatively real activity via AD curve
\Longrightarrow Lower activity brings down goods demand by consumers, and then labor demand by firms
\Longrightarrow This drags down wages, which, in turn lead to lower inflation via
AS curve

Interest Rate Shock

Analytical Solution

2. Higher price stickiness has opposite effects on $\eta_{\pi, v}$ and $\eta_{x, v}$

$$
\frac{\partial\left|\eta_{\pi, v}\right|}{\partial \theta}=\frac{\partial\left|\eta_{\pi, v}\right|}{\partial \kappa_{x}} \frac{\partial \kappa_{x}}{\partial \theta}<0, \quad \text { and } \quad \frac{\partial\left|\eta_{x, v}\right|}{\partial \theta}=\frac{\partial\left|\eta_{x, v}\right|}{\partial \kappa_{x}} \frac{\partial \kappa_{x}}{\partial \theta}>0
$$

INTUITION: contractionary MP, $\hat{v}_{t}>0$, makes households less willing to buy goods from firms
\Longrightarrow If prices were fully flexible, "best way" for firms to deal with lower demand would be to cut prices
\Longrightarrow If they are rigid, this is harder: firms will then go for a larger cut in production

Interest Rate Shock

Analytical Solution

2. Higher price stickiness has opposite effects on $\eta_{\pi, v}$ and $\eta_{x, v}$

$$
\frac{\partial\left|\eta_{\pi, v}\right|}{\partial \theta}=\frac{\partial\left|\eta_{\pi, v}\right|}{\partial \kappa_{x}} \frac{\partial \kappa_{x}}{\partial \theta}<0, \quad \text { and } \quad \frac{\partial\left|\eta_{x, v}\right|}{\partial \theta}=\frac{\partial\left|\eta_{x, v}\right|}{\partial \kappa_{x}} \frac{\partial \kappa_{x}}{\partial \theta}>0
$$

INTUITION: contractionary MP, $\hat{v}_{t}>0$, makes households less willing to buy goods from firms
\Longrightarrow If prices were fully flexible, "best way" for firms to deal with lower demand would be to cut prices \Longrightarrow If they are rigid, this is harder: firms will then go for a larger cut in production
3. Response of output \hat{y}_{t} is identical to output gap (since latter just driven by TFP)

Quantitative Analysis

Impulse Responses to 1\% Policy Shock

TFP Shock

Solving the Model under Taylor Rule II (TR2)

- To assess the transmission of shocks to TFP, \hat{z}_{t}, we assume the Fed adopts TR2

$$
\begin{equation*}
\hat{r}_{t}=\phi_{\pi} \hat{\pi}_{t}+\hat{v}_{t} \tag{54}
\end{equation*}
$$

TFP Shock

Solving the Model under Taylor Rule II (TR2)

- To assess the transmission of shocks to TFP, \hat{z}_{t}, we assume the Fed adopts TR2

$$
\begin{equation*}
\hat{r}_{t}=\phi_{\pi} \hat{\pi}_{t}+\hat{v}_{t} \tag{54}
\end{equation*}
$$

- Plugging the latter into our system:

$$
\begin{align*}
\hat{x}_{t} & =E_{t} \hat{x}_{t+1}-\delta\left(\phi_{\pi} \hat{\pi}_{t}+\hat{v}_{t}-E_{t} \hat{\pi}_{t+1}-\widehat{r r}_{t}^{n}\right) \tag{55}\\
\hat{\pi}_{t} & =\beta E_{t} \hat{\pi}_{t+1}+\kappa_{x} \hat{x}_{t}+\hat{u}_{t} \tag{56}
\end{align*}
$$

TFP Shock

Solving the Model under Taylor Rule II (TR2)

- To assess the transmission of shocks to TFP, \hat{z}_{t}, we assume the Fed adopts TR2

$$
\begin{equation*}
\hat{r}_{t}=\phi_{\pi} \hat{\pi}_{t}+\hat{v}_{t} \tag{54}
\end{equation*}
$$

- Plugging the latter into our system:

$$
\begin{align*}
\hat{x}_{t} & =E_{t} \hat{x}_{t+1}-\delta\left(\phi_{\pi} \hat{\pi}_{t}+\hat{v}_{t}-E_{t} \hat{\pi}_{t+1}-\widehat{r r}_{t}^{n}\right) \tag{55}\\
\hat{\pi}_{t} & =\beta E_{t} \hat{\pi}_{t+1}+\kappa_{x} \hat{x}_{t}+\hat{u}_{t} \tag{56}
\end{align*}
$$

- TFP matters since the natural rate $\widehat{r r}_{t}^{n}$ responds negatively to \hat{z}_{t} (see eq. (39))

TFP Shock

Solving the Model under Taylor Rule II (TR2)

- To assess the transmission of shocks to TFP, \hat{z}_{t}, we assume the Fed adopts TR2

$$
\begin{equation*}
\hat{r}_{t}=\phi_{\pi} \hat{\pi}_{t}+\hat{v}_{t} \tag{54}
\end{equation*}
$$

- Plugging the latter into our system:

$$
\begin{align*}
\hat{x}_{t} & =E_{t} \hat{x}_{t+1}-\delta\left(\phi_{\pi} \hat{\pi}_{t}+\hat{v}_{t}-E_{t} \hat{\pi}_{t+1}-\widehat{r r}_{t}^{n}\right) \tag{55}\\
\hat{\pi}_{t} & =\beta E_{t} \hat{\pi}_{t+1}+\kappa_{x} \hat{x}_{t}+\hat{u}_{t} \tag{56}
\end{align*}
$$

- TFP matters since the natural rate $\widehat{r r}_{t}^{n}$ responds negatively to \hat{z}_{t} (see eq. (39))
- In this case, the equilibrium solution is

$$
\begin{align*}
\hat{\pi}_{t} & =\eta_{\pi, u} \hat{u}_{t}+\eta_{\pi, v} \hat{v}_{t}+\eta_{\pi, z} \hat{z}_{t} \tag{57}\\
\hat{x}_{t} & =\eta_{x, u} \hat{u}_{t}+\eta_{x, v} \hat{v}_{t}+\eta_{x, z} \hat{z}_{t} \tag{58}
\end{align*}
$$

TFP Shock

- To assess the transmission of shocks to TFP, \hat{z}_{t}, we assume the Fed adopts TR2

$$
\begin{equation*}
\hat{r}_{t}=\phi_{\pi} \hat{\pi}_{t}+\hat{v}_{t} \tag{54}
\end{equation*}
$$

- Plugging the latter into our system:

$$
\begin{align*}
\hat{x}_{t} & =E_{t} \hat{x}_{t+1}-\delta\left(\phi_{\pi} \hat{\pi}_{t}+\hat{v}_{t}-E_{t} \hat{\pi}_{t+1}-\widehat{r r}_{t}^{n}\right) \tag{55}\\
\hat{\pi}_{t} & =\beta E_{t} \hat{\pi}_{t+1}+\kappa_{x} \hat{x}_{t}+\hat{u}_{t} \tag{56}
\end{align*}
$$

- TFP matters since the natural rate $\widehat{r r}_{t}^{n}$ responds negatively to \hat{z}_{t} (see eq. (39))
- In this case, the equilibrium solution is

$$
\begin{align*}
\hat{\pi}_{t} & =\eta_{\pi, u} \hat{u}_{t}+\eta_{\pi, v} \hat{v}_{t}+\eta_{\pi, z} \hat{z}_{t} \tag{57}\\
\hat{x}_{t} & =\eta_{x, u} \hat{u}_{t}+\eta_{x, v} \hat{v}_{t}+\eta_{x, z} \hat{z}_{t} \tag{58}
\end{align*}
$$

- We need to find $\left(\eta_{\pi, z}, \eta_{\pi, z}\right)$

TFP Shock

Analytical Solution

- Following similar logic of cost-push and policy shock, we find

$$
\begin{aligned}
\eta_{\pi, z} & =-\frac{\kappa_{x}\left(1-\rho_{z}\right)}{\left(1-\rho_{z}\right)\left(1-\beta \rho_{z}\right)+\kappa_{x} \delta\left(\phi_{\pi}-\rho_{z}\right)} \frac{1+\chi}{\sigma+\chi}<0 \\
\eta_{x, z} & =-\frac{\left(1-\rho_{z}\right)\left(1-\beta \rho_{z}\right)}{\left(1-\rho_{z}\right)\left(1-\beta \rho_{z}\right)+\kappa_{x} \delta\left(\phi_{\pi}-\rho_{z}\right)} \frac{1+\chi}{\sigma+\chi}<0
\end{aligned}
$$

TFP Shock

Analytical Solution

- Following similar logic of cost-push and policy shock, we find

$$
\begin{aligned}
\eta_{\pi, z} & =-\frac{\kappa_{x}\left(1-\rho_{z}\right)}{\left(1-\rho_{z}\right)\left(1-\beta \rho_{z}\right)+\kappa_{x} \delta\left(\phi_{\pi}-\rho_{z}\right)} \frac{1+\chi}{\sigma+\chi}<0 \\
\eta_{x, z} & =-\frac{\left(1-\rho_{z}\right)\left(1-\beta \rho_{z}\right)}{\left(1-\rho_{z}\right)\left(1-\beta \rho_{z}\right)+\kappa_{x} \delta\left(\phi_{\pi}-\rho_{z}\right)} \frac{1+\chi}{\sigma+\chi}<0
\end{aligned}
$$

- Both inflation and the output gap respond negatively to a TFP shock INTUITION
Inflation: higher TFP \Longrightarrow lower marginal costs \Longrightarrow firms cut prices

TFP Shock

Analytical Solution

- Following similar logic of cost-push and policy shock, we find

$$
\begin{aligned}
\eta_{\pi, z} & =-\frac{\kappa_{x}\left(1-\rho_{z}\right)}{\left(1-\rho_{z}\right)\left(1-\beta \rho_{z}\right)+\kappa_{x} \delta\left(\phi_{\pi}-\rho_{z}\right)} \frac{1+\chi}{\sigma+\chi}<0 \\
\eta_{x, z} & =-\frac{\left(1-\rho_{z}\right)\left(1-\beta \rho_{z}\right)}{\left(1-\rho_{z}\right)\left(1-\beta \rho_{z}\right)+\kappa_{x} \delta\left(\phi_{\pi}-\rho_{z}\right)} \frac{1+\chi}{\sigma+\chi}<0
\end{aligned}
$$

- Both inflation and the output gap respond negatively to a TFP shock INTUITION
Inflation: higher TFP \Longrightarrow lower marginal costs \Longrightarrow firms cut prices
- If we let $\kappa_{x} \rightarrow \infty$ (flex prices, RBC), we will get same coefficients found in frictionless model

$$
\eta_{\pi, z} \rightarrow \frac{1-\rho_{z}}{\delta\left(\phi_{\pi}-\rho_{z}\right)} \frac{1+\chi}{\sigma+\chi} \quad \text { and } \quad \eta_{x, z} \rightarrow 0
$$

TFP Shock

- Since TFP is the main driver of fluctuations in a frictionless RBC model, it is interesting to look at output and hours worked

$$
\begin{aligned}
\hat{y}_{t} & =\underbrace{\hat{x}_{t}}_{\eta_{x, z} \hat{z}_{t}}+\underbrace{\hat{y}_{t}^{F}}_{\eta_{y, z}^{F} \hat{z}_{t}}=\left(\eta_{x, z}+\eta_{y, z}^{F}\right) \hat{z}_{t} \\
& =\underbrace{\hat{z}_{t}}_{\eta_{\eta_{y, z}>0 \text { but less than } \eta_{y, z}^{F}}^{\frac{1+\chi}{\sigma+\chi}} \underbrace{\left(1-\rho_{z}\right)\left(1-\beta \rho_{z}\right)+\kappa_{x} \delta\left(\phi_{\pi}-\rho_{z}\right)}_{<1}}
\end{aligned}
$$

TFP Shock

- Since TFP is the main driver of fluctuations in a frictionless RBC model, it is interesting to look at output and hours worked

$$
\begin{aligned}
\hat{y}_{t} & =\underbrace{\hat{x}_{t}}_{\eta_{x, z} \hat{z}_{t}}+\underbrace{\hat{y}_{t}^{F}}_{\eta_{y, z}^{F} \hat{z}_{t}}=\left(\eta_{x, z}+\eta_{y, z}^{F}\right) \hat{z}_{t} \\
& =\underbrace{\frac{1+\chi}{\sigma+\chi}}_{\eta_{y, z}^{F}} \underbrace{\frac{\kappa_{x} \delta\left(\phi_{\pi}-\rho_{z}\right)}{\left(1-\rho_{z}\right)\left(1-\beta \rho_{z}\right)+\kappa_{x} \delta\left(\phi_{\pi}-\rho_{z}\right)}}_{<1} \hat{z}_{t}
\end{aligned}
$$

- Weaker response to TFP compared to frictionless model: $\eta_{y, z}$ is strictly increasing in κ_{x}

TFP Shock

Comparrison with RBC Model

- Since TFP is the main driver of fluctuations in a frictionless RBC model, it is interesting to look at output and hours worked

$$
\begin{aligned}
\hat{y}_{t} & =\underbrace{\hat{x}_{t}}_{\eta_{x, z} \hat{z}_{t}}+\underbrace{\hat{y}_{t}^{F}}_{\eta_{y, z}^{F} \hat{z}_{t}}=\left(\eta_{x, z}+\eta_{y, z}^{F}\right) \hat{z}_{t} \\
& =\underbrace{\frac{1+\chi}{\sigma+\chi}}_{\eta_{y, z}^{F}} \underbrace{\frac{\kappa_{x} \delta\left(\phi_{\pi}-\rho_{z}\right)}{\left(1-\rho_{z}\right)\left(1-\beta \rho_{z}\right)+\kappa_{x} \delta\left(\phi_{\pi}-\rho_{z}\right)}}_{<1} \hat{z}_{t}
\end{aligned}
$$

- Weaker response to TFP compared to frictionless model: $\eta_{y, z}$ is strictly increasing in κ_{x}
- A positive TFP increases \hat{y}_{t}^{F} more than \hat{y}_{t}, so the output gap drops!

TFP Shock

Comparrison with RBC Model

- For what concerns hours

$$
\begin{aligned}
\hat{h}_{t} & =\hat{y}_{t}-\hat{z}_{t}=\eta_{y, z} \hat{z}_{t}-\hat{z}_{t}=\left(\eta_{y, z}-1\right) \\
& =(\eta_{-, z}+\underbrace{\eta_{y, z}^{F}-1}_{\frac{1-\sigma}{\sigma+\chi}}) \hat{z}_{t}
\end{aligned}
$$

TFP Shock

- For what concerns hours

$$
\begin{aligned}
\hat{h}_{t} & =\hat{y}_{t}-\hat{z}_{t}=\eta_{y, z} \hat{z}_{t}-\hat{z}_{t}=\left(\eta_{y, z}-1\right) \\
& =(\eta_{x, z}+\underbrace{\eta_{y, z}^{F}-1}_{\frac{1-\sigma}{\sigma+x}}) \hat{z}_{t}
\end{aligned}
$$

- With $\sigma=1$ (std calibration), in frictionless model (where $\eta_{x, z}=0$), hours do not respond to TFP

TFP Shock

Comparrison with RBC Model

- For what concerns hours

$$
\begin{aligned}
\hat{h}_{t} & =\hat{y}_{t}-\hat{z}_{t}=\eta_{y, z} \hat{z}_{t}-\hat{z}_{t}=\left(\eta_{y, z}-1\right) \\
& =(\eta_{-, z}+\underbrace{\eta_{y, z}^{F}-1}_{\frac{1-\sigma}{\sigma+\chi}}) \hat{z}_{t}
\end{aligned}
$$

- With $\sigma=1$ (std calibration), in frictionless model (where $\eta_{x, z}=0$), hours do not respond to TFP
- Empirical evidence: hours respond negatively to TFP
\Longrightarrow since $\eta_{x, z}<0$, NK model can fit that!

Comparrison with Frictionless Model

Inflation and Output

- REMARKS

Comparrison with Frictionless Model

Inflation and Output

- REMARKS
(1) no output gap in frictionless model: $\hat{x}_{t}=\hat{y}_{t}-\hat{y}_{t}^{F}=0$

Comparrison with Frictionless Model

Inflation and Output

- REMARKS
(1) no output gap in frictionless model: $\hat{x}_{t}=\hat{y}_{t}-\hat{y}_{t}^{F}=0$
(2) no cost-push shock in frictionless model

Comparrison with Frictionless Model

Inflation and Output

- REMARKS
(1) no output gap in frictionless model: $\hat{x}_{t}=\hat{y}_{t}-\hat{y}_{t}^{F}=0$
(2) no cost-push shock in frictionless model
- Contractionary Policy shock

Comparrison with Frictionless Model

Inflation and Output

- REMARKS
(1) no output gap in frictionless model: $\hat{x}_{t}=\hat{y}_{t}-\hat{y}_{t}^{F}=0$
(2) no cost-push shock in frictionless model
- Contractionary Policy shock
(1) Output

Comparrison with Frictionless Model

Inflation and Output

- REMARKS
(1) no output gap in frictionless model: $\hat{x}_{t}=\hat{y}_{t}-\hat{y}_{t}^{F}=0$
(2) no cost-push shock in frictionless model
- Contractionary Policy shock
(1) Output
(1) Frictionless model: no response

Comparrison with Frictionless Model

Inflation and Output

- REMARKS
(1) no output gap in frictionless model: $\hat{x}_{t}=\hat{y}_{t}-\hat{y}_{t}^{F}=0$
(2) no cost-push shock in frictionless model
- Contractionary Policy shock
(1) Output
(1) Frictionless model: no response
(2) NK model: negative response

Comparrison with Frictionless Model

Inflation and Output

- REMARKS
(1) no output gap in frictionless model: $\hat{x}_{t}=\hat{y}_{t}-\hat{y}_{t}^{F}=0$
(2) no cost-push shock in frictionless model
- Contractionary Policy shock
(1) Output
(1) Frictionless model: no response
(2) NK model: negative response
(2) Inflation: responds negatively in both models (less in NK)

Comparrison with Frictionless Model

Inflation and Output

- REMARKS
(1) no output gap in frictionless model: $\hat{x}_{t}=\hat{y}_{t}-\hat{y}_{t}^{F}=0$
(2) no cost-push shock in frictionless model
- Contractionary Policy shock
(1) Output
(1) Frictionless model: no response
(2) NK model: negative response
(2) Inflation: responds negatively in both models (less in NK)
- Higher TFP

Comparrison with Frictionless Model

Inflation and Output

- REMARKS
(1) no output gap in frictionless model: $\hat{x}_{t}=\hat{y}_{t}-\hat{y}_{t}^{F}=0$
(2) no cost-push shock in frictionless model
- Contractionary Policy shock
(1) Output
(1) Frictionless model: no response
(2) NK model: negative response
(2) Inflation: responds negatively in both models (less in NK)
- Higher TFP
(1) Output: responds positively in both models (less in NK)

Comparrison with Frictionless Model

Inflation and Output

- REMARKS
(1) no output gap in frictionless model: $\hat{x}_{t}=\hat{y}_{t}-\hat{y}_{t}^{F}=0$
(2) no cost-push shock in frictionless model
- Contractionary Policy shock
(1) Output
(1) Frictionless model: no response
(2) NK model: negative response
(2) Inflation: responds negatively in both models (less in NK)
- Higher TFP
(1) Output: responds positively in both models (less in NK)
(2) Inflation: responds negatively in both models (less in NK)

