The New Keynesian Model

Marco Airaudo^a

^aDrexel University

University of Turin Nov. 21-22, 2022

MAIH (Drexel University)

• Vector Autoregression (VAR) evidence shows that *exogenous monetary policy shocks* have significant effects on real variables: output, consumption, employment, etc.

- Vector Autoregression (VAR) evidence shows that *exogenous monetary policy shocks* have significant effects on real variables: output, consumption, employment, etc.
- These shocks are not easy to identify since, as discussed, monetary policy is made of both a *systematic* (Taylor rule response to inflation and output) and *unsystematic* (policy shock) component

- Vector Autoregression (VAR) evidence shows that *exogenous monetary policy shocks* have significant effects on real variables: output, consumption, employment, etc.
- These shocks are not easy to identify since, as discussed, monetary policy is made of both a *systematic* (Taylor rule response to inflation and output) and *unsystematic* (policy shock) component
- Non-monetary RBC model (seen with Prof. Bagliano) and frictionless monetary model (seen with me) clearly not suitable to talk about non-neutrality and a stabilizing role for central banks

- Vector Autoregression (VAR) evidence shows that *exogenous monetary policy shocks* have significant effects on real variables: output, consumption, employment, etc.
- These shocks are not easy to identify since, as discussed, monetary policy is made of both a *systematic* (Taylor rule response to inflation and output) and *unsystematic* (policy shock) component
- Non-monetary RBC model (seen with Prof. Bagliano) and frictionless monetary model (seen with me) clearly not suitable to talk about non-neutrality and a stabilizing role for central banks
- Key source of neutrality: FULL PRICE FLEXIBILITY
 ⇒ inflation fully absorbs the impact of any nominal shock

• Prices of goods and services display sluggish adjustments to both real and nominal shocks

- Prices of goods and services display sluggish adjustments to both real and nominal shocks
- AGGREGATE (MACRO) EVIDENCE

- Prices of goods and services display sluggish adjustments to both real and nominal shocks
- AGGREGATE (MACRO) EVIDENCE
 - in VARs, inflation responds *negatively* but with lags to contractionary MP shock

- Prices of goods and services display sluggish adjustments to both real and nominal shocks
- AGGREGATE (MACRO) EVIDENCE
 - in VARs, inflation responds *negatively* but with lags to contractionary MP shock
- GOOD-SPECIFIC (MICRO) EVIDENCE

- Prices of goods and services display sluggish adjustments to both real and nominal shocks
- AGGREGATE (MACRO) EVIDENCE
 - in VARs, inflation responds *negatively* but with lags to contractionary MP shock
- GOOD-SPECIFIC (MICRO) EVIDENCE
 - estimated median price duration for U.S. goods/services is between 8-11 months (Steinsson-Nakamura, QJE, '08)

- Prices of goods and services display sluggish adjustments to both real and nominal shocks
- AGGREGATE (MACRO) EVIDENCE
 - in VARs, inflation responds *negatively* but with lags to contractionary MP shock
- GOOD-SPECIFIC (MICRO) EVIDENCE
 - estimated median price duration for U.S. goods/services is between 8-11 months (Steinsson-Nakamura, QJE, '08)
 - some sectors more flexible than others (unprocessed food and energy)

- Prices of goods and services display sluggish adjustments to both real and nominal shocks
- AGGREGATE (MACRO) EVIDENCE
 - in VARs, inflation responds *negatively* but with lags to contractionary MP shock
- GOOD-SPECIFIC (MICRO) EVIDENCE
 - estimated median price duration for U.S. goods/services is between 8-11 months (Steinsson-Nakamura, QJE, '08)
 - some sectors more flexible than others (unprocessed food and energy)
 - similar evidence for Euro Area

- Prices of goods and services display sluggish adjustments to both real and nominal shocks
- AGGREGATE (MACRO) EVIDENCE
 - in VARs, inflation responds *negatively* but with lags to contractionary MP shock
- GOOD-SPECIFIC (MICRO) EVIDENCE
 - estimated median price duration for U.S. goods/services is between 8-11 months (Steinsson-Nakamura, QJE, '08)
 - some sectors more flexible than others (unprocessed food and energy)
 - similar evidence for Euro Area
 - similar evidence for nominal wages (avg. duration around 1 year)

Overview VAR (Aggregate) Evidence

Source: Gali's Textbook

MAIH (Drexel University)

NK-DSGE

Nov. 21-22, 2022 4 / 5

Source: Nakamura and Steinsson (Annual Rev. Econ, '13)

	Median		Mean	
	Frequency (% per month)	Implied duration (months)	Frequency (% per month)	Implied duration (months)
Nakamura & Steinsson (2008)				
Regular prices (excluding substitutions 1988–1997)	11.9	7.9	18.9	10.8
Regular prices (excluding substitutions 1998–2005)	9.9	9.6	21.5	11.7
Regular prices (including substitutions 1988–1997)	13.0	7.2	20.7	9.0
Regular prices (including substitutions 1998–2005)	11.8	8.0	23.1	9.3
Posted prices (including substitutions 1998-2005)	20.5	4.4	27.7	7.7
Klenow & Kryvtsov (2008)				
Regular prices (including substitutions 1988–2005)	13.9	7.2	29.9	8.6
Posted prices (including substitutions 1988-2005)	27.3	3.7	36.2	6.8

Table 1 Frequency of price change in consumer prices

э

э

• Household (demand) side identical to the frictionless monetary model

- Household (demand) side identical to the frictionless monetary model
- Key changes are all on the firms (supply) side, split into two sectors: **retail** (final good sector) and **wholesale** (intermediate goods sector)

- Household (demand) side identical to the frictionless monetary model
- Key changes are all on the firms (supply) side, split into two sectors: **retail** (final good sector) and **wholesale** (intermediate goods sector)
- Key elements

- Household (demand) side identical to the frictionless monetary model
- Key changes are all on the firms (supply) side, split into two sectors: retail (final good sector) and wholesale (intermediate goods sector)
- Key elements
 - Wholesale market is *imperfectly competitive* ⇒ firms produce their own differentiated intermediate product, sold to the retail sector
 - \implies market power allows us to model them as *price makers*

- Household (demand) side identical to the frictionless monetary model
- Key changes are all on the firms (supply) side, split into two sectors: retail (final good sector) and wholesale (intermediate goods sector)

• Key elements

Wholesale market is *imperfectly competitive*
 — firms produce their own differentiated intermediate product, sold to the retail sector

 \implies market power allows us to model them as *price makers*

- Though prices are set optimally, wholesale firms cannot adjust them at will due to resource costs (menu costs) or long-term contracts
 - \Longrightarrow aggregate price level will not fully absorb nominal shocks
 - \implies some real quantities will have to adjust (non-neutral effects)

э

- ∢ ≣ →

Image: A match a ma

• Perfectly competitive: a representative firm assembles *imperfectly substitutable* intermediate products to produce a final good

- Perfectly competitive: a representative firm assembles *imperfectly substitutable* intermediate products to produce a final good
- Its technology is a CES function (Dixit-Stiglitz aggregator)

$$Y_{t} = \left[\int_{0}^{1} Y_{t}\left(i\right)^{\frac{\epsilon-1}{\epsilon}} di\right]^{\frac{\epsilon}{\epsilon-1}}$$

- Perfectly competitive: a representative firm assembles *imperfectly substitutable* intermediate products to produce a final good
- Its technology is a CES function (Dixit-Stiglitz aggregator)

$$Y_{t} = \left[\int_{0}^{1} Y_{t}\left(i\right)^{\frac{\epsilon-1}{\epsilon}} di\right]^{\frac{\epsilon}{\epsilon-1}}$$

REMARKS

- Perfectly competitive: a representative firm assembles *imperfectly substitutable* intermediate products to produce a final good
- Its technology is a CES function (Dixit-Stiglitz aggregator)

$$Y_{t} = \left[\int_{0}^{1} Y_{t}\left(i\right)^{\frac{\epsilon-1}{\epsilon}} di\right]^{\frac{\epsilon}{\epsilon-1}}$$

REMARKS

think of this "integral" as the sum of infinite many terms, each corresponding to an intermediate product, indexed by a real number *i*, for *i* ∈ [0, 1]

- Perfectly competitive: a representative firm assembles *imperfectly substitutable* intermediate products to produce a final good
- Its technology is a CES function (Dixit-Stiglitz aggregator)

$$Y_{t} = \left[\int_{0}^{1} Y_{t}\left(i\right)^{\frac{e-1}{e}} di\right]^{\frac{e}{e-1}}$$

REMARKS

- think of this "integral" as the sum of infinite many terms, each corresponding to an intermediate product, indexed by a real number *i*, for *i* ∈ [0, 1]
- **2** $\epsilon > 1$ is the (constant) **elasticity of substitution** (in production) between any two intermediate products, say $Y_t(i)$ and $Y_t(i')$

- Perfectly competitive: a representative firm assembles *imperfectly substitutable* intermediate products to produce a final good
- Its technology is a CES function (Dixit-Stiglitz aggregator)

$$Y_{t} = \left[\int_{0}^{1} Y_{t}\left(i\right)^{\frac{\epsilon-1}{\epsilon}} di\right]^{\frac{\epsilon}{\epsilon-1}}$$

REMARKS

- think of this "integral" as the sum of infinite many terms, each corresponding to an intermediate product, indexed by a real number *i*, for *i* ∈ [0, 1]
- **2** $\epsilon > 1$ is the (constant) **elasticity of substitution** (in production) between any two intermediate products, say $Y_t(i)$ and $Y_t(i')$

9 for
$$\epsilon \to \infty$$
, we have $Y_t = \int_0^{1} Y_t(i) di$ (perfect substitutability)

• The firm chooses intermediate products $Y_t(i)$ to maximize profits

$$\max_{Y_{t}(i), i \in [0,1]} P_{t} \left[\int_{0}^{1} Y_{t}\left(i\right)^{\frac{\epsilon-1}{\epsilon}} di \right]^{\frac{\epsilon}{\epsilon-1}} - \int_{0}^{1} P_{t}\left(i\right) Y_{t}\left(i\right) di \qquad (1)$$

• The firm chooses intermediate products $Y_t(i)$ to maximize profits

$$\max_{Y_{t}(i), i \in [0,1]} P_{t} \left[\int_{0}^{1} Y_{t}\left(i\right)^{\frac{\epsilon-1}{\epsilon}} di \right]^{\frac{\epsilon}{\epsilon-1}} - \int_{0}^{1} P_{t}\left(i\right) Y_{t}\left(i\right) di \qquad (1)$$

• Its solutions gives optimal demand of inputs:

$$Y_t^d(i) \equiv Y_t(i) = \left[\frac{P_t(i)}{P_t}\right]^{-\epsilon} Y_t$$
(2)

A higher relative price $\frac{P_t(i)}{P_t}$ lowers demand for intermediate product $Y_t(i)$ with elasticity ϵ

• The firm chooses intermediate products $Y_t(i)$ to maximize profits

$$\max_{Y_{t}(i), i \in [0,1]} P_{t} \left[\int_{0}^{1} Y_{t}\left(i\right)^{\frac{e-1}{e}} di \right]^{\frac{e}{e-1}} - \int_{0}^{1} P_{t}\left(i\right) Y_{t}\left(i\right) di \qquad (1)$$

• Its solutions gives optimal demand of inputs:

$$Y_t^d(i) \equiv Y_t(i) = \left[\frac{P_t(i)}{P_t}\right]^{-\epsilon} Y_t$$
(2)

A higher relative price $\frac{P_t(i)}{P_t}$ lowers demand for intermediate product $Y_t(i)$ with elasticity ϵ

• A zero profit condition (due to perfect competition) gives:

$$P_{t} = \left[\int_{0}^{1} P_{t}(i)^{1-\epsilon} di\right]^{\frac{1}{1-\epsilon}}$$
(3)

$$Y_t^s(i) \equiv Y_t(i) = Z_t H_t(i) \tag{4}$$

$$Y_t^s(i) \equiv Y_t(i) = Z_t H_t(i)$$
(4)

 Each firm i maximizes profits, facing a downward-sloping demand (by retail sector)

$$\max P_t(i) Y_t(i) - W_t H_t(i)$$
(5)

$$Y_t^s(i) \equiv Y_t(i) = Z_t H_t(i)$$
(4)

 Each firm i maximizes profits, facing a downward-sloping demand (by retail sector)

$$\max P_t(i) Y_t(i) - W_t H_t(i)$$
(5)

subject to technology (4) and demand (2)

 REMARK: labor hired by firms is demand determined (this is in the spirit of J.M. Keynes General Theory)

$$Y_t^s(i) \equiv Y_t(i) = Z_t H_t(i)$$
(4)

 Each firm i maximizes profits, facing a downward-sloping demand (by retail sector)

$$\max P_t(i) Y_t(i) - W_t H_t(i)$$
(5)

- REMARK: labor hired by firms is demand determined (this is in the spirit of J.M. Keynes General Theory)
 - firms sets prices (optimally)

$$Y_t^s(i) \equiv Y_t(i) = Z_t H_t(i)$$
(4)

 Each firm i maximizes profits, facing a downward-sloping demand (by retail sector)

$$\max P_t(i) Y_t(i) - W_t H_t(i)$$
(5)

- REMARK: labor hired by firms is demand determined (this is in the spirit of J.M. Keynes General Theory)
 - firms sets prices (optimally)
 - demand will determine how much they should produce at optimal price

$$Y_t^s(i) \equiv Y_t(i) = Z_t H_t(i)$$
(4)

 Each firm i maximizes profits, facing a downward-sloping demand (by retail sector)

$$\max P_t(i) Y_t(i) - W_t H_t(i)$$
(5)

Image: Image:

- REMARK: labor hired by firms is demand determined (this is in the spirit of J.M. Keynes General Theory)
 - firms sets prices (optimally)
 - demand will determine how much they should produce at optimal price
 - given TFP, technology will determine how much labor to hire
• Substituting $Y_t(i) = \left[\frac{P_t(i)}{P_t}\right]^{-\epsilon} Y_t$ and $H_t(i) = \frac{Y_t(i)}{Z_t} = \left[\frac{P_t(i)}{P_t}\right]^{-\epsilon} \frac{Y_t}{Z_t}$ in profits (5), and taking FOC with respect to $P_t(i)$, gives

• Substituting $Y_t(i) = \left[\frac{P_t(i)}{P_t}\right]^{-\epsilon} Y_t$ and $H_t(i) = \frac{Y_t(i)}{Z_t} = \left[\frac{P_t(i)}{P_t}\right]^{-\epsilon} \frac{Y_t}{Z_t}$ in profits (5), and taking FOC with respect to $P_t(i)$, gives

REMARKS

• Substituting $Y_t(i) = \left[\frac{P_t(i)}{P_t}\right]^{-\epsilon} Y_t$ and $H_t(i) = \frac{Y_t(i)}{Z_t} = \left[\frac{P_t(i)}{P_t}\right]^{-\epsilon} \frac{Y_t}{Z_t}$ in profits (5), and taking FOC with respect to $P_t(i)$, gives

REMARKS

Since all firms face same MC and markup µ, the optimal price is the same across firms: P_t (i) = P_t = µMC_t, for all i

• Substituting $Y_t(i) = \left[\frac{P_t(i)}{P_t}\right]^{-\epsilon} Y_t$ and $H_t(i) = \frac{Y_t(i)}{Z_t} = \left[\frac{P_t(i)}{P_t}\right]^{-\epsilon} \frac{Y_t}{Z_t}$ in profits (5), and taking FOC with respect to $P_t(i)$, gives

REMARKS

Since all firms face same MC and markup µ, the optimal price is the same across firms: P_t (i) = P_t = µMC_t, for all i

② Under flexible prices, real marginal costs are constant: $MC_t^r = \frac{MC_t}{P_t} = \frac{1}{\mu}$

• Substituting $Y_t(i) = \left[\frac{P_t(i)}{P_t}\right]^{-\epsilon} Y_t$ and $H_t(i) = \frac{Y_t(i)}{Z_t} = \left[\frac{P_t(i)}{P_t}\right]^{-\epsilon} \frac{Y_t}{Z_t}$ in profits (5), and taking FOC with respect to $P_t(i)$, gives

REMARKS

Since all firms face same MC and markup µ, the optimal price is the same across firms: P_t (i) = P_t = µMC_t, for all i

2 Under flexible prices, real marginal costs are constant: $MC_t^r = \frac{MC_t}{P_t} = \frac{1}{\mu}$

Sor e→∞, then µ→ 1: optimal price is equal to nominal marginal costs (no market power)

イロト イポト イヨト イヨト 二日

• Substituting $Y_t(i) = \left[\frac{P_t(i)}{P_t}\right]^{-\epsilon} Y_t$ and $H_t(i) = \frac{Y_t(i)}{Z_t} = \left[\frac{P_t(i)}{P_t}\right]^{-\epsilon} \frac{Y_t}{Z_t}$ in profits (5), and taking FOC with respect to $P_t(i)$, gives

REMARKS

Since all firms face same MC and markup µ, the optimal price is the same across firms: P_t (i) = P_t = µMC_t, for all i

2 Under flexible prices, real marginal costs are constant: $MC_t^r = \frac{MC_t}{P_t} = \frac{1}{\mu}$

- Sor e→∞, then µ→ 1: optimal price is equal to nominal marginal costs (no market power)
- If we stopped here, monetary policy would remain neutral since firms are still able to move prices freely

Calvo Pricing

• Most common approach to introduce price rigidities is due to an old paper by Argentinian economist G. Calvo (1983)

Calvo Pricing

- Most common approach to introduce price rigidities is due to an old paper by Argentinian economist G. Calvo (1983)
- Empirical background: in data, firms adjust their prices infrequently (see initial discussion)

Price Stickiness Calvo Pricing

- Most common approach to introduce price rigidities is due to an old paper by Argentinian economist G. Calvo (1983)
- Empirical background: in data, firms adjust their prices infrequently (see initial discussion)
- Modeling device: in every period t, each firm in wholesale can reset (optimally) its price with constant probability 1 − θ, for θ ∈ [0, 1].

Calvo Pricing

- Most common approach to introduce price rigidities is due to an old paper by Argentinian economist G. Calvo (1983)
- Empirical background: in data, firms adjust their prices infrequently (see initial discussion)
- Modeling device: in every period t, each firm in wholesale can reset (optimally) its price with constant probability 1 − θ, for θ ∈ [0, 1].
- By law of large numbers, in every period t, a fraction θ of the continuum of firms in wholesale will NOT be able to reset its price: hence

Expected Avg. Price Duration
$$=\sum_{k=0}^{\infty} heta^k=rac{1}{1- heta}$$
 (7)

Calvo Pricing

- Most common approach to introduce price rigidities is due to an old paper by Argentinian economist G. Calvo (1983)
- Empirical background: in data, firms adjust their prices infrequently (see initial discussion)
- Modeling device: in every period t, each firm in wholesale can reset (optimally) its price with constant probability 1 − θ, for θ ∈ [0, 1].
- By law of large numbers, in every period t, a fraction θ of the continuum of firms in wholesale will NOT be able to reset its price: hence

Expected Avg. Price Duration
$$=\sum_{k=0}^{\infty} \theta^k = rac{1}{1- heta}$$
 (7)

REMARKS

Calvo Pricing

- Most common approach to introduce price rigidities is due to an old paper by Argentinian economist G. Calvo (1983)
- Empirical background: in data, firms adjust their prices infrequently (see initial discussion)
- Modeling device: in every period t, each firm in wholesale can reset (optimally) its price with constant probability 1 − θ, for θ ∈ [0, 1].
- By law of large numbers, in every period t, a fraction θ of the continuum of firms in wholesale will NOT be able to reset its price: hence

Expected Avg. Price Duration
$$=\sum_{k=0}^{\infty} heta^k=rac{1}{1- heta}$$
 (7)

- REMARKS
 - probability of being (or not being) able to reset the price is *history* independent

Calvo Pricing

- Most common approach to introduce price rigidities is due to an old paper by Argentinian economist G. Calvo (1983)
- Empirical background: in data, firms adjust their prices infrequently (see initial discussion)
- Modeling device: in every period t, each firm in wholesale can reset (optimally) its price with constant probability 1 − θ, for θ ∈ [0, 1].
- By law of large numbers, in every period t, a fraction θ of the continuum of firms in wholesale will NOT be able to reset its price: hence

Expected Avg. Price Duration
$$=\sum_{k=0}^{\infty} \theta^k = rac{1}{1- heta}$$
 (7)

- REMARKS
 - probability of being (or not being) able to reset the price is *history* independent
 - 2 newly set price $\tilde{P}_t(i)$ likely not aligned with optimal price $P_t^*(i)$

___ ▶

Price Stickiness Aggregate Price Index

• Recall the aggregate price (a.k.a. Consumer Price Index, CPI)

$$P_{t} = \left[\int_{0}^{1} P_{t}(i)^{1-\epsilon} di\right]^{\frac{1}{1-\epsilon}} \implies P_{t}^{1-\epsilon} = \int_{0}^{1} P_{t}(i)^{1-\epsilon} di \qquad (8)$$

• Recall the aggregate price (a.k.a. Consumer Price Index, CPI)

$$P_{t} = \left[\int_{0}^{1} P_{t}(i)^{1-\epsilon} di\right]^{\frac{1}{1-\epsilon}} \implies P_{t}^{1-\epsilon} = \int_{0}^{1} P_{t}(i)^{1-\epsilon} di \qquad (8)$$

• By Calvo pricing

$$P_{t}^{1-\epsilon} = \underbrace{\int_{0}^{1-\theta} \tilde{P}_{t}(i)^{1-\epsilon} di}_{(1-\theta)\tilde{P}_{t}^{1-\epsilon}} + \int_{1-\theta}^{1} P_{t-1}(i)^{1-\epsilon} di$$
(9)

• Recall the aggregate price (a.k.a. Consumer Price Index, CPI)

$$P_{t} = \left[\int_{0}^{1} P_{t}(i)^{1-\epsilon} di\right]^{\frac{1}{1-\epsilon}} \implies P_{t}^{1-\epsilon} = \int_{0}^{1} P_{t}(i)^{1-\epsilon} di \qquad (8)$$

By Calvo pricing

$$P_{t}^{1-\epsilon} = \underbrace{\int_{0}^{1-\theta} \tilde{P}_{t}(i)^{1-\epsilon} di}_{(1-\theta)\tilde{P}_{t}^{1-\epsilon}} + \int_{1-\theta}^{1} P_{t-1}(i)^{1-\epsilon} di \qquad (9)$$

• Skipping some technical details, CPI evolves as

$$P_t^{1-\epsilon} = (1-\theta) \tilde{P}_t^{1-\epsilon} + \theta P_{t-1}^{1-\epsilon}$$
(10)

Approximate Price Index and Inflation

• **CPI** motion is approximately (with
$$\hat{x}_t = \frac{X_t - \bar{X}}{\bar{X}} \approx \ln \frac{X_t}{\bar{X}}$$
):

$$\hat{p}_t = \theta \hat{p}_{t-1} + (1-\theta) \, \hat{\tilde{p}}_t \tag{11}$$

メロト メポト メヨト

э

Approximate Price Index and Inflation

• **CPI** motion is approximately (with $\hat{x}_t = \frac{X_t - \bar{X}}{\bar{X}} \approx \ln \frac{X_t}{\bar{X}}$):

$$\hat{\rho}_t = heta \hat{
ho}_{t-1} + (1- heta) \, \widehat{ ilde{
ho}}_t$$
 (11)

• Let gross inflation be $\Pi_t \equiv \frac{P_t}{P_{t-1}}$ and assume $\overline{\Pi} = 1$ (zero steady state *net* inflation), we have that

$$\pi_t \equiv \ln \Pi_t = p_t - p_{t-1}, \qquad \bar{\pi} \equiv \ln \bar{\Pi} = 0$$

Approximate Price Index and Inflation

• **CPI** motion is approximately (with $\hat{x}_t = \frac{X_t - \bar{X}}{\bar{X}} \approx \ln \frac{X_t}{\bar{X}}$):

$$\hat{p}_t = heta \hat{p}_{t-1} + (1- heta) \, \widehat{ ilde{p}}_t$$
(11)

• Let gross inflation be $\Pi_t \equiv \frac{P_t}{P_{t-1}}$ and assume $\overline{\Pi} = 1$ (zero steady state *net* inflation), we have that

$$\pi_t \equiv \ln \Pi_t = p_t - p_{t-1}, \qquad \bar{\pi} \equiv \ln \bar{\Pi} = 0$$

Then

$$\hat{\pi}_{t} \equiv \pi_{t} - \bar{\pi} = \underbrace{(p_{t} - \bar{p})}_{\hat{p}_{t}} - \underbrace{(p_{t-1} - \bar{p})}_{\hat{p}_{t-1}}$$
$$= \underbrace{(1 - \theta) \left(\hat{\tilde{p}}_{t} - \hat{p}_{t-1}\right)}_{\text{eq. (11)}}$$
(12)

Approximate Price Index and Inflation

• **CPI** motion is approximately (with $\hat{x}_t = \frac{X_t - \bar{X}}{\bar{X}} \approx \ln \frac{X_t}{\bar{X}}$):

$$\hat{\boldsymbol{p}}_t = \theta \hat{\boldsymbol{p}}_{t-1} + (1-\theta) \, \hat{\boldsymbol{p}}_t \tag{11}$$

• Let gross inflation be $\Pi_t \equiv \frac{P_t}{P_{t-1}}$ and assume $\overline{\Pi} = 1$ (zero steady state *net* inflation), we have that

$$\pi_t \equiv \ln \Pi_t = p_t - p_{t-1}, \qquad \bar{\pi} \equiv \ln \bar{\Pi} = 0$$

Then

$$\hat{\pi}_{t} \equiv \pi_{t} - \bar{\pi} = \underbrace{(p_{t} - \bar{p})}_{\hat{p}_{t}} - \underbrace{(p_{t-1} - \bar{p})}_{\hat{p}_{t-1}}$$
$$= \underbrace{(1 - \theta) \left(\hat{\tilde{p}}_{t} - \hat{p}_{t-1}\right)}_{\text{eq. (11)}}$$
(12)

• Hence, inflation occurs when the newly set price $\hat{\tilde{p}}_t$ is above the average price of the previous period, \hat{p}_{t-1}

MAIH (Drexel University)

• Calvo's original set-up: firm i chooses the **optimal price** $\hat{\tilde{p}}_t\left(i\right)$ to solve

$$\min_{\widehat{p}_{t}(i)} \frac{1}{2} E_{t} \sum_{k=0}^{\infty} \left(\theta\beta\right)^{k} \left[\widehat{p}_{t}\left(i\right) - \hat{p}_{t+k}^{*}\left(i\right)\right]^{2}$$
(13)

that is, it seeks to minimize the discrepancy with the ideal price $\hat{p}_{t+k}^{*}(i) \equiv \ln P_{t+k}^{*}(i)$ (defined in eq. (6)). Note:

• Calvo's original set-up: firm i chooses the **optimal price** $\hat{\tilde{p}}_t\left(i\right)$ to solve

$$\min_{\widehat{p}_{t}(i)} \frac{1}{2} E_{t} \sum_{k=0}^{\infty} \left(\theta\beta\right)^{k} \left[\widehat{p}_{t}\left(i\right) - \hat{p}_{t+k}^{*}\left(i\right)\right]^{2}$$
(13)

that is, it seeks to minimize the discrepancy with the ideal price $\hat{p}_{t+k}^{*}(i) \equiv \ln P_{t+k}^{*}(i)$ (defined in eq. (6)). Note:

• adjustment costs are discounted both by β (patience) and θ (per period probability of being stuck with same price)

• Calvo's original set-up: firm i chooses the **optimal price** $\hat{\tilde{p}}_t\left(i\right)$ to solve

$$\min_{\widehat{p}_{t}(i)} \frac{1}{2} E_{t} \sum_{k=0}^{\infty} \left(\theta\beta\right)^{k} \left[\widehat{p}_{t}\left(i\right) - \hat{p}_{t+k}^{*}\left(i\right)\right]^{2}$$
(13)

that is, it seeks to minimize the discrepancy with the ideal price $\hat{p}_{t+k}^{*}(i) \equiv \ln P_{t+k}^{*}(i)$ (defined in eq. (6)). Note:

- adjustment costs are discounted both by β (patience) and θ (per period probability of being stuck with same price)
- **②** each period t + k is characterized by a different ideal price $\hat{p}_{t+k}^{*}(i)$, since economic conditions are different

• Calvo's original set-up: firm i chooses the **optimal price** $\hat{\tilde{p}}_{t}\left(i\right)$ to solve

$$\min_{\widehat{p}_{t}(i)} \frac{1}{2} E_{t} \sum_{k=0}^{\infty} \left(\theta\beta\right)^{k} \left[\widehat{p}_{t}\left(i\right) - \hat{p}_{t+k}^{*}\left(i\right)\right]^{2}$$
(13)

that is, it seeks to minimize the discrepancy with the ideal price $\hat{p}_{t+k}^{*}(i) \equiv \ln P_{t+k}^{*}(i)$ (defined in eq. (6)). Note:

- adjustment costs are discounted both by β (patience) and θ (per period probability of being stuck with same price)
- **②** each period t + k is characterized by a different ideal price $\hat{p}_{t+k}^{*}(i)$, since economic conditions are different
- FOC of (13) with respect to $\widehat{\tilde{p}}_{t}\left(i
 ight)$ gives

$$E_{t}\sum_{k=0}^{\infty}\left(\theta\beta\right)^{k}\left[\widehat{\tilde{p}}_{t}\left(i\right)-\widehat{p}_{t+k}^{*}\left(i\right)\right]=0$$
(14)

• Working out the summation

$$\widehat{\tilde{p}}_{t}(i) - \hat{p}_{t}^{*}(i) + \theta \beta \left[\widehat{\tilde{p}}_{t}(i) - E_{t} \hat{p}_{t+1}^{*}(i) \right] + \\ + (\theta \beta)^{2} \left[\widehat{\tilde{p}}_{t}(i) - E_{t} \hat{p}_{t+2}^{*}(i) \right] + \dots = 0$$
(15)

æ

3 K K 3 K

Image: A mathematical states and a mathem

• Working out the summation

$$\widehat{\tilde{p}}_{t}(i) - \hat{p}_{t}^{*}(i) + \theta \beta \left[\widehat{\tilde{p}}_{t}(i) - E_{t} \hat{p}_{t+1}^{*}(i) \right] + \\ + (\theta \beta)^{2} \left[\widehat{\tilde{p}}_{t}(i) - E_{t} \hat{p}_{t+2}^{*}(i) \right] + \dots = 0$$
 (15)

$$\bullet \implies$$

$$\widehat{\hat{p}}_{t}(i) \underbrace{\left[1 + \theta\beta + (\theta\beta)^{2} + ..\right]}_{1/(1-\theta\beta) \text{ since } |\theta\beta| < 1}$$

$$= E_{t} \left[\widehat{p}_{t}^{*}(i) + \theta\beta\widehat{p}_{t+1}^{*}(i) + (\theta\beta)^{2}\widehat{p}_{t+2}^{*}(i) + ..\right] \quad (16)$$

Image: A mathematical states and a mathem

æ

3 K K 3 K

• Working out the summation

$$\hat{\tilde{p}}_{t}(i) - \hat{p}_{t}^{*}(i) + \theta \beta \left[\hat{\tilde{p}}_{t}(i) - E_{t} \hat{p}_{t+1}^{*}(i) \right] + \\ + (\theta \beta)^{2} \left[\hat{\tilde{p}}_{t}(i) - E_{t} \hat{p}_{t+2}^{*}(i) \right] + \dots = 0$$
(15)

$$\widehat{\hat{p}}_{t}(i) \underbrace{\left[1 + \theta\beta + (\theta\beta)^{2} + ..\right]}_{1/(1-\theta\beta) \text{ since } |\theta\beta| < 1}$$

$$= E_{t} \left[\hat{p}_{t}^{*}(i) + \theta\beta\hat{p}_{t+1}^{*}(i) + (\theta\beta)^{2}\hat{p}_{t+2}^{*}(i) + ..\right]$$
(16)

• \implies if able to reset, firm's optimal price chosen at t is

$$\widehat{\widetilde{p}}_{t}(i) = (1 - \theta\beta) E_{t} \sum_{k=0}^{\infty} (\theta\beta)^{k} \widehat{p}_{t+k}^{*}(i)$$
(17)

Image: A matrix and a matrix

• Recall that the optimal (flex) price was $P_t^*(i) = P_t^* = \mu M C_t$ (see equation (6))

 \implies in a generic period t + k

$$P^*_{t+k} = \mu M C_{t+k} \qquad \Longrightarrow \qquad \hat{p}^*_{t+k} = \widehat{mc}_{t+k}$$
usual steps

Recall that the optimal (flex) price was P^{*}_t (i) = P^{*}_t = µMC_t (see equation (6))
 ⇒ in a generic period t + k

$$P^*_{t+k} = \mu M C_{t+k} \qquad \Longrightarrow \qquad \hat{p}^*_{t+k} = \widehat{mc}_{t+k}$$

• Hence, the **optimal (sticky) price** is proportional to the expected PDV of future nominal marginal costs

$$\widehat{\tilde{p}}_{t}(i) = \widehat{\tilde{p}}_{t} = (1 - \theta\beta) E_{t} \sum_{k=0}^{\infty} (\theta\beta)^{k} \widehat{mc}_{t+k}$$
(18)

NOTE: if $\theta = 0$, optimal (flex) price would be $\hat{\tilde{p}}_t = \hat{p}_t^* = \widehat{mc}_t$.

• We start by writing the optimal pricing condition (18) recursively:

$$\begin{aligned} \widehat{\widetilde{p}}_{t} &= (1 - \theta\beta) \left[\widehat{mc}_{t} + \theta\beta E_{t} \widehat{mc}_{t+1} + (\theta\beta)^{2} E_{t} \widehat{mc}_{t+2} + .. \right] \\ &= (1 - \theta\beta) \widehat{mc}_{t} + \theta\beta (1 - \theta\beta) \left[E_{t} \widehat{mc}_{t+1} + \theta\beta E_{t} \widehat{mc}_{t+2} + .. \right] \\ &= (1 - \theta\beta) \widehat{mc}_{t} + \theta\beta E_{t} \underbrace{\left[(1 - \theta\beta) E_{t+1} \sum_{k=0}^{\infty} (\theta\beta)^{k} \widehat{mc}_{t+1+k} \right]}_{\widehat{\widetilde{p}}_{t+1}} \end{aligned}$$

• We start by writing the optimal pricing condition (18) recursively:

$$\begin{aligned} \widehat{\widetilde{p}}_{t} &= (1 - \theta\beta) \left[\widehat{mc}_{t} + \theta\beta E_{t} \widehat{mc}_{t+1} + (\theta\beta)^{2} E_{t} \widehat{mc}_{t+2} + .. \right] \\ &= (1 - \theta\beta) \widehat{mc}_{t} + \theta\beta (1 - \theta\beta) \left[E_{t} \widehat{mc}_{t+1} + \theta\beta E_{t} \widehat{mc}_{t+2} + .. \right] \\ &= (1 - \theta\beta) \widehat{mc}_{t} + \theta\beta E_{t} \underbrace{\left[(1 - \theta\beta) E_{t+1} \sum_{k=0}^{\infty} (\theta\beta)^{k} \widehat{mc}_{t+1+k} \right]}_{\widehat{\widetilde{p}}_{t+1}} \end{aligned}$$

• In summary:

$$\widehat{\tilde{p}}_{t} = (1 - \theta\beta)\,\widehat{mc}_{t} + \theta\beta E_{t}\widehat{\tilde{p}}_{t+1}$$
(19)

New Keynesian Phillips Curve The NKPC

• Two additional ingredients

Image: Image:

3

New Keynesian Phillips Curve The NKPC

- Two additional ingredients
 - **1** Define real marginal costs

$$MC_t^r = \frac{MC_t}{P_t} \underset{\text{usual steps}}{\Longrightarrow} \widehat{mc}_t^r = \widehat{mc}_t - \hat{p}_t \Longrightarrow \widehat{mc}_t = \widehat{mc}_t^r + \hat{p}_t \quad (20)$$

New Keynesian Phillips Curve The NKPC

- Two additional ingredients
 - **1** Define **real marginal costs**

$$MC_t^r = \frac{MC_t}{P_t} \underset{\text{usual steps}}{\Longrightarrow} \widehat{mc}_t^r = \widehat{mc}_t - \hat{p}_t \Longrightarrow \widehat{mc}_t = \widehat{mc}_t^r + \hat{p}_t \quad (20)$$

Osing equation (12)

$$\widehat{\hat{p}}_t = \frac{\widehat{\pi}_t}{(1-\theta)} + \widehat{p}_{t-1}$$
(21)

New Keynesian Phillips Curve The NKPC

- Two additional ingredients
 - **1** Define real marginal costs

$$MC_t^r = \frac{MC_t}{P_t} \underset{\text{usual steps}}{\Longrightarrow} \widehat{mc}_t^r = \widehat{mc}_t - \hat{p}_t \Longrightarrow \widehat{mc}_t = \widehat{mc}_t^r + \hat{p}_t \quad (20)$$

2 Using equation (12)
$$\widehat{\widetilde{p}}_t = \frac{\widehat{\pi}_t}{(1-\theta)} + \widehat{p}_{t-1} \tag{21}$$

• Plugging (20)-(21) into (19), simple algebra yields the NKPC

$$\hat{\pi}_{t} = \beta E_{t} \hat{\pi}_{t+1} + \underbrace{\frac{(1-\theta)(1-\theta\beta)}{\theta}}_{\kappa} \widehat{mc}_{t}^{r}$$
(22)
New Keynesian Phillips Curve NKPC: a Closer Look

• Let's look more closely at the NKPC (22)

$$\hat{\pi}_t = \beta E_t \hat{\pi}_{t+1} + \kappa \widehat{mc}_t^r \tag{23}$$

Image: A matrix of the second seco

3 1 4 3 1

3

• Let's look more closely at the NKPC (22)

$$\hat{\pi}_t = \beta E_t \hat{\pi}_{t+1} + \kappa \widehat{mc}_t^r \tag{23}$$

the coefficient on marginal costs, κ, is strictly decreasing in price stickiness θ: ∂π/∂θ < 0
 ⇒ as prices get stickier (longer expected duration), firms respond less to current marginal costs, putting (relatively) more emphasis on expected future inflation

• Let's look more closely at the NKPC (22)

$$\hat{\pi}_t = \beta E_t \hat{\pi}_{t+1} + \kappa \widehat{mc}_t^r \tag{23}$$

the coefficient on marginal costs, κ, is strictly decreasing in price stickiness θ: ∂κ/∂θ < 0 ⇒ as prices get stickier (longer expected duration), firms respond less to current marginal costs, putting (relatively) more emphasis on expected future inflation

iterating forward (23),

$$\hat{\pi}_t = \kappa E_t \sum_{k=0}^{\infty} \beta^k \widehat{mc}_{t+k}^r$$

 \Longrightarrow it is enough to expect marginal cost to increase at some point in the future (even if very far) for inflation to move today

Households

• The household side is identical to what we have seen in the frictionless monetary model

Households

- The household side is identical to what we have seen in the frictionless monetary model
 - a representative households consumes the final good produced by retail, and supplies labor to the wholesale firms

Households

- The household side is identical to what we have seen in the frictionless monetary model
 - a representative households consumes the final good produced by retail, and supplies labor to the wholesale firms
 - he saves through riskless bonds and holds cash for transaction purposes (MIU set-up)

Households

- The household side is identical to what we have seen in the frictionless monetary model
 - a representative households consumes the final good produced by retail, and supplies labor to the wholesale firms
 - he saves through riskless bonds and holds cash for transaction purposes (MIU set-up)
- Letting $W_t^r \equiv \frac{W_t}{P_t}$ be the real wage, his optimal behavior is summarized by the following two relationships

$$\begin{split} \psi H_t^{\chi} &= W_t^r C_t^{-\sigma} \\ C_t^{-\sigma} &= \beta R_t E_t \left[\frac{C_{t+1}^{-\sigma}}{\Pi_{t+1}} \right] \end{split}$$

Households

- The household side is identical to what we have seen in the frictionless monetary model
 - a representative households consumes the final good produced by retail, and supplies labor to the wholesale firms
 - he saves through riskless bonds and holds cash for transaction purposes (MIU set-up)
- Letting $W_t^r \equiv \frac{W_t}{P_t}$ be the real wage, his optimal behavior is summarized by the following two relationships

$$\begin{split} \psi H_t^{\chi} &= W_t^r C_t^{-\sigma} \\ C_t^{-\sigma} &= \beta R_t E_t \left[\frac{C_{t+1}^{-\sigma}}{\Pi_{t+1}} \right] \end{split}$$

Their approximation gives

Labor Supply :
$$\hat{w}_t^r = \chi \hat{h}_t + \sigma \hat{c}_t$$
 (24)
Euler Equation : $\hat{c}_t = E_t \hat{c}_{t+1} - \sigma_{\Box}^{-1} (\hat{r}_{t} - E_t \hat{\pi}_{t+1}) \equiv (25)_{\Box}$

MAIH (Drexel University)

Households

• Recall from firm's problem (see eq. (6)) that

$$MC_t^r = \frac{W_t^r}{Z_t} \implies \widehat{mc}_t^r = \hat{w}_t^r - \hat{z}_t$$
 (26)

Image: Image:

3

Households

• Recall from firm's problem (see eq. (6)) that

$$MC_t^r = rac{W_t^r}{Z_t} \implies \widehat{mc}_t^r = \hat{w}_t^r - \hat{z}_t$$
 (26)

• We use labor supply $\hat{w}_t^r = \chi \hat{h}_t + \sigma \hat{c}_t$ and equilibrium conditions,

$$C_t = Y_t \stackrel{\longrightarrow}{\Longrightarrow} \hat{c}_t = \hat{y}_t$$
, and $Y_t = Z_t H_t \stackrel{\longrightarrow}{\Longrightarrow} \hat{h}_t = \hat{y}_t - \hat{z}_t$

to write real marginal cost (26) as

$$\widehat{\mathit{mc}}_{t}^{r} = \underbrace{\chi \hat{h}_{t} + \sigma \hat{c}_{t}}_{\hat{w}_{t}^{r}} - \hat{z}_{t} = (\chi + \sigma) \, \hat{y}_{t} - (1 + \chi) \, \hat{z}_{t}$$

Households

• Recall from firm's problem (see eq. (6)) that

$$MC_t^r = rac{W_t^r}{Z_t} \implies \widehat{mc}_t^r = \hat{w}_t^r - \hat{z}_t$$
 (26)

• We use labor supply $\hat{w}_t^r = \chi \hat{h}_t + \sigma \hat{c}_t$ and equilibrium conditions,

$$C_t = Y_t \underset{ ext{usual steps}}{\Longrightarrow} \hat{c}_t = \hat{y}_t, \quad ext{and} \quad Y_t = Z_t H_t \underset{ ext{usual steps}}{\Longrightarrow} \hat{h}_t = \hat{y}_t - \hat{z}_t$$

to write real marginal cost (26) as

$$\widehat{\textit{mc}}_{t}^{r} = \underbrace{\chi \hat{h}_{t} + \sigma \hat{c}_{t}}_{\hat{w}_{t}^{r}} - \hat{z}_{t} = (\chi + \sigma) \, \hat{y}_{t} - (1 + \chi) \, \hat{z}_{t}$$

• We plug the latter back into the NKPC (23)

$$\hat{\pi}_{t} = \beta E_{t} \hat{\pi}_{t+1} + \kappa \left(\chi + \sigma \right) \hat{y}_{t} - \kappa \left(1 + \chi \right) \hat{z}_{t}$$
(27)

• If we use $\hat{c}_t = \hat{y}_t$ also in the Euler equation (25), we have the **equilibrium system** describing the dynamics of our economy around the steady state

AD Curve :
$$\hat{y}_t = E_t \hat{y}_{t+1} - \sigma^{-1} \left(\hat{r}_t - E_t \hat{\pi}_{t+1} \right)$$
 (28)

AS Curve :
$$\hat{\pi}_{t} = \beta E_{t} \hat{\pi}_{t+1} + \kappa (\chi + \sigma) \hat{y}_{t} - \kappa (1 + \chi) \hat{z}_{t}$$
 (29)

• If we use $\hat{c}_t = \hat{y}_t$ also in the Euler equation (25), we have the **equilibrium system** describing the dynamics of our economy around the steady state

AD Curve :
$$\hat{y}_t = E_t \hat{y}_{t+1} - \sigma^{-1} \left(\hat{r}_t - E_t \hat{\pi}_{t+1} \right)$$
 (28)

AS Curve : $\hat{\pi}_{t} = \beta E_{t} \hat{\pi}_{t+1} + \kappa (\chi + \sigma) \hat{y}_{t} - \kappa (1 + \chi) \hat{z}_{t}$ (29)

• Let's look at them more closely.

• If we use $\hat{c}_t = \hat{y}_t$ also in the Euler equation (25), we have the **equilibrium system** describing the dynamics of our economy around the steady state

AD Curve :
$$\hat{y}_t = E_t \hat{y}_{t+1} - \sigma^{-1} \left(\hat{r}_t - E_t \hat{\pi}_{t+1} \right)$$
 (28)

AS Curve : $\hat{\pi}_{t} = \beta E_{t} \hat{\pi}_{t+1} + \kappa (\chi + \sigma) \hat{y}_{t} - \kappa (1 + \chi) \hat{z}_{t}$ (29)

- Let's look at them more closely.
- For now, let's take expectations E_tŷ_{t+1} and E_t π̂_{t+1} as given (of course, they are both endogenous...we'll deal with it later)

• AD curve (sometimes called IS)

$$\hat{y}_{t} = E_{t}\hat{y}_{t+1} - \underbrace{\sigma^{-1}}_{\delta}(\hat{r}_{t} - E_{t}\hat{\pi}_{t+1})$$
(30)

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

• AD curve (sometimes called IS)

$$\hat{y}_t = E_t \hat{y}_{t+1} - \underbrace{\sigma^{-1}}_{\delta} (\hat{r}_t - E_t \hat{\pi}_{t+1})$$
 (30)

• ECONOMIC INTUITION

3

3 K K 3 K

Image: A matrix of the second seco

• AD curve (sometimes called IS)

$$\hat{y}_t = E_t \hat{y}_{t+1} - \underbrace{\sigma^{-1}}_{\delta} (\hat{r}_t - E_t \hat{\pi}_{t+1})$$
 (30)

- ECONOMIC INTUITION
 - It defines a negative relationship between current output \hat{y}_t and the real interest rate $\hat{r}_t E_t \hat{\pi}_{t+1}$

AD curve (sometimes called IS)

$$\hat{y}_t = E_t \hat{y}_{t+1} - \underbrace{\sigma^{-1}}_{\delta} (\hat{r}_t - E_t \hat{\pi}_{t+1})$$
 (30)

- It defines a negative relationship between current output \hat{y}_t and the real interest rate $\hat{r}_t E_t \hat{\pi}_{t+1}$
- A higher real rate lowers current activity as households have an incentive to save more (hence consume less)

AD curve (sometimes called IS)

$$\hat{y}_t = E_t \hat{y}_{t+1} - \underbrace{\sigma^{-1}}_{\delta} \left(\hat{r}_t - E_t \hat{\pi}_{t+1} \right) \tag{30}$$

- It defines a negative relationship between current output \hat{y}_t and the real interest rate $\hat{r}_t E_t \hat{\pi}_{t+1}$
- A higher real rate lowers current activity as households have an incentive to save more (hence consume less)
- This is the classic *demand side channel* of monetary policy transmission

AD curve (sometimes called IS)

$$\hat{y}_t = E_t \hat{y}_{t+1} - \underbrace{\sigma^{-1}}_{\delta} (\hat{r}_t - E_t \hat{\pi}_{t+1})$$
 (30)

- It defines a negative relationship between current output \hat{y}_t and the real interest rate $\hat{r}_t E_t \hat{\pi}_{t+1}$
- A higher real rate lowers current activity as households have an incentive to save more (hence consume less)
- This is the classic *demand side channel* of monetary policy transmission
- Strength of this channel depends on the intertemporal elasticity of substitution (IES) δ

• AS curve is

$$\hat{\pi}_{t} = \beta E_{t} \hat{\pi}_{t+1} + \kappa \left(\chi + \sigma \right) \hat{y}_{t} - \kappa \left(1 + \chi \right) \hat{z}_{t}$$
(31)

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

• AS curve is

$$\hat{\pi}_{t} = \beta E_{t} \hat{\pi}_{t+1} + \kappa \left(\chi + \sigma \right) \hat{y}_{t} - \kappa \left(1 + \chi \right) \hat{z}_{t}$$
(31)

ECONOMIC INTUITION

э

Image: Image:

3

AS curve is

$$\hat{\pi}_{t} = \beta E_{t} \hat{\pi}_{t+1} + \kappa \left(\chi + \sigma \right) \hat{y}_{t} - \kappa \left(1 + \chi \right) \hat{z}_{t}$$
(31)

ECONOMIC INTUITION

• It defines a positive relationship between current inflation $\hat{\pi}_t$ and real activity \hat{y}_t , with TFP \hat{z}_t acting as a shifter

AS curve is

$$\hat{\pi}_{t} = \beta E_{t} \hat{\pi}_{t+1} + \kappa \left(\chi + \sigma \right) \hat{y}_{t} - \kappa \left(1 + \chi \right) \hat{z}_{t}$$
(31)

- It defines a positive relationship between current inflation $\hat{\pi}_t$ and real activity \hat{y}_t , with TFP \hat{z}_t acting as a shifter
- Higher output (driven by higher demand by households) requires firms to hire more labor \hat{h}_t

AS curve is

$$\hat{\pi}_{t} = \beta E_{t} \hat{\pi}_{t+1} + \kappa \left(\chi + \sigma \right) \hat{y}_{t} - \kappa \left(1 + \chi \right) \hat{z}_{t}$$
(31)

- It defines a positive relationship between current inflation $\hat{\pi}_t$ and real activity \hat{y}_t , with TFP \hat{z}_t acting as a shifter
- Higher output (driven by higher demand by households) requires firms to hire more labor \hat{h}_t
- Higher labor drives up the real wage (through labor supply equation)

AS curve is

$$\hat{\pi}_{t} = \beta E_{t} \hat{\pi}_{t+1} + \kappa \left(\chi + \sigma \right) \hat{y}_{t} - \kappa \left(1 + \chi \right) \hat{z}_{t}$$
(31)

- It defines a positive relationship between current inflation $\hat{\pi}_t$ and real activity \hat{y}_t , with TFP \hat{z}_t acting as a shifter
- Higher output (driven by higher demand by households) requires firms to hire more labor \hat{h}_t
- Higher labor drives up the real wage (through labor supply equation)
- As marginal costs increase, firms raise prices

AS curve is

$$\hat{\pi}_{t} = \beta E_{t} \hat{\pi}_{t+1} + \kappa \left(\chi + \sigma \right) \hat{y}_{t} - \kappa \left(1 + \chi \right) \hat{z}_{t}$$
(31)

- It defines a positive relationship between current inflation $\hat{\pi}_t$ and real activity \hat{y}_t , with TFP \hat{z}_t acting as a shifter
- Higher output (driven by higher demand by households) requires firms to hire more labor \hat{h}_t
- Higher labor drives up the real wage (through labor supply equation)
- As marginal costs increase, firms raise prices
- Strength of this channel depends on the slope of the Phillips curve κ (higher with more flex prices) and pro-cyclicality of wages $(\chi + \sigma)$ (slope of labor supply)

• AS curve is

$$\hat{\pi}_{t} = \beta E_{t} \hat{\pi}_{t+1} + \kappa \left(\chi + \sigma \right) \hat{y}_{t} - \kappa \left(1 + \chi \right) \hat{z}_{t}$$
(31)

- It defines a positive relationship between current inflation $\hat{\pi}_t$ and real activity \hat{y}_t , with TFP \hat{z}_t acting as a shifter
- Higher output (driven by higher demand by households) requires firms to hire more labor \hat{h}_t
- Higher labor drives up the real wage (through labor supply equation)
- As marginal costs increase, firms raise prices
- Strength of this channel depends on the slope of the Phillips curve κ (higher with more flex prices) and pro-cyclicality of wages $(\chi + \sigma)$ (slope of labor supply)
- REMARK: in the baseline model changes in the *real interest rate* do not have direct impact on the NKPC

Output Gap

• It is useful to re-write system in terms of deviation from the *flexible price* level of output

э

Output Gap

- It is useful to re-write system in terms of deviation from the *flexible price* level of output
- This is identical to the frictionless monetary model (but you can also solve for it here by setting θ = 0):

$$\hat{y}_{t}^{F} = \underbrace{\frac{1+\chi}{\sigma+\chi}}_{\eta_{y,z}^{F}} \hat{z}_{t}$$
(32)

If prices were flexible, output would be just driven by TFP, with

$$\hat{z}_t = \rho_z \hat{z}_{t-1} + \hat{\varepsilon}_t^z \tag{33}$$

Output Gap

- It is useful to re-write system in terms of deviation from the *flexible price* level of output
- This is identical to the frictionless monetary model (but you can also solve for it here by setting θ = 0):

$$\hat{y}_{t}^{F} = \underbrace{\frac{1+\chi}{\sigma+\chi}}_{\eta_{y,z}^{F}} \hat{z}_{t}$$
(32)

If prices were flexible, output would be just driven by TFP, with

$$\hat{z}_t = \rho_z \hat{z}_{t-1} + \hat{\varepsilon}_t^z \tag{33}$$

• Define the output gap:

$$\hat{x}_t \equiv \hat{y}_t - \hat{y}_t^F \implies \hat{y}_t = \hat{x}_t + \hat{y}_t^F$$
 (34)

Equilibrium System The NKPC and the Output Gap

• Plug this into the NKPC

$$\hat{\pi}_{t} = \beta E_{t} \hat{\pi}_{t+1} + \kappa \left(\chi + \sigma \right) \underbrace{\left(\hat{x}_{t} + \hat{y}_{t}^{F} \right)}_{\hat{y}_{t}} - \kappa \left(1 + \chi \right) \hat{z}_{t}$$

$$= \beta E_t \hat{\pi}_{t+1} + \kappa (\chi + \sigma) \hat{x}_t + \kappa (\chi + \sigma) \frac{1 + \chi}{\sigma + \chi} \hat{z} - \kappa (1 + \chi) \hat{z}_t$$

$$= \beta E_t \hat{\pi}_{t+1} + \underbrace{\kappa (\chi + \sigma)}_{\kappa_x} \hat{x}_t$$
(35)

Image: Image:

3

Equilibrium System The NKPC and the Output Gap

• Plug this into the NKPC

$$\begin{aligned} \hat{\pi}_{t} &= \beta E_{t} \hat{\pi}_{t+1} + \kappa \left(\chi + \sigma \right) \underbrace{ \left(\hat{x}_{t} + \hat{y}_{t}^{F} \right)}_{\hat{y}_{t}} - \kappa \left(1 + \chi \right) \hat{z}_{t} \\ &= \beta E_{t} \hat{\pi}_{t+1} + \kappa \left(\chi + \sigma \right) \hat{x}_{t} + \kappa \left(\chi + \sigma \right) \frac{1 + \chi}{\sigma + \chi} \hat{z} - \kappa \left(1 + \chi \right) \hat{z}_{t} \\ &= \beta E_{t} \hat{\pi}_{t+1} + \kappa \left(\chi + \sigma \right) \hat{x}_{t} \end{aligned}$$
(35)

 κ_{x}

• This is a dynamic version (because of $\beta E_t \hat{\pi}_{t+1}$ term) of the original equation Peter C. Phillips estimated on U.S. data to show inverse relationship between inflation and the rate of unemployment

Equilibrium System The NKPC and the Output Gap

• Plug this into the NKPC

$$\hat{\pi}_{t} = \beta E_{t} \hat{\pi}_{t+1} + \kappa \left(\chi + \sigma\right) \underbrace{\left(\hat{x}_{t} + \hat{y}_{t}^{F}\right)}_{\hat{y}_{t}} - \kappa \left(1 + \chi\right) \hat{z}_{t}$$

$$= \beta E_{t} \hat{\pi}_{t+1} + \kappa \left(\chi + \sigma\right) \hat{x}_{t} + \kappa \left(\chi + \sigma\right) \frac{1 + \chi}{\sigma + \chi} \hat{z} - \kappa \left(1 + \chi\right) \hat{z}_{t}$$

$$\beta E_{t} \hat{\pi}_{t+1} + \kappa \left(\chi + \sigma\right) \hat{z}_{t} + \kappa \left(\chi + \sigma\right) \frac{1 + \chi}{\sigma + \chi} \hat{z} - \kappa \left(1 + \chi\right) \hat{z}_{t}$$

$$(25)$$

$$= \beta E_t \hat{\pi}_{t+1} + \underbrace{\kappa(\chi + \sigma)}_{\kappa_x} \hat{x}_t$$
(35)

- This is a dynamic version (because of $\beta E_t \hat{\pi}_{t+1}$ term) of the original equation Peter C. Phillips estimated on U.S. data to show inverse relationship between inflation and the rate of unemployment
- Here the relationship is with the output gap, which is *negatively* related to unemployment (in the data, NOT here since there is no unemployment in the baseline NK model)

Visual Fit of the Phillips Curve

Equilibrium System The AD Curve and the Output Gap

• We can re-write also the AD curve in output gap terms

$$\underbrace{\hat{x}_{t} + \hat{y}_{t}^{F}}_{\hat{y}_{t}} = E_{t} \underbrace{\left(\hat{x}_{t+1} + \hat{y}_{t+1}^{F}\right)}_{\hat{y}_{t+1}} - \delta\left(\hat{r}_{t} - E_{t}\hat{\pi}_{t+1}\right)$$

$$\implies \hat{x}_{t} = E_{t}\hat{x}_{t+1} - \delta\left(\hat{r}_{t} - E_{t}\hat{\pi}_{t+1}\right) + E_{t}\hat{y}_{t+1}^{F} - \hat{y}_{t}^{F} \qquad (36)$$
• We can re-write also the AD curve in output gap terms

$$\underbrace{\hat{x}_{t} + \hat{y}_{t}^{F}}_{\hat{y}_{t}} = E_{t} \underbrace{\left(\hat{x}_{t+1} + \hat{y}_{t+1}^{F}\right)}_{\hat{y}_{t+1}} - \delta\left(\hat{r}_{t} - E_{t}\hat{\pi}_{t+1}\right)$$

$$\implies \hat{x}_{t} = E_{t}\hat{x}_{t+1} - \delta\left(\hat{r}_{t} - E_{t}\hat{\pi}_{t+1}\right) + E_{t}\hat{y}_{t+1}^{F} - \hat{y}_{t}^{F} \qquad (36)$$

• Since
$$\hat{y}_t^F = \eta_{y,z}^F \hat{z}_t$$
 in (32) and $E_t \hat{z}_{t+1} = \rho_z \hat{z}_t$:

$$E_t \hat{y}_{t+1}^F - \hat{y}_t^F = \eta_{y,z} \left(\rho_z - 1 \right) \hat{z}_t \tag{37}$$

• We can re-write also the AD curve in output gap terms

$$\underbrace{\hat{x}_{t} + \hat{y}_{t}^{F}}_{\hat{y}_{t}} = E_{t} \underbrace{\left(\hat{x}_{t+1} + \hat{y}_{t+1}^{F}\right)}_{\hat{y}_{t+1}} - \delta\left(\hat{r}_{t} - E_{t}\hat{\pi}_{t+1}\right)$$

$$\implies \hat{x}_{t} = E_{t}\hat{x}_{t+1} - \delta\left(\hat{r}_{t} - E_{t}\hat{\pi}_{t+1}\right) + E_{t}\hat{y}_{t+1}^{F} - \hat{y}_{t}^{F} \qquad (36)$$

• Since $\hat{y}_t^F = \eta_{y,z}^F \hat{z}_t$ in (32) and $E_t \hat{z}_{t+1} = \rho_z \hat{z}_t$:

$$E_t \hat{y}_{t+1}^F - \hat{y}_t^F = \eta_{y,z} \left(\rho_z - 1 \right) \hat{z}_t \tag{37}$$

• Then (recall $\delta = \sigma^{-1}$)

$$\hat{x}_{t} = E_{t}\hat{x}_{t+1} - \delta\left[\hat{r}_{t} - E_{t}\hat{\pi}_{t+1} - \sigma\eta_{y,z}\left(\rho_{z} - 1\right)\hat{z}_{t}\right]$$
(38)

Define

$$\hat{r}r_t^n \equiv \sigma\eta_{y,z} \left(\rho_z - 1\right) \hat{z}_t \tag{39}$$

This is the so-called **natural real interest rate** we found in the frictionless (flexible price) model NOTE: if there was zero output gap in every period $(\hat{x}_t = E_t \hat{x}_{t+1} = 0)$ the real interest rate would be equal to this

Define

$$\hat{r}r_t^n \equiv \sigma\eta_{y,z} \left(\rho_z - 1\right) \hat{z}_t \tag{39}$$

This is the so-called **natural real interest rate** we found in the frictionless (flexible price) model NOTE: if there was zero output gap in every period $(\hat{x}_t = E_t \hat{x}_{t+1} = 0)$ the real interest rate would be equal to this

Then, the final AD curve is

$$\hat{x}_t = E_t \hat{x}_{t+1} - \delta \left(\hat{r}_t - E_t \hat{\pi}_{t+1} - \hat{r} r_t^n \right)$$
(40)

Cost-Push Shock and Need of Monetary Policy

• Let's summarize what we have

$$\hat{x}_{t} = E_{t}\hat{x}_{t+1} - \delta\left(\hat{r}_{t} - E_{t}\hat{\pi}_{t+1} - \hat{r}_{t}^{n}\right)$$

$$\hat{\pi}_{t} = \beta E_{t}\hat{\pi}_{t+1} + \kappa_{x}\hat{x}_{t} + \hat{u}_{t}$$

$$(41)$$

Image: Image:

-

3

Cost-Push Shock and Need of Monetary Policy

• Let's summarize what we have

$$\hat{x}_t = E_t \hat{x}_{t+1} - \delta \left(\hat{r}_t - E_t \hat{\pi}_{t+1} - \hat{r}_t^n \right)$$
(41)

$$\hat{\pi}_t = \beta E_t \hat{\pi}_{t+1} + \kappa_x \hat{x}_t + \hat{u}_t \tag{42}$$

NOTE: I have added an exogenous cost-push shock û_t to the AS curve

Cost-Push Shock and Need of Monetary Policy

• Let's summarize what we have

$$\hat{\mathbf{x}}_t = E_t \hat{\mathbf{x}}_{t+1} - \delta \left(\hat{\mathbf{r}}_t - E_t \hat{\pi}_{t+1} - \widehat{\mathbf{r}}_t^n \right)$$
(41)

$$\hat{\pi}_t = \beta E_t \hat{\pi}_{t+1} + \kappa_x \hat{x}_t + \hat{u}_t \tag{42}$$

- NOTE: I have added an exogenous cost-push shock û_t to the AS curve
 - \hat{u}_t allows to capture pure supply side shocks. Ex: oil price/energy shocks (relevant today!), mark-up shocks

Cost-Push Shock and Need of Monetary Policy

• Let's summarize what we have

$$\hat{\mathbf{x}}_t = E_t \hat{\mathbf{x}}_{t+1} - \delta \left(\hat{\mathbf{r}}_t - E_t \hat{\pi}_{t+1} - \widehat{\mathbf{r}}_t^n \right)$$
(41)

$$\hat{\pi}_t = \beta E_t \hat{\pi}_{t+1} + \kappa_x \hat{x}_t + \hat{u}_t \tag{42}$$

- NOTE: I have added an exogenous cost-push shock û_t to the AS curve
 - *û*_t allows to capture pure supply side shocks. Ex: oil price/energy shocks (relevant today!), mark-up shocks
 - assume (as for other shocks) that

$$\hat{u}_t = \rho_u \hat{u}_t + \hat{\varepsilon}_t^u, \qquad \hat{\varepsilon}_t^u \sim \operatorname{iid} N\left(0, \sigma_u^2\right), \ 0 \le \rho_u < 1 \qquad (43)$$

Cost-Push Shock and Need of Monetary Policy

• Let's summarize what we have

$$\hat{\mathbf{x}}_t = \mathbf{E}_t \hat{\mathbf{x}}_{t+1} - \delta \left(\hat{\mathbf{r}}_t - \mathbf{E}_t \hat{\pi}_{t+1} - \widehat{\mathbf{r}}_t^n \right)$$
(41)

$$\hat{\pi}_t = \beta E_t \hat{\pi}_{t+1} + \kappa_x \hat{x}_t + \hat{u}_t \tag{42}$$

- NOTE: I have added an exogenous cost-push shock û_t to the AS curve
 - \hat{u}_t allows to capture pure supply side shocks. Ex: oil price/energy shocks (relevant today!), mark-up shocks
 - assume (as for other shocks) that

$$\hat{u}_t = \rho_u \hat{u}_t + \hat{\varepsilon}_t^u, \qquad \hat{\varepsilon}_t^u \sim \operatorname{iid} N\left(0, \sigma_u^2\right), \ 0 \le \rho_u < 1 \qquad (43)$$

The system (41)-(42) includes 2 EXOGENOUS (*r̂r*ⁿ_t and *û*_t) and 3 ENDOGENOUS variables
 ⇒ we need a 3rd equation for monetary policy

Solving the Model with an Instrumental Taylor Rule

• Assume the Fed adopts a Taylor rule

Equilibrium System Solving the Model with an Instrumental Taylor Rule

- Assume the Fed adopts a Taylor rule
- Its specification may differ based on what observable by the Fed

Equilibrium System Solving the Model with an Instrumental Taylor Rule

- Assume the Fed adopts a Taylor rule
- Its specification may differ based on what observable by the Fed
 - Fed observes inflation, the output gap and the natural rate (lots of info!)

Taylor Rule I :
$$\hat{r}_t = \hat{r}_t^n + \phi_\pi \hat{\pi}_t + \phi_x \hat{x}_t + \hat{v}_t$$
 (44)

- Assume the Fed adopts a Taylor rule
- Its specification may differ based on what observable by the Fed
 - Fed observes inflation, the output gap and the natural rate (lots of info!)

Taylor Rule I :
$$\hat{r}_t = \hat{r}_t^n + \phi_\pi \hat{\pi}_t + \phi_x \hat{x}_t + \hat{v}_t$$
 (44)

Ped observes inflation and output only (more realistic)

Taylor Rule II :
$$\hat{r}_t = \phi_\pi \hat{\pi}_t + \phi_x \hat{x}_t + \hat{v}_t$$
 (45)

- Assume the Fed adopts a Taylor rule
- Its specification may differ based on what observable by the Fed
 - Fed observes inflation, the output gap and the natural rate (lots of info!)

Taylor Rule I :
$$\hat{r}_t = \hat{r}_t^n + \phi_\pi \hat{\pi}_t + \phi_x \hat{x}_t + \hat{v}_t$$
 (44)

Ped observes inflation and output only (more realistic)

Taylor Rule II :
$$\hat{r}_t = \phi_\pi \hat{\pi}_t + + \phi_x \hat{x}_t + \hat{v}_t$$
 (45)

• In both cases, we assume $\phi_\pi > 1$ and $\phi_{\scriptscriptstyle X} \ge 0$, with shock \hat{v}_t

$$\hat{v}_t =
ho_v \hat{v}_{t-1} + \hat{\varepsilon}_t^v, \qquad \hat{\varepsilon}_t^v \sim \mathsf{iid} N\left(0, \sigma_v^2\right), \ 0 \le
ho_v < 1$$
 (46)

capturing either Fed's discretionary decisions (independent from state of the economy) or, simply, policy mistakes

Solving the Model under Taylor Rule I (TR1)

• Fed adopts

$$\hat{r}_t = \hat{r}t_t^n + \phi_\pi \hat{\pi}_t + \phi_x \hat{x}_t + \hat{v}_t$$
(47)

Image: A matrix

- < ∃ →

э

Solving the Model under Taylor Rule I (TR1)

Fed adopts

$$\hat{r}_t = \hat{r}\hat{r}_t^n + \phi_\pi \hat{\pi}_t + \phi_x \hat{x}_t + \hat{v}_t$$
(47)

• Plugging the policy rule (47) into the system:

$$\hat{x}_{t} = E_{t}\hat{x}_{t+1} - \delta\left(\phi_{\pi}\hat{\pi}_{t} + \phi_{x}\hat{x}_{t} + \hat{v}_{t} - E_{t}\hat{\pi}_{t+1}\right)$$
(48)

$$\hat{\pi}_t = \beta E_t \hat{\pi}_{t+1} + \kappa_x \hat{x}_t + \hat{u}_t \tag{49}$$

REMARK: as \hat{rr}_t^n drops out of the system, this rule fully neutralizes the effects of TFP!

Solving the Model under Taylor Rule I (TR1)

• Fed adopts

$$\hat{r}_t = \hat{r}\hat{r}_t^n + \phi_\pi \hat{\pi}_t + \phi_x \hat{x}_t + \hat{v}_t$$
(47)

• Plugging the policy rule (47) into the system:

$$\hat{x}_{t} = E_{t}\hat{x}_{t+1} - \delta\left(\phi_{\pi}\hat{\pi}_{t} + \phi_{x}\hat{x}_{t} + \hat{v}_{t} - E_{t}\hat{\pi}_{t+1}\right)$$
(48)

$$\hat{\pi}_t = \beta E_t \hat{\pi}_{t+1} + \kappa_x \hat{x}_t + \hat{u}_t \tag{49}$$

REMARK: as \hat{rr}_t^n drops out of the system, this rule fully neutralizes the effects of TFP!

• **PROPOSITION**: if $\phi_{\pi} > 1$ and $\phi_{x} \ge 0$, the system has a unique Rational Expectations Equilibrium where

$$\hat{\pi}_t = \eta_{\pi,u} \hat{u}_t + \eta_{\pi,v} \hat{v}_t \tag{50}$$

$$\hat{x}_t = \eta_{x,u} \hat{u}_t + \eta_{x,v} \hat{v}_t \tag{51}$$

• We want to find expressions for coefficients $(\eta_{\pi,u}, \eta_{\pi,v}, \eta_{x,u}, \eta_{x,v})$

- We want to find expressions for coefficients $(\eta_{\pi,u}, \eta_{\pi,v}, \eta_{x,u}, \eta_{x,v})$
- Underlying assumption: agents in our model (households and firms) know those coefficients (they have full knowledge of how the economy behaves in equilibrium), we do not!

- We want to find expressions for coefficients $(\eta_{\pi,u}, \eta_{\pi,v}, \eta_{x,u}, \eta_{x,v})$
- Underlying assumption: agents in our model (households and firms) know those coefficients (they have full knowledge of how the economy behaves in equilibrium), we do not!
- The MUC is a "guess and verify" process

- We want to find expressions for coefficients $(\eta_{\pi,u}, \eta_{\pi,v}, \eta_{x,u}, \eta_{x,v})$
- Underlying assumption: agents in our model (households and firms) know those coefficients (they have full knowledge of how the economy behaves in equilibrium), we do not!
- The MUC is a "guess and verify" process

1. Given initial guess $(\eta_{\pi,u}, \eta_{\pi,v}, \eta_{x,u}, \eta_{x,v})$ we compute expectations

$$\underbrace{\underbrace{E_t \hat{\pi}_{t+1}}_{\text{entering AD&AS}} = \eta_{\pi,u} \underbrace{\underbrace{E_t \hat{u}_{t+1}}_{\rho_u \hat{u}_t} + \eta_{\pi,v} \underbrace{E_t \hat{v}_{t+1}}_{\rho_v \hat{v}_t}}_{\text{entering AD}} = \eta_{x,u} \underbrace{\underbrace{E_t \hat{u}_{t+1}}_{\rho_u \hat{u}_t} + \eta_{x,v} \underbrace{E_t \hat{v}_{t+1}}_{\rho_v \hat{v}_t}}_{\rho_v \hat{v}_t}$$

- We want to find expressions for coefficients $(\eta_{\pi,u}, \eta_{\pi,v}, \eta_{x,u}, \eta_{x,v})$
- Underlying assumption: agents in our model (households and firms) know those coefficients (they have full knowledge of how the economy behaves in equilibrium), we do not!
- The MUC is a "guess and verify" process
 - 1. Given initial guess $(\eta_{\pi,u}, \eta_{\pi,v}, \eta_{x,u}, \eta_{x,v})$ we compute expectations

$$\underbrace{\underbrace{E_t \hat{\pi}_{t+1}}_{\text{entering AD&AS}} = \eta_{\pi,u} \underbrace{\underbrace{E_t \hat{u}_{t+1}}_{\rho_u \hat{u}_t} + \eta_{\pi,v} \underbrace{E_t \hat{v}_{t+1}}_{\rho_v \hat{v}_t}}_{\text{entering AD}} = \eta_{x,u} \underbrace{\underbrace{E_t \hat{u}_{t+1}}_{\rho_u \hat{u}_t} + \eta_{x,v} \underbrace{E_t \hat{v}_{t+1}}_{\rho_v \hat{v}_t}}_{\rho_v \hat{v}_t}$$

2. Plug them back into system (41)-(42)

3. Solve system for \hat{x}_t and $\hat{\pi}_t$: both will be linear functions of \hat{u}_t and \hat{v}_t

$$\hat{\pi}_t = N_{\pi,u}\hat{u}_t + N_{\pi,v}\hat{v}_t \tag{52}$$

$$\hat{x}_t = N_{x,u}\hat{u}_t + N_{x,v}\hat{v}_t \tag{53}$$

with the N coefficients depending on both structural parameters of the model $(\beta, \sigma, \chi, \kappa, \rho_u, \rho_v)$, policy parameters $(\phi_{\pi}, \phi_{\chi})$ and "guesses" $(\eta_{\pi,u}, \eta_{\pi,v}, \eta_{\chi,u}, \eta_{\chi,v})$

3. Solve system for \hat{x}_t and $\hat{\pi}_t$: both will be linear functions of \hat{u}_t and \hat{v}_t

$$\hat{\pi}_t = N_{\pi,u}\hat{u}_t + N_{\pi,v}\hat{v}_t \tag{52}$$

$$\hat{x}_t = N_{x,u}\hat{u}_t + N_{x,v}\hat{v}_t \tag{53}$$

with the N coefficients depending on both structural parameters of the model $(\beta, \sigma, \chi, \kappa, \rho_u, \rho_v)$, policy parameters (ϕ_{π}, ϕ_x) and "guesses" $(\eta_{\pi,u}, \eta_{\pi,v}, \eta_{x,u}, \eta_{x,v})$

4. À REE is found by matching coefficients (initial guesses are confirmed)

• Once we have solved for $\hat{\pi}_t$ and \hat{x}_t , we can find all remaining quantities using (linear) equilibrium conditions

Expected Output Gap : $E_t \hat{x}_{t+1} = \eta_{x,u} \rho_u \hat{u}_t + \eta_{x,v} \rho_v \hat{v}_t$ Expected Inflation : $E_t \hat{\pi}_{t+1} = \eta_{\pi,u} \rho_u \hat{u}_t + \eta_{\pi,v} \rho_v \hat{v}_t$ Output and Consumption : $\hat{y}_t = \hat{c}_t = \hat{x}_t + \hat{y}_t^F$, Employment : $\hat{h}_t = \hat{y}_t - \hat{z}_t$ Nominal Rate : $\hat{r}_t = \hat{r}r_t^n + \phi_\pi \hat{\pi}_t + \phi_x \hat{x}_t + \hat{v}_t$ Real Rate : $\hat{r}_t - E_t \hat{\pi}_{t+1}$ Analytical Solution

• This procedure is conceptually easy, but algebraically tedious

- This procedure is conceptually easy, but algebraically tedious
- Usually Matlab (most popular computation software used in macro these days) solves it in a split of a second

- This procedure is conceptually easy, but algebraically tedious
- Usually Matlab (most popular computation software used in macro these days) solves it in a split of a second
- Nevertheless, for this "simple" baseline model, it is instructive to inspect the analytical solution. For simplicity, I set $\phi_x = 0$

- This procedure is conceptually easy, but algebraically tedious
- Usually Matlab (most popular computation software used in macro these days) solves it in a split of a second
- Nevertheless, for this "simple" baseline model, it is instructive to inspect the analytical solution. For simplicity, I set $\phi_x = 0$
- The provided Excel file allows to study how the solution changes when we change the parameterization of the model, e.g. changes in price stickiness θ , IES δ , labor elasticity parameter χ , etc. More on parameterization below.

- This procedure is conceptually easy, but algebraically tedious
- Usually Matlab (most popular computation software used in macro these days) solves it in a split of a second
- Nevertheless, for this "simple" baseline model, it is instructive to inspect the analytical solution. For simplicity, I set $\phi_x = 0$
- The provided Excel file allows to study how the solution changes when we change the parameterization of the model, e.g. changes in price stickiness θ , IES δ , labor elasticity parameter χ , etc. More on parameterization below.
- Usually, we perturb the model with one shock at a time Ex: we feed in a cost-push shock \hat{u}_t , but shut down the policy shock $\hat{v}_t = 0$ (and viceversa)

글 > - + 글 >

Cost Push Shock Analytical Solution

• Recall that $\hat{\pi}_t = \eta_{\pi,u} \hat{u}_t$, $\hat{x}_t = \eta_{x,u} \hat{u}_t$. Simple algebra yields

$$\begin{split} \eta_{\pi,u} &= \frac{1 - \rho_u}{(1 - \rho_u) (1 - \beta \rho_u) + \kappa_x \delta (\phi_\pi - \rho_u)} > 0 \\ \eta_{x,u} &= -\frac{\delta (\phi_\pi - \rho_u)}{(1 - \rho_u) (1 - \beta \rho_u) + \kappa_x \delta (\phi_\pi - \rho_u)} < 0 \end{split}$$

3 1 4 3 1

Image: A matrix of the second seco

3

• Recall that $\hat{\pi}_t = \eta_{\pi,u} \hat{u}_t$, $\hat{x}_t = \eta_{x,u} \hat{u}_t$. Simple algebra yields

$$\begin{split} \eta_{\pi,u} &= \frac{1-\rho_u}{\left(1-\rho_u\right)\left(1-\beta\rho_u\right)+\kappa_x\delta\left(\phi_\pi-\rho_u\right)} > 0\\ \eta_{x,u} &= -\frac{\delta\left(\phi_\pi-\rho_u\right)}{\left(1-\rho_u\right)\left(1-\beta\rho_u\right)+\kappa_x\delta\left(\phi_\pi-\rho_u\right)} < 0 \end{split}$$

• Key takeaways (related to ongoing real world events)

• Recall that $\hat{\pi}_t = \eta_{\pi,u} \hat{u}_t$, $\hat{x}_t = \eta_{x,u} \hat{u}_t$. Simple algebra yields

$$\begin{split} \eta_{\pi,u} &= \frac{1-\rho_u}{\left(1-\rho_u\right)\left(1-\beta\rho_u\right)+\kappa_x\delta\left(\phi_\pi-\rho_u\right)} > 0\\ \eta_{x,u} &= -\frac{\delta\left(\phi_\pi-\rho_u\right)}{\left(1-\rho_u\right)\left(1-\beta\rho_u\right)+\kappa_x\delta\left(\phi_\pi-\rho_u\right)} < 0 \end{split}$$

• Key takeaways (related to ongoing real world events)

- a positive cost push shock raises inflation but lowers the output gap Ex: gas price shock can generate stagflation (inflation + stagnation) INTUITION: as inflation increases, the CB hikes the interest rate (by Taylor rule)
 - \implies a higher interest rate has a negative impact on real activity

2. Should the central bank be "more hawkish", i.e. larger ϕ_{π} ? Harsh trade-off!

$$rac{\partial \left| \eta_{\pi,u} \right|}{\partial \phi_{\pi}} < 0, \qquad ext{and} \qquad rac{\partial \left| \eta_{x,u} \right|}{\partial \phi_{\pi}} > 0$$

Raising the nominal rate more aggressively tames the pressure on inflation, but leads to a worse recession

 ${\rm INTUITION}:$ for given increase in inflation, a larger ϕ_{π} means a more contractionary MP

2. Should the central bank be "more hawkish", i.e. larger ϕ_{π} ? Harsh trade-off!

$$rac{\partial \left| \eta_{\pi,u} \right|}{\partial \phi_{\pi}} < 0, \qquad ext{and} \qquad rac{\partial \left| \eta_{x,u} \right|}{\partial \phi_{\pi}} > 0$$

Raising the nominal rate more aggressively tames the pressure on inflation, but leads to a worse recession

 ${\rm INTUITION}:$ for given increase in inflation, a larger ϕ_{π} means a more contractionary MP

• this creates a larger output gap drop via AD curve (worse recession)

2. Should the central bank be "more hawkish", i.e. larger ϕ_{π} ? Harsh trade-off!

$$rac{\partial \left| \eta_{\pi,u} \right|}{\partial \phi_{\pi}} < 0, \qquad ext{and} \qquad rac{\partial \left| \eta_{x,u} \right|}{\partial \phi_{\pi}} > 0$$

Raising the nominal rate more aggressively tames the pressure on inflation, but leads to a worse recession

 $\rm INTUITION:$ for given increase in inflation, a larger ϕ_{π} means a more contractionary MP

- this creates a larger output gap drop via AD curve (worse recession)
- as real activity declines, so does demand faced by firms, and hence their demand for workers
2. Should the central bank be "more hawkish", i.e. larger ϕ_{π} ? Harsh trade-off!

$$rac{\partial \left| \eta_{\pi,u} \right|}{\partial \phi_{\pi}} < 0, \qquad ext{and} \qquad rac{\partial \left| \eta_{x,u} \right|}{\partial \phi_{\pi}} > 0$$

Raising the nominal rate more aggressively tames the pressure on inflation, but leads to a worse recession

 ${\rm INTUITION}:$ for given increase in inflation, a larger ϕ_{π} means a more contractionary MP

- this creates a larger output gap drop via AD curve (worse recession)
- as real activity declines, so does demand faced by firms, and hence their demand for workers
- this policy-driven decline in wages counteracts the initial cost push shock via AS curve: inflation increases by less!

3. Higher price stickiness makes both $\hat{\pi}_t$ and \hat{x}_t respond more to the shock

$$\frac{\partial \left| \eta_{\pi,u} \right|}{\partial \theta} = \frac{\partial \left| \eta_{\pi,u} \right|}{\partial \kappa_{x}} \frac{\partial \kappa_{x}}{\partial \theta} > 0, \quad \text{and} \quad \frac{\partial \left| \eta_{x,u} \right|}{\partial \theta} = \frac{\partial \left| \eta_{x,u} \right|}{\partial \kappa_{x}} \frac{\partial \kappa_{x}}{\partial \theta} > 0$$

NOTE:
$$\lim_{\theta \to 0} \eta_{\pi,u} = \lim_{\theta \to 0} \eta_{x,u} = 0$$

 \implies Under flexible prices all that matters is TFP!

-

• A *quantitative* assessment requires numerical values for structural parameters

- A *quantitative* assessment requires numerical values for structural parameters
- Calibration: we assign values so that the model matches

- A *quantitative* assessment requires numerical values for structural parameters
- Calibration: we assign values so that the model matches
 - some long-run trends in data (model's steady state values = long-run averages in data)

- A *quantitative* assessment requires numerical values for structural parameters
- Calibration: we assign values so that the model matches
 - some long-run trends in data (model's steady state values = long-run averages in data)
 - e micro evidence for parameters that we cannot infer from the steady state

- A *quantitative* assessment requires numerical values for structural parameters
- Calibration: we assign values so that the model matches
 - some long-run trends in data (model's steady state values = long-run averages in data)
 - e micro evidence for parameters that we cannot infer from the steady state
- INTUITION FOR CALIBRATION

- A *quantitative* assessment requires numerical values for structural parameters
- Calibration: we assign values so that the model matches
 - some long-run trends in data (model's steady state values = long-run averages in data)
 - e micro evidence for parameters that we cannot infer from the steady state
- INTUITION FOR CALIBRATION
 - we want the model to fit perfectly long-run averages/trends

- A *quantitative* assessment requires numerical values for structural parameters
- Calibration: we assign values so that the model matches
 - some long-run trends in data (model's steady state values = long-run averages in data)
 - e micro evidence for parameters that we cannot infer from the steady state
- INTUITION FOR CALIBRATION
 - we want the model to fit perfectly long-run averages/trends
 - we want to assess how much it can explain of empirical fluctuations around those averages/trends (at quarterly frequency)

- A *quantitative* assessment requires numerical values for structural parameters
- Calibration: we assign values so that the model matches
 - some long-run trends in data (model's steady state values = long-run averages in data)
 - e micro evidence for parameters that we cannot infer from the steady state
- INTUITION FOR CALIBRATION
 - we want the model to fit perfectly long-run averages/trends
 - we want to assess how much it can explain of empirical fluctuations around those averages/trends (at quarterly frequency)
 - no econometric estimation!

• These are the key parameters and baseline values used in literature

Quantitative Analysis

Impulse Responses to 1% Cost-Push Shock

MAIH (Drexel University)

Interest Rate Shock

Analytical Solution

• Recall that $\hat{\pi}_t = \eta_{\pi,v} \hat{v}_t$ and $\hat{x}_t = \eta_{x,v} \hat{v}_t$. Simple algebra yields

$$\begin{split} \eta_{\pi,v} &= -\frac{\delta\kappa_{x}}{\left(1-\rho_{v}\right)\left(1-\beta\rho_{v}\right)+\kappa_{x}\delta\left(\phi_{\pi}-\rho_{v}\right)} < 0\\ \eta_{x,v} &= -\frac{\delta(1-\beta\rho_{v})}{\left(1-\rho_{v}\right)\left(1-\beta\rho_{v}\right)+\kappa_{x}\delta\left(\phi_{\pi}-\rho_{v}\right)} < 0 \end{split}$$

Interest Rate Shock

Analytical Solution

• Recall that $\hat{\pi}_t = \eta_{\pi,v} \hat{v}_t$ and $\hat{x}_t = \eta_{x,v} \hat{v}_t$. Simple algebra yields

$$\begin{split} \eta_{\pi,v} &= -\frac{\delta\kappa_{x}}{\left(1-\rho_{v}\right)\left(1-\beta\rho_{v}\right)+\kappa_{x}\delta\left(\phi_{\pi}-\rho_{v}\right)} < 0\\ \eta_{x,v} &= -\frac{\delta(1-\beta\rho_{v})}{\left(1-\rho_{v}\right)\left(1-\beta\rho_{v}\right)+\kappa_{x}\delta\left(\phi_{\pi}-\rho_{v}\right)} < 0 \end{split}$$

Key takeaways

Interest Rate Shock

Analytical Solution

• Recall that $\hat{\pi}_t = \eta_{\pi,v} \hat{v}_t$ and $\hat{x}_t = \eta_{x,v} \hat{v}_t$. Simple algebra yields

$$\begin{split} \eta_{\pi,v} &= -\frac{\delta\kappa_{x}}{\left(1-\rho_{v}\right)\left(1-\beta\rho_{v}\right)+\kappa_{x}\delta\left(\phi_{\pi}-\rho_{v}\right)} < 0\\ \eta_{x,v} &= -\frac{\delta\left(1-\beta\rho_{v}\right)}{\left(1-\rho_{v}\right)\left(1-\beta\rho_{v}\right)+\kappa_{x}\delta\left(\phi_{\pi}-\rho_{v}\right)} < 0 \end{split}$$

- Key takeaways
 - a positive interest rate shock (contractionary MP shock) lowers both inflation and the output gap
 INTUITION: a contractionary MP, v̂t > 0, affects negatively real activity via AD curve
 ⇒ Lower activity brings down goods demand by consumers, and then labor demand by firms
 ⇒ This drags down wages, which, in turn lead to lower inflation via AS curve

2. Higher price stickiness has opposite effects on $\eta_{\pi,v}$ and $\eta_{x,v}$

$$\frac{\partial \left| \eta_{\pi,v} \right|}{\partial \theta} = \frac{\partial \left| \eta_{\pi,v} \right|}{\frac{\partial \kappa_{x}}{+}} \frac{\partial \kappa_{x}}{\partial \theta} < 0, \quad \text{and} \quad \frac{\partial \left| \eta_{x,v} \right|}{\partial \theta} = \frac{\partial \left| \eta_{x,v} \right|}{\frac{\partial \kappa_{x}}{-}} \frac{\partial \kappa_{x}}{\partial \theta} > 0$$

INTUITION: contractionary MP, $\hat{v}_t > 0$, makes households less willing to buy goods from firms

 \Longrightarrow If prices were fully flexible, "best way" for firms to deal with lower demand would be to cut prices

 \Longrightarrow If they are rigid, this is harder: firms will then go for a larger cut in production

2. Higher price stickiness has opposite effects on $\eta_{\pi,v}$ and $\eta_{x,v}$

$$\frac{\partial \left| \eta_{\pi,v} \right|}{\partial \theta} = \frac{\partial \left| \eta_{\pi,v} \right|}{\frac{\partial \kappa_{x}}{+}} \frac{\partial \kappa_{x}}{\partial \theta} < 0, \quad \text{and} \quad \frac{\partial \left| \eta_{x,v} \right|}{\partial \theta} = \frac{\partial \left| \eta_{x,v} \right|}{\frac{\partial \kappa_{x}}{-}} \frac{\partial \kappa_{x}}{\partial \theta} > 0$$

INTUITION: contractionary MP, $\hat{v}_t > 0$, makes households less willing to buy goods from firms

 \Longrightarrow If prices were fully flexible, "best way" for firms to deal with lower demand would be to cut prices

 \Longrightarrow If they are rigid, this is harder: firms will then go for a larger cut in production

3. Response of output \hat{y}_t is identical to output gap (since latter just driven by TFP)

Quantitative Analysis

Impulse Responses to 1% Policy Shock

< A

 $\bullet\,$ To assess the transmission of shocks to TFP, $\hat{z}_t,$ we assume the Fed adopts TR2

$$\hat{r}_t = \phi_\pi \hat{\pi}_t + \hat{v}_t \tag{54}$$

• To assess the transmission of shocks to TFP, \hat{z}_t , we assume the Fed adopts TR2

$$\hat{r}_t = \phi_\pi \hat{\pi}_t + \hat{v}_t \tag{54}$$

• Plugging the latter into our system:

$$\hat{x}_{t} = E_{t}\hat{x}_{t+1} - \delta\left(\phi_{\pi}\hat{\pi}_{t} + \hat{v}_{t} - E_{t}\hat{\pi}_{t+1} - \hat{r}r_{t}^{n}\right)$$

$$\hat{\pi}_{t} = \beta E_{t}\hat{\pi}_{t+1} + \kappa_{x}\hat{x}_{t} + \hat{u}_{t}$$
(55)
(55)

• To assess the transmission of shocks to TFP, \hat{z}_t , we assume the Fed adopts TR2

$$\hat{r}_t = \phi_\pi \hat{\pi}_t + \hat{v}_t \tag{54}$$

• Plugging the latter into our system:

$$\hat{x}_t = E_t \hat{x}_{t+1} - \delta \left(\phi_\pi \hat{\pi}_t + \hat{v}_t - E_t \hat{\pi}_{t+1} - \hat{r}_t^n \right)$$
(55)

$$\hat{\pi}_t = \beta E_t \hat{\pi}_{t+1} + \kappa_x \hat{x}_t + \hat{u}_t \tag{56}$$

• TFP matters since the natural rate \hat{rr}_t^n responds negatively to \hat{z}_t (see eq. (39))

• To assess the transmission of shocks to TFP, $\hat{z}_t,$ we assume the Fed adopts TR2

$$\hat{r}_t = \phi_\pi \hat{\pi}_t + \hat{v}_t \tag{54}$$

• Plugging the latter into our system:

$$\hat{x}_t = E_t \hat{x}_{t+1} - \delta \left(\phi_\pi \hat{\pi}_t + \hat{v}_t - E_t \hat{\pi}_{t+1} - \hat{r}_t^n \right)$$
(55)

$$\hat{\pi}_t = \beta E_t \hat{\pi}_{t+1} + \kappa_x \hat{x}_t + \hat{u}_t \tag{56}$$

- TFP matters since the natural rate \hat{rr}_t^n responds negatively to \hat{z}_t (see eq. (39))
- In this case, the equilibrium solution is

$$\hat{\pi}_t = \eta_{\pi,u} \hat{u}_t + \eta_{\pi,v} \hat{v}_t + \eta_{\pi,z} \hat{z}_t$$
(57)

$$\hat{x}_t = \eta_{x,u} \hat{u}_t + \eta_{x,v} \hat{v}_t + \eta_{x,z} \hat{z}_t$$
(58)

• To assess the transmission of shocks to TFP, \hat{z}_t , we assume the Fed adopts TR2

$$\hat{r}_t = \phi_\pi \hat{\pi}_t + \hat{v}_t \tag{54}$$

• Plugging the latter into our system:

$$\hat{x}_t = E_t \hat{x}_{t+1} - \delta \left(\phi_\pi \hat{\pi}_t + \hat{v}_t - E_t \hat{\pi}_{t+1} - \hat{r}_t^n \right)$$
(55)

$$\hat{\pi}_t = \beta E_t \hat{\pi}_{t+1} + \kappa_x \hat{x}_t + \hat{u}_t$$
(56)

- TFP matters since the natural rate \hat{rr}_t^n responds negatively to \hat{z}_t (see eq. (39))
- In this case, the equilibrium solution is

$$\hat{\pi}_t = \eta_{\pi,u} \hat{u}_t + \eta_{\pi,v} \hat{v}_t + \eta_{\pi,z} \hat{z}_t$$
(57)

$$\hat{\mathbf{x}}_t = \eta_{\mathbf{x},u} \hat{u}_t + \eta_{\mathbf{x},v} \hat{v}_t + \eta_{\mathbf{x},z} \hat{z}_t$$
(58)

• We need to find $(\eta_{\pi,z},\eta_{\pi,z})$

• Following similar logic of cost-push and policy shock, we find

$$\begin{split} \eta_{\pi,z} &= -\frac{\kappa_x \left(1-\rho_z\right)}{\left(1-\rho_z\right) \left(1-\beta \rho_z\right) + \kappa_x \delta \left(\phi_\pi - \rho_z\right)} \frac{1+\chi}{\sigma+\chi} < 0 \\ \eta_{x,z} &= -\frac{\left(1-\rho_z\right) \left(1-\beta \rho_z\right)}{\left(1-\rho_z\right) \left(1-\beta \rho_z\right) + \kappa_x \delta \left(\phi_\pi - \rho_z\right)} \frac{1+\chi}{\sigma+\chi} < 0 \end{split}$$

3

< □ > < ---->

• Following similar logic of cost-push and policy shock, we find

$$\begin{split} \eta_{\pi,z} &= -\frac{\kappa_x \left(1-\rho_z\right)}{\left(1-\rho_z\right) \left(1-\beta \rho_z\right) + \kappa_x \delta \left(\phi_\pi - \rho_z\right)} \frac{1+\chi}{\sigma+\chi} < 0\\ \eta_{x,z} &= -\frac{\left(1-\rho_z\right) \left(1-\beta \rho_z\right)}{\left(1-\rho_z\right) \left(1-\beta \rho_z\right) + \kappa_x \delta \left(\phi_\pi - \rho_z\right)} \frac{1+\chi}{\sigma+\chi} < 0 \end{split}$$

 Both inflation and the output gap respond negatively to a TFP shock INTUITION

Inflation: higher TFP \implies lower marginal costs \implies firms cut prices

Following similar logic of cost-push and policy shock, we find

$$\begin{split} \eta_{\pi,z} &= -\frac{\kappa_x \left(1-\rho_z\right)}{\left(1-\rho_z\right) \left(1-\beta \rho_z\right) + \kappa_x \delta \left(\phi_{\pi}-\rho_z\right)} \frac{1+\chi}{\sigma+\chi} < 0\\ \eta_{x,z} &= -\frac{\left(1-\rho_z\right) \left(1-\beta \rho_z\right)}{\left(1-\rho_z\right) \left(1-\beta \rho_z\right) + \kappa_x \delta \left(\phi_{\pi}-\rho_z\right)} \frac{1+\chi}{\sigma+\chi} < 0 \end{split}$$

 Both inflation and the output gap respond negatively to a TFP shock INTUITION

Inflation: higher TFP \implies lower marginal costs \implies firms cut prices

• If we let $\kappa_x \to \infty$ (flex prices, RBC), we will get same coefficients found in frictionless model

$$\eta_{\pi,z} \to \frac{1-\rho_z}{\delta\left(\phi_\pi-\rho_z\right)} \frac{1+\chi}{\sigma+\chi} \quad \text{and} \quad \eta_{x,z} \to 0$$

• Since TFP is the main driver of fluctuations in a frictionless RBC model, it is interesting to look at output and hours worked

$$\begin{split} \hat{y}_t &= \underbrace{\hat{x}_t}_{\eta_{x,z} \hat{z}_t} + \underbrace{\hat{y}_t^F}_{\eta_{y,z}^F \hat{z}_t} = (\eta_{x,z} + \eta_{y,z}^F) \hat{z}_t \\ &= \underbrace{\frac{1 + \chi}{\sigma + \chi}}_{\substack{\tau + \chi \\ \eta_{y,z}}} \underbrace{\frac{\kappa_x \delta \left(\phi_\pi - \rho_z\right)}{(1 - \rho_z) \left(1 - \beta \rho_z\right) + \kappa_x \delta \left(\phi_\pi - \rho_z\right)}_{<1} \hat{z}_t \\ &= \underbrace{\frac{\eta_{y,z}}{\eta_{y,z}}}_{\eta_{y,z}} \underbrace{\frac{\kappa_z \delta \left(\phi_\pi - \rho_z\right)}{(1 - \beta \rho_z) + \kappa_z \delta \left(\phi_\pi - \rho_z\right)}}_{\gamma_{y,z} \hat{z}_t} \hat{z}_t$$

 Since TFP is the main driver of fluctuations in a frictionless RBC model, it is interesting to look at output and hours worked

$$\begin{split} \hat{y}_t &= \underbrace{\hat{x}_t}_{\eta_{x,z}\hat{z}_t} + \underbrace{\hat{y}_t^F}_{\eta_{y,z}^F\hat{z}_t} = (\eta_{x,z} + \eta_{y,z}^F)\hat{z}_t \\ &= \underbrace{\frac{1 + \chi}{\sigma + \chi}}_{\substack{q_{y,z} \neq \hat{z}_t}} \underbrace{\frac{\kappa_x \delta \left(\phi_\pi - \rho_z\right)}{(1 - \rho_z) \left(1 - \beta \rho_z\right) + \kappa_x \delta \left(\phi_\pi - \rho_z\right)}_{<1}}_{\eta_{y,z} > 0 \text{ but less than } \eta_{y,z}^F} \hat{z}_t \end{split}$$

• Weaker response to TFP compared to frictionless model: $\eta_{y,z}$ is strictly increasing in κ_x

• Since TFP is the main driver of fluctuations in a frictionless RBC model, it is interesting to look at output and hours worked

$$\begin{split} \hat{y}_t &= \underbrace{\hat{x}_t}_{\eta_{x,z} \hat{z}_t} + \underbrace{\hat{y}_t^F}_{\eta_{y,z}^F \hat{z}_t} = (\eta_{x,z} + \eta_{y,z}^F) \hat{z}_t \\ &= \underbrace{\frac{1 + \chi}{\sigma + \chi}}_{\substack{\tau + \chi \\ \eta_{y,z}^F \\ \eta_{y,z}^F \\ \eta_{y,z} \\ \eta_{y,z} > 0 \text{ but less than } \eta_{y,z}^F}_{\eta_{y,z}^F} \hat{z}_t \end{split}$$

- Weaker response to TFP compared to frictionless model: $\eta_{y,z}$ is strictly increasing in κ_x
- A positive TFP increases \hat{y}_t^F more than \hat{y}_t , so the output gap drops!

• For what concerns hours

$$egin{array}{rcl} \hat{h}_t &=& \hat{y}_t - \hat{z}_t = \eta_{y,z} \hat{z}_t - \hat{z}_t = \left(\eta_{y,z} - 1
ight) \ &=& \left(\eta_{x,z} + \underbrace{\eta^F_{y,z} - 1}_{-} & rac{1 - \sigma}{\sigma + \chi}
ight) \hat{z}_t \end{array}$$

æ

(日) (同) (三) (三)

• For what concerns hours

$$egin{array}{rcl} \hat{h}_t &=& \hat{y}_t - \hat{z}_t = \eta_{y,z} \hat{z}_t - \hat{z}_t = \left(\eta_{y,z} - 1
ight) \ &=& \left(\eta_{x,z} + \underbrace{\eta^{\mathcal{F}}_{y,z} - 1}_{-} & rac{1 - \sigma}{\sigma + \chi}
ight) \hat{z}_t \end{array}$$

• With $\sigma = 1$ (std calibration), in frictionless model (where $\eta_{x,z} = 0$), hours do not respond to TFP

• For what concerns hours

$$egin{array}{rcl} \hat{h}_t &=& \hat{y}_t - \hat{z}_t = \eta_{y,z} \hat{z}_t - \hat{z}_t = \left(\eta_{y,z} - 1
ight) \ &=& \left(\eta_{x,z} + \underbrace{\eta^{\mathcal{F}}_{y,z} - 1}_{-} & rac{1 - \sigma}{\sigma + \chi}
ight) \hat{z}_t \end{array}$$

- With $\sigma = 1$ (std calibration), in frictionless model (where $\eta_{x,z} = 0$), hours do not respond to TFP
- Empirical evidence: hours respond *negatively* to TFP ⇒ since η_{x,z} < 0, NK model can fit that!

Comparrison with Frictionless Model

Inflation and Output

REMARKS

Image: Image:

3

Comparrison with Frictionless Model Inflation and Output

REMARKS

1 no output gap in frictionless model: $\hat{x}_t = \hat{y}_t - \hat{y}_t^F = 0$

Comparrison with Frictionless Model Inflation and Output

REMARKS

- **(**) no output gap in frictionless model: $\hat{x}_t = \hat{y}_t \hat{y}_t^F = 0$
- 2 no cost-push shock in frictionless model

Comparrison with Frictionless Model Inflation and Output

REMARKS

- **(**) no output gap in frictionless model: $\hat{x}_t = \hat{y}_t \hat{y}_t^F = 0$
- 2 no cost-push shock in frictionless model
- Contractionary Policy shock
Comparrison with Frictionless Model Inflation and Output

REMARKS

- **(**) no output gap in frictionless model: $\hat{x}_t = \hat{y}_t \hat{y}_t^F = 0$
- Ino cost-push shock in frictionless model

• Contractionary Policy shock

Output

REMARKS

- **(**) no output gap in frictionless model: $\hat{x}_t = \hat{y}_t \hat{y}_t^F = 0$
- Ino cost-push shock in frictionless model

• Contractionary Policy shock

- Output
 - Frictionless model: no response

REMARKS

- **(**) no output gap in frictionless model: $\hat{x}_t = \hat{y}_t \hat{y}_t^F = 0$
- Ino cost-push shock in frictionless model

• Contractionary Policy shock

Output

- Frictionless model: no response
- Ø NK model: negative response

REMARKS

- **(**) no output gap in frictionless model: $\hat{x}_t = \hat{y}_t \hat{y}_t^F = 0$
- Ino cost-push shock in frictionless model

• Contractionary Policy shock

Output

- Frictionless model: no response
- Ø NK model: negative response
- Inflation: responds negatively in both models (less in NK)

REMARKS

- **(**) no output gap in frictionless model: $\hat{x}_t = \hat{y}_t \hat{y}_t^F = 0$
- Ino cost-push shock in frictionless model

• Contractionary Policy shock

Output

- Frictionless model: no response
- Ø NK model: negative response
- Inflation: responds negatively in both models (less in NK)

Higher TFP

REMARKS

- **(**) no output gap in frictionless model: $\hat{x}_t = \hat{y}_t \hat{y}_t^F = 0$
- Ino cost-push shock in frictionless model

• Contractionary Policy shock

Output

- Frictionless model: no response
- Ø NK model: negative response
- Inflation: responds negatively in both models (less in NK)

Higher TFP

Output: responds positively in both models (less in NK)

REMARKS

- **(**) no output gap in frictionless model: $\hat{x}_t = \hat{y}_t \hat{y}_t^F = 0$
- Ino cost-push shock in frictionless model

• Contractionary Policy shock

Output

- Frictionless model: no response
- **(2)** NK model: **negative** response
- Inflation: responds negatively in both models (less in NK)

Higher TFP

- **Output**: responds **positively** in both models (less in NK)
- Inflation: responds negatively in both models (less in NK)