Unconventional Monetary Policies in NK Model

Marco Airaudo^a

^aDrexel University

Univ. of Turin Nov. 30, 2022

Unconventional Policies in the U.S. Monetary Policy in the U.S.

• Before 2007, monetary policy in the U.S. appears well-described by an instrumental Taylor rule: the short-term *federal funds rate* (FFR) \hat{r}_t given by

$$\hat{r}_t = \hat{r}\hat{r}_t^n + \phi_\pi\hat{\pi}_t + \phi_x\hat{x}_t + v_t$$

Unconventional Policies in the U.S. Monetary Policy in the U.S.

• Before 2007, monetary policy in the U.S. appears well-described by an instrumental Taylor rule: the short-term *federal funds rate* (FFR) \hat{r}_t given by

$$\hat{r}_t = \hat{r}\hat{r}_t^n + \phi_\pi \hat{\pi}_t + \phi_x \hat{x}_t + v_t$$

•
$$\phi_{\pi} \in (0,1)$$
 before 1981 (pre-Volcker)

$$\hat{r}_t = \hat{r}r_t^n + \phi_\pi \hat{\pi}_t + \phi_x \hat{x}_t + v_t$$

with

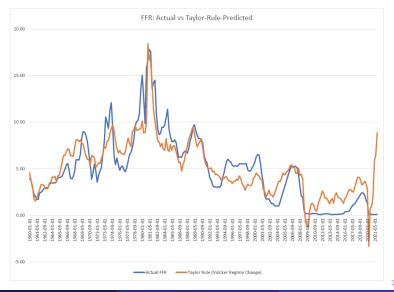
• $\phi_{\pi} \in (0, 1)$ before 1981 (pre-Volcker) • $\phi_{\pi} > 1$ (usually within 1.5 – 2.5 range) after 1981 (post-Volcker)

$$\hat{r}_t = \hat{r}r_t^n + \phi_\pi \hat{\pi}_t + \phi_x \hat{x}_t + v_t$$

- $\phi_{\pi} \in (0, 1)$ before 1981 (pre-Volcker) • $\phi_{\pi} > 1$ (usually within 1.5 - 2.5 range) after 1981 (post-Volcker)
- Following the 2007-08 financial crisis:

$$\hat{r}_t = \hat{r}r_t^n + \phi_\pi \hat{\pi}_t + \phi_x \hat{x}_t + v_t$$

- $\phi_{\pi} \in (0,1)$ before 1981 (pre-Volcker)
- $\phi_{\pi} > 1$ (usually within 1.5 2.5 range) after 1981 (post-Volcker)
- Following the 2007-08 financial crisis:
 - the FFR was rapidly cut to zero (actually, 0 to 25 basis points)


$$\hat{r}_t = \hat{r}r_t^n + \phi_\pi \hat{\pi}_t + \phi_x \hat{x}_t + v_t$$

- $\phi_{\pi} \in (0,1)$ before 1981 (pre-Volcker)
- $\phi_{\pi} > 1$ (usually within 1.5 2.5 range) after 1981 (post-Volcker)
- Following the 2007-08 financial crisis:
 - the FFR was rapidly cut to zero (actually, 0 to 25 basis points)
 - remained there from 2009 (Q1) to 2015 (Q4)

$$\hat{r}_t = \hat{r}\hat{r}_t^n + \phi_\pi \hat{\pi}_t + \phi_x \hat{x}_t + v_t$$

- $\phi_{\pi} \in (0,1)$ before 1981 (pre-Volcker)
- $\phi_{\pi} > 1$ (usually within 1.5 2.5 range) after 1981 (post-Volcker)
- Following the 2007-08 financial crisis:
 - the FFR was rapidly cut to zero (actually, 0 to 25 basis points)
 - remained there from 2009 (Q1) to 2015 (Q4)
 - actual FFR different from what advocated by Taylor rule

Actual vs Taylor-Rule-Predicted Interest Rate

Unconventional Policies at the ZLB

Unconventional Policies at the ZLB

- Despite this extremely *expansionary* monetary policy
 - GDP growth was sluggish (as was employment)

Unconventional Policies at the ZLB

- Despite this extremely *expansionary* monetary policy
 - GDP growth was sluggish (as was employment)
 - inflation (and its expectations) below 2% target

- Despite this extremely *expansionary* monetary policy
 - GDP growth was sluggish (as was employment)
 - inflation (and its expectations) below 2% target
- Unwilling to experiment *negative interest rates*, the Fed engaged in two types of *unconventional monetary policies*

- GDP growth was sluggish (as was employment)
- inflation (and its expectations) below 2% target
- Unwilling to experiment *negative interest rates*, the Fed engaged in two types of *unconventional monetary policies*
 - Large Scale Asset Purchases (LSAP), alias QE

- GDP growth was sluggish (as was employment)
- inflation (and its expectations) below 2% target
- Unwilling to experiment *negative interest rates*, the Fed engaged in two types of *unconventional monetary policies*
 - Large Scale Asset Purchases (LSAP), alias QE
 - Porward Guidance

- GDP growth was sluggish (as was employment)
- inflation (and its expectations) below 2% target
- Unwilling to experiment *negative interest rates*, the Fed engaged in two types of *unconventional monetary policies*
 - Large Scale Asset Purchases (LSAP), alias QE
 Forward Guidance
- Both policies had **same objective** (stimulate economic activity), but operated through very **different channels**

- GDP growth was sluggish (as was employment)
- inflation (and its expectations) below 2% target
- Unwilling to experiment *negative interest rates*, the Fed engaged in two types of *unconventional monetary policies*
 - Large Scale Asset Purchases (LSAP), alias QE
 Forward Guidance
- Both policies had **same objective** (stimulate economic activity), but operated through very **different channels**
 - $QE \implies$ longer-term interest rates

- GDP growth was sluggish (as was employment)
- inflation (and its expectations) below 2% target
- Unwilling to experiment *negative interest rates*, the Fed engaged in two types of *unconventional monetary policies*
 - Large Scale Asset Purchases (LSAP), alias QE
 Forward Guidance
- Both policies had **same objective** (stimulate economic activity), but operated through very **different channels**
 - $QE \implies$ longer-term interest rates
 - FG \implies market's expectations of future short-term interest rates

Quantitative Easing in a Nutshell

• QE involved Fed's purchases of longer-term T-bonds and mortgage-backed securities (MBS) from banks and other financial institution in order to

Quantitative Easing in a Nutshell

- QE involved Fed's purchases of longer-term T-bonds and mortgage-backed securities (MBS) from banks and other financial institution in order to
 - lower liquidity/default risk of financial system

Quantitative Easing in a Nutshell

- QE involved Fed's purchases of longer-term T-bonds and mortgage-backed securities (MBS) from banks and other financial institution in order to
 - lower liquidity/default risk of financial system
 - flatten the term structure of interest rates/yield curve

Quantitative Easing in a Nutshell

- QE involved Fed's purchases of longer-term T-bonds and mortgage-backed securities (MBS) from banks and other financial institution in order to
 - lower liquidity/default risk of financial system
 - flatten the term structure of interest rates/yield curve
- Simplified banks' balance sheet (m = reserve requirement) Banks received liquid cash reserves ($ER \uparrow$), in exchange for risky MBS and LTB

Bank Assets

Bank Liabilities

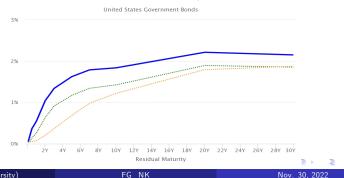
Deposits (D)
Net Worth (<i>NW</i>)

Yield Curve

• Yield curve: annual yield on T-bond/corporate bond function of its maturity

Yield Curve

- Yield curve: annual yield on T-bond/corporate bond function of its maturity
- Yield curve is typically upward sloping


longer maturity \implies term premium \implies higher yield

Yield Curve

- Yield curve: annual yield on T-bond/corporate bond function of its maturity
- Yield curve is typically upward sloping

```
    longer maturity ⇒ term premium ⇒ higher yield
    Yield curve changes daily
```

United States Yield Curve - 20 Ian 2022

6/41

Yield Curve Proxy

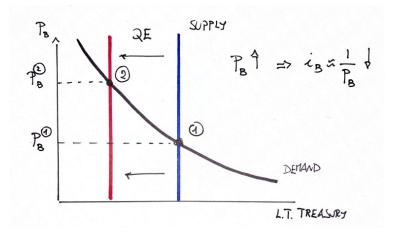
Quantitative Easing in a Nutshell

Objectives of QE

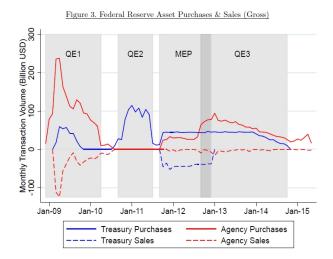
Image: Image:

Objectives of QE

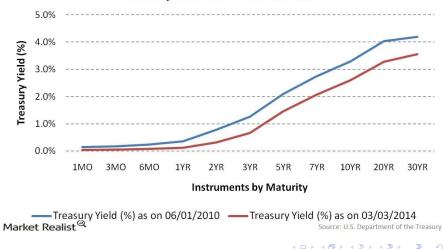
lower risk on asset side of banks' balance sheet
 banks less likely to go bankrupt: lower chances of bank runs by depositors


Objectives of QE

lower risk on asset side of banks' balance sheet
 banks less likely to go bankrupt: lower chances of bank runs by depositors


Ower supply of long-term bonds available in secondary market (banks buy/sell LT securities on daily basis)

 \Longrightarrow higher price for LT bonds \Longrightarrow lower yield on LT bonds (flatter term structure)


Quantitative Easing in a Nutshell

Quantitative Easing QE Operations

QE and the Yield Curve

Treasury Yield Curve - the QE effect

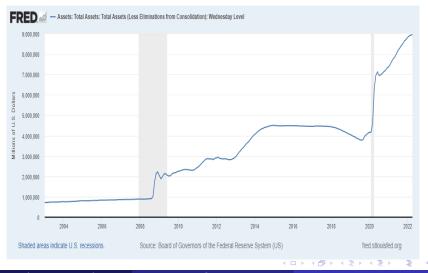
Source: "The Macroeconomic Effects of LSAP Programmes" (Economic J., '12) by Chen, Curdia and Ferrero

Papers	Total impact	Impact per \$100 Bil	
Hamilton and Wu (2010)	-13 bp	-3 bp	
Doh (2010)	-39 bp	-4 bp	
D'Amico and King (2010)	-45 bp	-15 bp	
Bomfim and Meyer (2010)	-60 bp	-3 bp	
Gagnon et al. (2011)	-58 bp to-91 bp	-3 bp to -5 bp	
Neely (2011)	-107 bp	-6 bp	
Krishnamurthy and Vissing-Jorgensen (2011)	-33 bp (LSAP II)	-5 bp	
D'Amico et al. (2011)	-55 bp (LSAP II)	-9 bp	
Swanson (2011)	-15 bp (Twist)	1	

Table 1							
Estimated Impact	of LSAPs on	the 10-Year	Treasury	Yield in	the Literature		

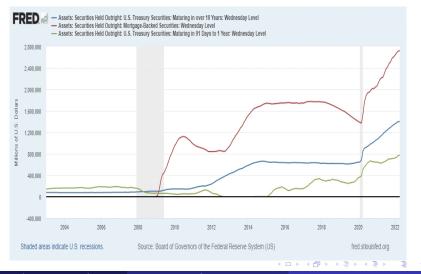
QE and Mortgages Rates

Source: "How Quantitative Easing Works: Evidence on the Refinancing Channel" (NBER WP #22638) by Di Maggio, Kermani,


Palmer

QE and the Fed's Balance Sheet

NOTE: huge expansion of overall size!



MA (Drexel University)

Nov. 30, 2022 14 / 41

QE and the Fed's Balance Sheet

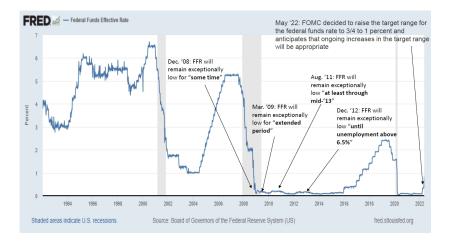
NOTE: larger share of riskier longer-term assets!

MA (Drexel University)

Nov. 30, 2022 15 / 41

• FG involved announcements of **future path of federal funds** rate AND some info about Fed's view about future macroeconomic outlook, in order to

- FG involved announcements of **future path of federal funds** rate AND some info about Fed's view about future macroeconomic outlook, in order to
 - guide market's expectations about future policies


- FG involved announcements of **future path of federal funds** rate AND some info about Fed's view about future macroeconomic outlook, in order to
 - guide market's expectations about future policies
 - 2 signal Fed's commitment to extending expansionary monetary policy

- FG involved announcements of **future path of federal funds** rate AND some info about Fed's view about future macroeconomic outlook, in order to
 - guide market's expectations about future policies
 - 2 signal Fed's commitment to extending expansionary monetary policy
 - Ilatten the term structure of interest rates, as

LT interest rate $\,\approx\,$ weighted avg. of expected future ST rates (Expectations Theory of LT Rates)

Forward Guidance

Forward Guidance Announcements

э

(日) (同) (三) (三)

Forward Guidance

Forward Guidance: What kind?

• Forward Guidance announcements have come in different forms

- Forward Guidance announcements have come in different forms
 - **Qualitative:** no detailed quantitative information about path of interest rates or time frame (ex: 03/09)

- Forward Guidance announcements have come in different forms
 - **Qualitative:** no detailed quantitative information about path of interest rates or time frame (ex: 03/09)
 - Calendar-Based: guidance about specified time horizon (ex: 08/11)

- Forward Guidance announcements have come in different forms
 - **Qualitative:** no detailed quantitative information about path of interest rates or time frame (ex: 03/09)
 - Calendar-Based: guidance about specified time horizon (ex: 08/11)
 - **Threshold-Based:** guidance linked to a specific quantitative economic threshold (ex: 12/12)

- Forward Guidance announcements have come in different forms
 - **Qualitative:** no detailed quantitative information about path of interest rates or time frame (ex: 03/09)
 - Calendar-Based: guidance about specified time horizon (ex: 08/11)
 - **Threshold-Based:** guidance linked to a specific quantitative economic threshold (ex: 12/12)
- Forward Guidance announcements can have different interpretations

- Forward Guidance announcements have come in different forms
 - **Qualitative:** no detailed quantitative information about path of interest rates or time frame (ex: 03/09)
 - Calendar-Based: guidance about specified time horizon (ex: 08/11)
 - **Threshold-Based:** guidance linked to a specific quantitative economic threshold (ex: 12/12)
- Forward Guidance announcements can have different interpretations
 - Delphic FG: public statement of Fed's forecast of macroeconomic conditions and likely/intended monetary policy action
 PRO: improves macroeconomic uncertainty, without Fed's explicit policy commitment

CON: often not very transparent, need to read between the lines

- Forward Guidance announcements have come in different forms
 - **Qualitative:** no detailed quantitative information about path of interest rates or time frame (ex: 03/09)
 - Calendar-Based: guidance about specified time horizon (ex: 08/11)
 - **Threshold-Based:** guidance linked to a specific quantitative economic threshold (ex: 12/12)

• Forward Guidance announcements can have different interpretations

Delphic FG: public statement of Fed's forecast of macroeconomic conditions and likely/intended monetary policy action
 PRO: improves macroeconomic uncertainty, without Fed's explicit policy commitment

CON: often not very transparent, need to read between the lines

- Odyssean FG: explicit commitment to future policy
 - \implies PRO: transparency
 - CON: lack of flexibility, time-inconsistent (credibility issues)

(日) (周) (三) (三)

The Forward Guidance: Evidence

Source: Del Negro et al. (NY Fed WP, '15)

			ury Mant mat	(ields urity)			Ageno (Fanni	MBS Yields			
Maturity (years)	30	10	5	3	1	30	10	5	3	30	15
8/9/2011	-14	-23	-18	-12	-3	-19	-23	-27	-25	-24	-26
1/25/2012	-5	-12	-15	-8	0	-10	-13	-18	-14	-16	-18
9/13/2012	17	11	2	2	0	10	5	0	1	-13	-11

	Corporate Yields Intermediate term									Long term			
	Aaa							Aa			\mathbf{Ba}	В	
8/9/2011	-8	-6	-8	-8	2	16	-11	-9	-5	-5	26	33	
1/25/2012	-10	-13	-11	-16	-9	-13	-12	-15	-17	-13	-16	-10	
9/13/2012	11	10	7	-2	-8	-15	0	-1	-1	5	-12	-18	

(ロト 《御 》 《 臣 》 《 臣 》 ― 臣 ― のの()

• Empirical evidence shows positive impact of Fed's forward guidance

- Empirical evidence shows positive impact of Fed's forward guidance
 - decline of future rates and LT bonds yields at time of announcements

- Empirical evidence shows positive impact of Fed's forward guidance
 - decline of future rates and LT bonds yields at time of announcements
 - reduction in volatility of expected interest rates at short-horizons

- Empirical evidence shows positive impact of Fed's forward guidance
 - decline of future rates and LT bonds yields at time of announcements
 - reduction in volatility of expected interest rates at short-horizons
- However, effects appear not very large in magnitude and quite short-lived

Campbell et al. (BPEA, '12), Del Negro et al. (NY Fed WP, '15), Swanson (JME, '20)

• Baseline NK model produces neutral effects of QE.

- Baseline NK model produces neutral effects of QE.
- Suppose we introduced a LT (riskless) bond for our households

- Baseline NK model produces neutral effects of QE.
- Suppose we introduced a LT (riskless) bond for our households
- Unless LT bond provides additional services (a *convenience yield*) compared to rolling-over a ST bond
 - \implies households will be indifferent since LT yield pprox avg. ST yields
 - \implies QE by Fed will not change the term structure

- Baseline NK model produces neutral effects of QE.
- Suppose we introduced a LT (riskless) bond for our households
- Unless LT bond provides additional services (a *convenience yield*) compared to rolling-over a ST bond
 ⇒ households will be indifferent since LT yield ≈ avg. ST yields
 ⇒ QE by Fed will not change the term structure
- Real effects of QE can be obtained by enriching the baseline NK model with some form of *market segmentation*

- Baseline NK model produces neutral effects of QE.
- Suppose we introduced a LT (riskless) bond for our households
- Unless LT bond provides additional services (a *convenience yield*) compared to rolling-over a ST bond
 ⇒ households will be indifferent since LT yield ≈ avg. ST yields
 ⇒ QE by Fed will not change the term structure
- Real effects of QE can be obtained by enriching the baseline NK model with some form of *market segmentation*
- Excellent reference is "The Macroeconomic Effects of LSAP Programmes" (Economic J., '12) by Chen, Curdia and Ferrero

• Quick overview of their model

Image: Image:

- Quick overview of their model
 - some households are unrestricted

 \Longrightarrow they invest both in ST and LT bonds (with some costly portfolio reallocation)

- Quick overview of their model
 - some households are unrestricted
 - \Longrightarrow they invest both in ST and LT bonds (with some costly portfolio reallocation)
 - \implies their relevant Euler eq. driven by ST rate
 - others are restricted
 - \Longrightarrow they invest only in LT bonds
 - \implies their relevant Euler eq. driven by LT rate

- Quick overview of their model
 - some households are unrestricted

 \Longrightarrow they invest both in ST and LT bonds (with some costly portfolio reallocation)

- others are restricted
 - \Longrightarrow they invest only in LT bonds
 - \implies their relevant Euler eq. driven by LT rate
- Fed has now two policy instruments

• Quick overview of their model

• some households are unrestricted

 \Longrightarrow they invest both in ST and LT bonds (with some costly portfolio reallocation)

- others are restricted
 - \Longrightarrow they invest only in LT bonds
 - \implies their relevant Euler eq. driven by LT rate
- Fed has now two policy instruments
 - conventional: Fed controls ST rate with Taylor rule

- Quick overview of their model
 - some households are unrestricted

 \Longrightarrow they invest both in ST and LT bonds (with some costly portfolio reallocation)

- others are restricted
 - \Longrightarrow they invest only in LT bonds
 - \implies their relevant Euler eq. driven by LT rate
- Fed has now two policy instruments
 - conventional: Fed controls ST rate with Taylor rule
 - **QE**: Fed controls supply of LT bonds to households

• Quick overview of their model

• some households are unrestricted

 \Longrightarrow they invest both in ST and LT bonds (with some costly portfolio reallocation)

- others are restricted
 - \Longrightarrow they invest only in LT bonds
 - \implies their relevant Euler eq. driven by LT rate
- Fed has now two policy instruments
 - conventional: Fed controls ST rate with Taylor rule
 - $\bullet~\ensuremath{\textbf{QE}}\xspace$: Fed controls supply of LT bonds to households
- QE operations affect LT rate \implies affects consumption of *restricted*

• In contrast, baseline New Keynesian model predicts sizable stimulative effects of FG which

- In contrast, baseline New Keynesian model predicts sizable stimulative effects of FG which
 - are large in magnitude

- In contrast, baseline New Keynesian model predicts sizable stimulative effects of FG which
 - are large in magnitude
 - grow with FG horizon
 - Ex: a FFR interest rate cut announced to occur N quarters ahead has
 - a larger impact on *current* real activity than a cut happening today!

- In contrast, baseline New Keynesian model predicts sizable stimulative effects of FG which
 - are large in magnitude
 - grow with FG horizon Ex: a FFR interest rate cut announced to occur N quarters ahead has a larger impact on *current* real activity than a cut happening today!
- This unreasonable outcome has been named the *Forward Guidance Puzzle*

Del Negro et al. (NYFed WP, '15), McKay et al. (AER, '16), Kiley (RED, '16)

What drives the puzzle?

• Two key elements of the NK model

- Two key elements of the NK model
- First: excess sensitivity of current consumption to changes in future interest rates in Euler Equation (excess consumption smoothing)

- Two key elements of the NK model
- First: excess sensitivity of current consumption to changes in future interest rates in Euler Equation (excess consumption smoothing)
 - Let $\hat{r}_t^{\text{real}} \equiv \hat{r}_t E_t \hat{\pi}_{t+1}$. Assume the Fed was able to directly control \hat{r}_t^{real}

Euler Equation : $\hat{y}_t = E_t \hat{y}_{t+1} - \delta \hat{r}_t^{\text{real}}$

- Two key elements of the NK model
- First: excess sensitivity of current consumption to changes in future interest rates in Euler Equation (excess consumption smoothing)
 - Let $\hat{r}_t^{\text{real}} \equiv \hat{r}_t E_t \hat{\pi}_{t+1}$. Assume the Fed was able to directly control \hat{r}_t^{real}

Euler Equation :
$$\hat{y}_t = {\sf E}_t \hat{y}_{t+1} - \delta \hat{r}_t^{
m real}$$

• By forward iteration

$$\begin{aligned} \hat{\gamma}_t &= -\delta \hat{r}_t^{\text{real}} + E_t \left(E_{t+1} \hat{y}_{t+2} - \delta \hat{r}_{t+1}^{\text{real}} \right) \\ &= -\delta \left(\hat{r}_t^{\text{real}} + E_t \hat{r}_{t+1}^{\text{real}} \right) + E_t \hat{y}_{t+2} = -\delta E_t \sum_{j=0}^{\infty} \hat{r}_{t+j}^{\text{real}} \end{aligned}$$

FG in the NK Model

What drives the puzzle?

• Then

$$rac{\partial \hat{y}_t}{\partial E_t \hat{\gamma}_{t+j}^{\mathrm{real}}} = -\delta, \ \forall j \ge 0$$
 (1)

э

• Then

$$\frac{\partial \hat{y}_t}{\partial E_t \hat{r}_{t+j}^{\text{real}}} = -\delta, \ \forall j \ge 0 \tag{1}$$

 According to (1), an expected *real* interest rate change *j*-period ahead is as effective as a *real* interest rate change happening today (*j* = 0) • Then

$$\frac{\partial \hat{y}_t}{\partial E_t \hat{r}_{t+j}^{\text{real}}} = -\delta, \ \forall j \ge 0 \tag{1}$$

- According to (1), an expected *real* interest rate change *j*-period ahead is as effective as a *real* interest rate change happening today (*j* = 0)
- It sounds a bit unreasonable!

What drives the puzzle?

Then

$$\frac{\partial \hat{y}_t}{\partial E_t \hat{r}_{t+j}^{\text{real}}} = -\delta, \ \forall j \ge 0 \tag{1}$$

- According to (1), an expected *real* interest rate change *j*-period ahead is as effective as a *real* interest rate change happening today (*j* = 0)
- It sounds a bit unreasonable!
- REMARKS

What drives the puzzle?

Then

$$rac{\partial \hat{y}_t}{\partial E_t \hat{r}_{t+j}^{ ext{real}}} = -\delta, \ \forall j \ge 0$$
 (1)

- According to (1), an expected *real* interest rate change *j*-period ahead is as effective as a *real* interest rate change happening today (*j* = 0)
- It sounds a bit unreasonable!
- REMARKS
 - Of course, we are assuming *full credibility*

What drives the puzzle?

Then

$$\frac{\partial \hat{y}_t}{\partial E_t \hat{r}_{t+j}^{\text{real}}} = -\delta, \ \forall j \ge 0 \tag{1}$$

- According to (1), an expected *real* interest rate change *j*-period ahead is as effective as a *real* interest rate change happening today (*j* = 0)
- It sounds a bit unreasonable!
- REMARKS
 - Of course, we are assuming *full credibility*
 - Same outcome if Fed announced a change in the *nominal* interest rate (just more complex math)

• **Second:** front loading of future demand conditions on current inflation in Phillips Curve

- **Second:** front loading of future demand conditions on current inflation in Phillips Curve
 - Recall

$$\hat{\pi}_t = \beta E_t \hat{\pi}_{t+1} + \kappa \hat{y}_t$$

• **Second:** front loading of future demand conditions on current inflation in Phillips Curve

Recall

$$\hat{\pi}_t = \beta E_t \hat{\pi}_{t+1} + \kappa \hat{y}_t$$

• By forward iteration

$$\hat{\pi}_t = \kappa E_t \sum_{j=0}^{\infty} \beta^j \hat{y}_{t+j}$$

- **Second:** front loading of future demand conditions on current inflation in Phillips Curve
 - Recall

$$\hat{\pi}_t = \beta E_t \hat{\pi}_{t+1} + \kappa \hat{y}_t$$

• By forward iteration

$$\hat{\pi}_t = \kappa E_t \sum_{j=0}^{\infty} \beta^j \hat{y}_{t+j}$$

• A change in $\hat{r}_{t+\mathcal{K}}^{\mathrm{real}}$ will change output $\hat{y}_{t+j},$ for $j\leq \mathcal{K}$

$$\frac{\partial \hat{\pi}_t}{\partial E_t \hat{r}_{t+K}^{\text{real}}} = \kappa \left[\frac{\partial \hat{y}_t}{\partial E_t \hat{r}_{t+K}^{\text{real}}} + \beta E_t \frac{\partial \hat{y}_{t+1}}{\partial E_t \hat{r}_{t+K}^{\text{real}}} + \beta E_t \frac{\partial \hat{y}_{t+2}}{\partial E_t \hat{r}_{t+K}^{\text{real}}} + \ldots \right]$$

 \implies larger change in $\hat{\pi}_t$ the larger is K (FG horizon)

- Alternative channels explored in the literature to tame the puzzle
 - RA too forward-looking in baseline NK ⇒ finite planning horizon (Del Negro et al., '15)

- Alternative channels explored in the literature to tame the puzzle
 - RA too forward-looking in baseline NK
 - \implies finite planning horizon (Del Negro et al., '15)
 - RA excessively capable to smooth consumption
 - \implies borrowing constraint/precautionary savings (McKay, AER'16)

- RA too forward-looking in baseline NK
 - \implies finite planning horizon (Del Negro et al., '15)
- RA excessively capable to smooth consumption
 - \implies borrowing constraint/precautionary savings (McKay, AER'16)
- Irms excessively forward-looking
 - \implies "sticky" information Phillips Curve (Kiley, RED'16)

- RA too forward-looking in baseline NK
 - \implies finite planning horizon (Del Negro et al., '15)
- RA excessively capable to smooth consumption

 \implies borrowing constraint/precautionary savings (McKay, AER'16)

- Firms excessively forward-looking
 - \implies "sticky" information Phillips Curve (Kiley, RED'16)
- In the second second
 - \implies behavioral macro approach

- RA too forward-looking in baseline NK
 - \implies finite planning horizon (Del Negro et al., '15)
- RA excessively capable to smooth consumption
 A second provide the second provided and the

 \implies borrowing constraint/precautionary savings (McKay, AER'16)

- Firms excessively forward-looking
 - \implies "sticky" information Phillips Curve (Kiley, RED'16)
- In the second second
 - \implies behavioral macro approach
 - cognitive discounting \implies myopia (Gabaix, AER'20)

- RA too forward-looking in baseline NK
 - \implies finite planning horizon (Del Negro et al., '15)
- RA excessively capable to smooth consumption
 - \implies borrowing constraint/precautionary savings (McKay, AER'16)
- Firms excessively forward-looking
 - \implies "sticky" information Phillips Curve (Kiley, RED'16)
- In the second second
 - \implies behavioral macro approach
 - cognitive discounting \implies myopia (Gabaix, AER'20)
 - temptation preferences \implies myopia (Airaudo, JET'20)

$$\hat{y}_t = \alpha E_t \hat{y}_{t+1} - \delta \hat{r}_t^{\text{real}}, \qquad \alpha \in (0, 1) \Longrightarrow \qquad \frac{\partial \hat{y}_t}{\partial E_t \hat{r}_{t+j}^{\text{real}}} = -\delta \alpha^j$$

$$\hat{y}_t = \alpha E_t \hat{y}_{t+1} - \delta \hat{r}_t^{\text{real}}, \qquad \alpha \in (0, 1) \Longrightarrow \qquad \frac{\partial \hat{y}_t}{\partial E_t \hat{r}_{t+j}^{\text{real}}} = -\delta \alpha^j$$

• It looks minimal, but....it is not!

$$\hat{y}_t = \alpha E_t \hat{y}_{t+1} - \delta \hat{r}_t^{\text{real}}, \qquad \alpha \in (0, 1) \Longrightarrow \qquad \frac{\partial \hat{y}_t}{\partial E_t \hat{r}_{t+j}^{\text{real}}} = -\delta \alpha^j$$

- It looks minimal, but....it is not!
 - changes in future real rates still affect negatively current activity

$$\hat{y}_t = \alpha E_t \hat{y}_{t+1} - \delta \hat{r}_t^{\text{real}}, \qquad \alpha \in (0, 1) \Longrightarrow \qquad \frac{\partial \hat{y}_t}{\partial E_t \hat{r}_{t+j}^{\text{real}}} = -\delta \alpha^j$$

- It looks minimal, but....it is not!
 - changes in future real rates still affect negatively current activity
 - but the effect is *discounted*

 \implies the more distant in the future the change is *expected* to occur (higher *j*)

 \implies the smaller the impact \hat{y}_t

$$\hat{y}_t = \alpha E_t \hat{y}_{t+1} - \delta \hat{r}_t^{\text{real}}, \qquad \alpha \in (0, 1) \Longrightarrow \qquad \frac{\partial \hat{y}_t}{\partial E_t \hat{r}_{t+j}^{\text{real}}} = -\delta \alpha^j$$

- It looks minimal, but....it is not!
 - changes in future real rates still affect negatively current activity
 - but the effect is discounted

 \implies the more distant in the future the change is *expected* to occur (higher *j*)

 \implies the smaller the impact \hat{y}_t

• REMARK: we are still assuming rational expectations

Behavioral Macroeconomics

• Ongoing push in macro to introduce *behavioral* elements into dynamic macro models

- Ongoing push in macro to introduce *behavioral* elements into dynamic macro models
- Behavioral economics

- Ongoing push in macro to introduce *behavioral* elements into dynamic macro models
- Behavioral economics
 - documents economic behaviors/decisions (through lab/field experiments) that often do not reconcile with standard expected utility approach

- Ongoing push in macro to introduce *behavioral* elements into dynamic macro models
- Behavioral economics
 - documents economic behaviors/decisions (through lab/field experiments) that often do not reconcile with standard expected utility approach
 - concerns preferences but also expectations formation of economic agents

- Ongoing push in macro to introduce *behavioral* elements into dynamic macro models
- Behavioral economics
 - documents economic behaviors/decisions (through lab/field experiments) that often do not reconcile with standard expected utility approach
 - concerns preferences but also expectations formation of economic agents
- Two well-documented features

- Ongoing push in macro to introduce *behavioral* elements into dynamic macro models
- Behavioral economics
 - documents economic behaviors/decisions (through lab/field experiments) that often do not reconcile with standard expected utility approach
 - concerns preferences but also expectations formation of economic agents
- Two well-documented features
 - Economics agents display preference reversal in intertemporal decisions There is a tension between *short-run urges/immediate rewards* and *long-run benefits* Ex 1: going to the gym vs. eating a burger Ex 2: consumption vs saving

Behavioral Macroeconomics

• Two well-documented features (continued)

- Two well-documented features (continued)
 - Economic agents are not very sophisticated in making forecasts
 the Rational Expectations Hypothesis does not hold
 Under RE, agents' forecasts are formed *as if* they had full knowledge of the equilibrium distribution of all variables in the model

- Two well-documented features (continued)
 - Economic agents are not very sophisticated in making forecasts
 the Rational Expectations Hypothesis does not hold
 Under RE, agents' forecasts are formed *as if* they had full knowledge of the equilibrium distribution of all variables in the model
 - they know what everyone else is doing/choosing

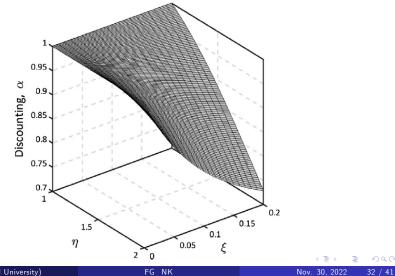
- Two well-documented features (continued)
 - Economic agents are not very sophisticated in making forecasts
 the Rational Expectations Hypothesis does not hold
 Under RE, agents' forecasts are formed *as if* they had full knowledge of the equilibrium distribution of all variables in the model
 - they know what everyone else is doing/choosing
 - they know the consequences of all shocks

- Two well-documented features (continued)
 - Economic agents are not very sophisticated in making forecasts
 the Rational Expectations Hypothesis does not hold
 Under RE, agents' forecasts are formed *as if* they had full knowledge of the equilibrium distribution of all variables in the model
 - they know what everyone else is doing/choosing
 - they know the consequences of all shocks
 - they how markets clear

- Two well-documented features (continued)
 - Economic agents are not very sophisticated in making forecasts
 the Rational Expectations Hypothesis does not hold
 Under RE, agents' forecasts are formed *as if* they had full knowledge of the equilibrium distribution of all variables in the model
 - they know what everyone else is doing/choosing
 - they know the consequences of all shocks
 - they how markets clear
 - they are extremely foresighted
 - \implies this allows us to solve by method of undet. coeff.

• Agents are tempted to liquidate all wealth for immediate consumption (no savings)

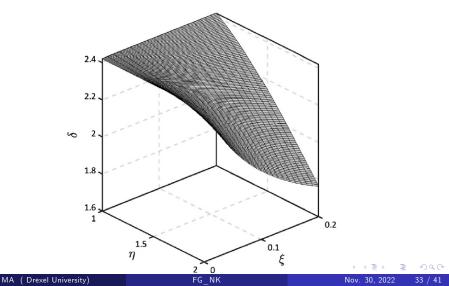
- Agents are tempted to liquidate all wealth for immediate consumption (no savings)
- Resisting to temptation is costly, in cognitive terms: internal conflict between

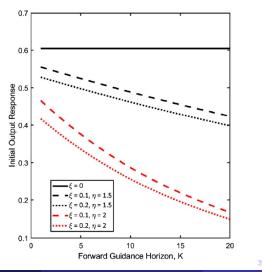


- Agents are tempted to liquidate all wealth for immediate consumption (no savings)
- Resisting to temptation is costly, in cognitive terms: internal conflict between
 - myopic self (not interested in saving, like hand-to-mouth)

- Agents are tempted to liquidate all wealth for immediate consumption (no savings)
- Resisting to temptation is costly, in cognitive terms: internal conflict between
 - myopic self (not interested in saving, like hand-to-mouth)
 - forward-looking patient self (understands consumption smoothing)

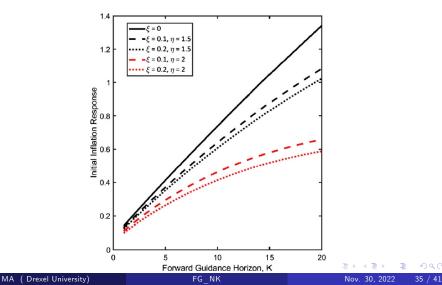
- Agents are tempted to liquidate all wealth for immediate consumption (no savings)
- Resisting to temptation is costly, in cognitive terms: internal conflict between
 - myopic self (not interested in saving, like hand-to-mouth)
 - forward-looking patient self (understands consumption smoothing)
- Result: Euler equation is *less forward-looking* (a discounted Euler Eq.)
 tame/solve the FG puzzle

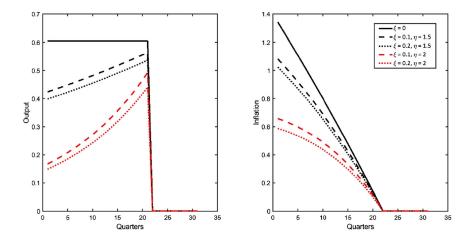

Discounting in Euler equation


My Research

Temptation and Forward Guidance (JET, '20)

Interest rate elasticity in Euler Equation


On-Impact Output Response to 1% real rate cut


MA (Drexel University)

FG NK

On-Impact Inflation Response to 1% real rate cut

Dynamic responses to 1% real rate cut (20 qrts ahead)

• Joint with former Ph.D. student, Ina Hajdini (now Research Economist at the Federal Reserve Bank of Cleveland)

- Joint with former Ph.D. student, Ina Hajdini (now Research Economist at the Federal Reserve Bank of Cleveland)
- We move away from rational expectations

- Joint with former Ph.D. student, Ina Hajdini (now Research Economist at the Federal Reserve Bank of Cleveland)
- We move away from *rational expectations*
- Our approach builds on Woodford's work on *bounded rationality in macroeconomics* (see his webpage) as well as on the *infinite-horizon-learning* framework developed by Eusepi and Preston (JEL, '18)

- Joint with former Ph.D. student, Ina Hajdini (now Research Economist at the Federal Reserve Bank of Cleveland)
- We move away from *rational expectations*
- Our approach builds on Woodford's work on *bounded rationality in* macroeconomics (see his webpage) as well as on the infinite-horizon-learning framework developed by Eusepi and Preston (JEL, '18)
- Agents will form expectations based on *mis-specified* perceived laws of motion for economic variables

 This is consistent with experimental/empirical evidence on expectation formation about macroeconomic and financial variables following simple AR(1) rules Fuster at al. (JEP, '10; NBER Macro Annual, '11), Adam (EJ, '07), Hajdini (JMP, '21)

- This is consistent with experimental/empirical evidence on expectation formation about macroeconomic and financial variables following simple AR(1) rules Fuster at al. (JEP, '10; NBER Macro Annual, '11), Adam (EJ, '07), Hajdini (JMP, '21)
- Namely, they believe

$$\hat{y}_t = \gamma_y \hat{y}_{t-1} + \hat{\varepsilon}_{y,t} \hat{\pi}_t = \gamma_\pi \hat{\pi}_{t-1} + \hat{\varepsilon}_{\pi,t}$$

- This is consistent with experimental/empirical evidence on expectation formation about macroeconomic and financial variables following simple AR(1) rules Fuster at al. (JEP, '10; NBER Macro Annual, '11), Adam (EJ, '07), Hajdini (JMP, '21)
- Namely, they believe

$$\begin{aligned} \hat{y}_t &= \gamma_y \hat{y}_{t-1} + \hat{\varepsilon}_{y,t} \\ \hat{\pi}_t &= \gamma_\pi \hat{\pi}_{t-1} + \hat{\varepsilon}_{\pi,t} \end{aligned}$$

• That is: both inflation and output are simple AR(1) processes, with believed persistence γ_{γ} and γ_{π}

• Hence, for $T \ge t$

$$ilde{E}_{t-1}\hat{y}_{\mathcal{T}}=\gamma_{_{\mathcal{V}}}^{\mathcal{T}-t+1}\hat{y}_{t-1}, \qquad ext{and} \qquad ilde{E}_{t-1}\hat{\pi}_{\mathcal{T}}=\gamma_{\pi}^{\mathcal{T}-t+1}\hat{\pi}_{t-1}$$

3

(日) (周) (三) (三)

• Hence, for $T \ge t$

$$ilde{E}_{t-1} \hat{y}_{\mathcal{T}} = \gamma_y^{\mathcal{T}-t+1} \hat{y}_{t-1}, \qquad ext{and} \qquad ilde{E}_{t-1} \hat{\pi}_{\mathcal{T}} = \gamma_\pi^{\mathcal{T}-t+1} \hat{\pi}_{t-1}$$

• The AR(1) coefficients $\gamma_{_{V}}$ and γ_{π} are to be determined

$$ilde{E}_{t-1} \hat{y}_{\mathcal{T}} = \gamma_y^{\mathcal{T}-t+1} \hat{y}_{t-1}, \qquad ext{and} \qquad ilde{E}_{t-1} \hat{\pi}_{\mathcal{T}} = \gamma_\pi^{\mathcal{T}-t+1} \hat{\pi}_{t-1}$$

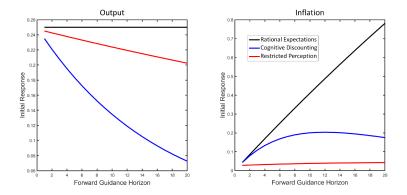
- The AR(1) coefficients $\gamma_{_{V}}$ and γ_{π} are to be determined
 - agents have perceived unconditional first order autocorrelation coefficients $\left(\gamma_y,\gamma_\pi\right)$

$$ilde{E}_{t-1} \hat{y}_{\mathcal{T}} = \gamma_y^{\mathcal{T}-t+1} \hat{y}_{t-1}, \qquad ext{and} \qquad ilde{E}_{t-1} \hat{\pi}_{\mathcal{T}} = \gamma_\pi^{\mathcal{T}-t+1} \hat{\pi}_{t-1}$$

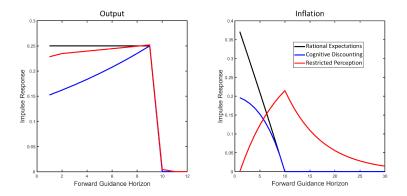
- The AR(1) coefficients $\gamma_{_{V}}$ and γ_{π} are to be determined
 - agents have *perceived* unconditional first order autocorrelation coefficients (γ_y, γ_π)
 - compute expectations in AD-AS model using them

$$ilde{E}_{t-1} \hat{y}_{\mathcal{T}} = \gamma_y^{\mathcal{T}-t+1} \hat{y}_{t-1}, \qquad ext{and} \qquad ilde{E}_{t-1} \hat{\pi}_{\mathcal{T}} = \gamma_\pi^{\mathcal{T}-t+1} \hat{\pi}_{t-1}$$

- The AR(1) coefficients $\gamma_{_{V}}$ and γ_{π} are to be determined
 - agents have *perceived* unconditional first order autocorrelation coefficients (γ_y, γ_π)
 - compute expectations in AD-AS model using them
 - this will imply a solution for output and inflation


$$ilde{E}_{t-1}\hat{y}_{\mathcal{T}}=\gamma_y^{\mathcal{T}-t+1}\hat{y}_{t-1}, \qquad ext{and} \qquad ilde{E}_{t-1}\hat{\pi}_{\mathcal{T}}=\gamma_\pi^{\mathcal{T}-t+1}\hat{\pi}_{t-1}$$

- The AR(1) coefficients $\gamma_{_{V}}$ and γ_{π} are to be determined
 - agents have perceived unconditional first order autocorrelation coefficients (γ_y, γ_π)
 - compute expectations in AD-AS model using them
 - this will imply a solution for output and inflation
- A boundedly rational equilibrium is found when their initial beliefs about γ_y and γ_π coincide with the persistence of output and inflation seen in the data


$$ilde{E}_{t-1} \hat{y}_{\mathcal{T}} = \gamma_y^{\mathcal{T}-t+1} \hat{y}_{t-1}, \qquad ext{and} \qquad ilde{E}_{t-1} \hat{\pi}_{\mathcal{T}} = \gamma_\pi^{\mathcal{T}-t+1} \hat{\pi}_{t-1}$$

- The AR(1) coefficients $\gamma_{_{Y}}$ and γ_{π} are to be determined
 - agents have perceived unconditional first order autocorrelation coefficients (γ_y, γ_π)
 - compute expectations in AD-AS model using them
 - this will imply a solution for output and inflation
- A boundedly rational equilibrium is found when their initial beliefs about γ_y and γ_π coincide with the persistence of output and inflation seen in the data
- As for RE, we match coefficient...but we DO NOT match the entire distribution of variables (only some moments)

Experiment: announced 0.25% real rate cut to occur K qrts later

Experiment: announced 0.25% real rate cut to occur K = 9 qrts later

