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1. Introduction

∙Why correlated random effects (CRE) models?

1. In some cases, CRE approaches lead to widely used estimators, such

as fixed effects (FE) in a linear model.

2. The CRE approach leads to simple, robust tests of correlation

between heterogeneity and covariates. Hausman test comparing random

effects (RE) and fixed effects in a linear model.
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3. For nonlinear models, avoids the incidental parameters problem (at

the cost of restricting conditional heterogeneity distributions).

4. Average partial effects – not just parameters – are generally

identified using CRE approaches.

5. Can combine CRE and the related control function approach for

nonlinear models with heterogeneity and endogeneity.
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6. Recent work on extending the CRE approach to unbalanced panels.

7. Can use the CRE approach for dynamic models. Helps solve the

initial conditions problem.
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2. The Linear Model with Additive Heterogeneity

∙ Assume a large population of cross-sectional units (say, individuals or

families or firms) that we can observe over time.

∙We randomly sample from the cross section, so observations are

necessarily independent in the cross section.
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∙With a large cross section (N) and relatively few time periods (T), we

can allow arbitrary time series dependence when conducting inference.

Asymptotics is with fixed T and N → .

∙ For inference, we need not worry about “unit roots” in the time series

dimension.

∙ Start with the balanced panel case, and denote the observed random

draw for unit i as xit,yit : t  1, . . . ,T.
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∙ The unobserved heterogeneity, denoted ci, is drawn along with the

observed data.

∙ View the ci as random draws. The “fixed” versus “random” debate is

counterproductive. The key is what we assume about the relationship

between the unobserved ci and the observed covariates, xit.

∙ The labels “unosberved effect” or “heterogeneity” are neutral. The

“fixed effects” and “random effects” labels are best attached to

common estimation methods.
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∙ The basic linear model with additive heterogeneity is

yit   t  xit  ci  uit, t  1, . . . ,T,

where uit : t  1, . . . ,T are the idiosyncratic errors. The composite

error at time t is

vit  ci  uit

∙ The sequence vit : t  1, . . . ,T is almost certainly serially

correlated, and definitely is if uit is serially uncorrelated.

∙ xit is a 1  K row vector; at this point, it can contain variables that

change across i only, or across i and t.
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∙With a short panel, the time period intercepts,  t, are treated as

parameters that can be estimated by including dummy variables for

different time periods.

∙With a different setup, such as small N and large T, it makes sense to

view the  t as random variables that induce cross-sectional correlation.

∙When convenient, we absorb time dummies into xit.
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3. Assumptions

∙ Absorb aggregate time effects into xit and write, for a random draw i,

yit  xit  ci  uit, t  1, . . . ,T.

∙ xit can include interactions of variables with time periods dummies,

and general nonlinear functions and interactions, so the model is quite

flexible.
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∙ Especially for the CRE approach, useful to separate out different

kinds of covariates:

yit  gt  zi  wit  ci  uit

gt is a vector of aggregate time effects (often but not necessarily time

dummies)

zi is a set of time-constant observed variables

wit changes across i and t (for at least some units i and time periods t).

∙ Depending on assumptions, we may not be able to consistently

estimate .
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∙ Airfare example:

logfareit   t  1concenit  2 logdisti  3logdisti2

 ci  uit

∙ concenit is a measure of concentration on route i in year t. The  t are

unrestricted year effects capturing secular changes in airfare.

∙ Distance between cities does not change over time.
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∙Main interest is in the coefficient on a variable that changes across i

and t, concenit. Distance is a control.

∙ Are there time-constant differences in routes not captured by

distance? Almost certainly. Are those factors, in ci, correlated with

concenit? Probably.

∙ How can we get the most convincing estimate of 1 and obtain a

reliable confidence interval?
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Exogeneity Assumptions on the Explanatory Variables

yit  xit  ci  uit

Contemporaneous Exogeneity (Conditional on the Unobserved Effect):

Euit|xit,ci  0

or

Eyit|xit,ci  xit  ci,

which gives the j partial effects interpretations holding ci fixed.
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∙  is not identified without more assumptions.

∙ And still, contemporaneous exogeneity already rules out standard

kinds of endogeneity where some elements of xit are correlated with uit:

measurement error, simultaneity, and time-varying omitted variables.

∙ In terms of zero correlation, the CE assumption is

Covxit,uit  0, t  1, . . . ,T
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∙ Strict Exogeneity (Conditional on the Unobserved Effect):

Eyit|xi1, . . . ,xiT,ci  Eyit|xit,ci  xit  ci,

so that only xit affects the expected value of yit once ci is controlled for.

∙ This is weaker than if we did not condition on ci. Assuming strict

exogeneity condition holds conditional on ci,

Eyit|xi1, . . . ,xiT  xit  Eci|xi1, . . . ,xiT.

So correlation between ci and xi1, . . . ,xiT would invalidate the

assumption without conditioning on ci.
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∙ Strict exogeneity implies, for example, correct distributed lag

dynamics (a challenge with small T).

∙ Strict exogeneity definitely rules out lagged dependent variables.

∙ Rules out other situations where shocks today affect future

movements in covariates:

Euit|xi1, . . . ,xiT,ci  0.
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∙ An important implication of strict exogeneity – sometimes used as the

definition – is

Covxis,uit  0, s, t  1, . . . ,T.

In other words, the covariates at any time s are uncorrelated with the

idiosyncratic errors at any time t.

∙ As an example, suppose we want to estimate a distributed lag model

with a single lag, so xit  zit,zi,t−1, and

yit   t  zit0  zi,t−11  ci  uit
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∙ Then strict exogeneity means

Eyit|zi1, . . . ,zit, . . . ,ziT,ci  Eyit|zit,zi,t−1,ci

  t  zit0  zi,t−11  ci

∙We must have the distributed lag dynamics correct and we cannot

allow the shocks uit to be correlated with, say, zi,t1. In other words,

there can be no feedback.
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∙ RE, FE, and CRE all rely on strict exogeneity when T is not large.

∙ In applications we need to ask: Why are the explanatory variables

changing over time, and might those changes be related to past shocks

to yit?

∙ Example: If a worker changes his union status, is he reacting to past

shocks to earnings?

∙ Example: Do shocks to air fares feed back into future changes in

route concentration?
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Sequential Exogeneity (Conditional on the Unobserved Effect):

∙ A more natural assumption is

Eyit|xit,xi,t−1, . . . ,xi1,ci  Eyit|xit,ci  xit  ci.

∙ Sequential exogeneity is a middle ground between contemporaneous

and strict exogeneity. It allows lagged dependent variables and other

variables that change in reaction to past shocks.

∙ Strict exogeneity effectively imposes restrictions on economic

behavior while sequential exogeneity is less restrictive.
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Assumptions about the Unobserved Effect (Heterogeneity)

∙ In modern applications, treating ci as a “random effect” essentially

means

Covxit,ci  0, t  1, . . . ,T,

although we sometimes strengthen this to

Eci|xi  Eci

where xi  xi1,xi2, . . . ,xiT.

∙ Under this key RE assumption, we can technically estimate  with a

single cross section.
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∙ The label “fixed effect” means that no restrictions are placed on the

relationship between ci and xit. It can be (and traditionally was)

taken to mean the ci are parameters to be estimated. In the standard

linear model, these two views lead essentially to the same place – at

least for estimating . But one has to be careful in general.
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∙ The term correlated random effects is used to denote situations where

we model the relationship between ci and xit.

∙ A CRE approach allows us to unify the fixed and random effects

estimation approaches.

∙ Often,

Eci|xi1, . . . ,xiT  Eci|x̄i    x̄i

where x̄i  T−1∑r1
T xir is the vector of time averages.

∙ Proposed by Mundlak (1978) and relaxed by Chamberlain (1980,

1982).
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∙ Useful to decompose ci as

ci    x̄i  ai

Eai|xi  0

∙ Then

yit  xit    x̄i  ai  uit

∙ If we also assume strict exogeneity,

Eyit|xi  Eyit|xit, x̄i  xit    x̄i, t  1, . . . ,T.
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4. Estimation and Inference

∙ Use the CRE approach as a unifying theme.

∙ The estimating equation is

yit  xit    x̄i  ai  uit

≡ xit    x̄i  vit

∙ If

Eai|xi  0
Euit|xi  0, t  1, . . . ,T

then Evit|xi  0.
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∙We can use pooled OLS to consistently estimate all parameters,

including .

∙With the CRE approach we can include time-constant variables.

∙ If we start with

yit  gt  zi  wit  ci  uit

then we can use the CRE estimating equation

yit  gt  zi  wit    w̄i  ai  uit

∙ However, we must use caution in interpreting ̂.
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∙Well-known algebraic equivalence: The pooled OLS estimator on

yit  gt  zi  wit    w̄i  vit

gives the fixed effects estimates of  and , the coefficients on the

time-varying covariates.

∙ Important consequence: For estimating  and , the CRE approach is

robust to arbitrary violations of

Eci|wi    w̄i

∙ Strict exogeneity of xit : t  1, . . . ,T with respect to uit is still

required.
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∙ Because of the presence of ai the error vit  ai  uit likely has lots of

serial correlation.

∙ Alternative to pooled OLS is feasible GLS based on a specific

variance-covariate matrix:

Covai,uit  0, all t
Covuit,uis  0, all t ≠ s

Varuit  u
2, all t

∙ Technically, we should condition on xi.
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∙ If we write

yit  xit    x̄i  vit

and let vi be T  1, then   Evivi
′ has the RE structure:

 

a
2  u

2  a
2 a

2

a
2 a

2  u
2 a

2

  

a
2  a

2 a
2  u

2

.
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∙ Feasible GLS is straightforward – xtreg in Stata.

∙ Another algebraic fact: If we apply RE to

yit  gt  zi  wit    w̄i  ai  uit

we still obtain the FE estimates of  and .

∙ Estimates of  and  differ from pooled OLS.
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∙ Summary: The CRE approach allows us to include the time-constant

variables zi and at the same time delivers the FE estimates on the

time-varying covariates.

∙ Setting   0 gives the usual RE estimates.
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∙ Two ways that RE can fail to be true GLS.

(i) Varvi does not have the RE form.

(ii) Varvi|xi ≠ Varvi (“system heteroskedasticity”).

∙ Important: Either way, RE is generally consistent provided a mild

rank condition holds.
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∙ If we apply RE but it is not truly GLS then we are performing a

“quasi-” GLS procedure: the variance-covariance matrix we are using is

wrong. But the RE estimator is still consistent under the exogeneity

conditions.

∙ The main implication of serial correlation in uit, or

heteroskedasticity in ai or uit, is that we should make our inference

fully robust.

∙Might enhance efficiency by using an unrestricted T  T

variance-covariance matrix.
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∙ In Stata, fully robust inference requires the “cluster” option;

nonrobust inference drops it.

xtset id year

egen w1bar  mean(w1), by(id)



egen wMbar  mean(wM), by(id)

xtreg y d2 ... dT z1 ... zJ w1 w2 ... wM w1bar

... wMbar, re cluster(id)
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EXAMPLE: For N  1,149 U.S. air routes and the years 1997

through 2000, yit is logfareit and the key explanatory variable is

concenit, the concentration ratio for route i. Other covariates are year

dummies and the time-constant variables logdisti and logdisti2.

(AIRFARE.DTA)
. sum fare concen dist

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

fare | 4596 178.7968 74.88151 37 522
concen | 4596 .6101149 .196435 .1605 1

dist | 4596 989.745 611.8315 95 2724

. xtset id year
panel variable: id (strongly balanced)

time variable: year, 1997 to 2000
delta: 1 unit
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. Pooled OLS:

. reg lfare concen ldist ldistsq y98 y99 y00, cluster(id)

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
lfare | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .3601203 .058556 6.15 0.000 .2452315 .4750092

ldist | -.9016004 .2719464 -3.32 0.001 -1.435168 -.3680328
ldistsq | .1030196 .0201602 5.11 0.000 .0634647 .1425745

y98 | .0211244 .0041474 5.09 0.000 .0129871 .0292617
y99 | .0378496 .0051795 7.31 0.000 .0276872 .048012
y00 | .09987 .0056469 17.69 0.000 .0887906 .1109493

_cons | 6.209258 .9117551 6.81 0.000 4.420364 7.998151
------------------------------------------------------------------------------

. * Indirect evidence of plenty of serial correlation in the composite error.
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. xtreg lfare concen ldist ldistsq y98 y99 y00, re

Random-effects GLS regression Number of obs  4596
Group variable: id Number of groups  1149

R-sq: within  0.1348 Obs per group: min  4
between  0.4176 avg  4.0
overall  0.4030 max  4

Random effects u_i ~Gaussian Wald chi2(6)  1360.42
corr(u_i, X)  0 (assumed) Prob  chi2  0.0000

------------------------------------------------------------------------------
lfare | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .2089935 .0265297 7.88 0.000 .1569962 .2609907

ldist | -.8520921 .2464836 -3.46 0.001 -1.335191 -.3689931
ldistsq | .0974604 .0186358 5.23 0.000 .0609348 .133986

y98 | .0224743 .0044544 5.05 0.000 .0137438 .0312047
y99 | .0366898 .0044528 8.24 0.000 .0279626 .0454171
y00 | .098212 .0044576 22.03 0.000 .0894752 .1069487

_cons | 6.222005 .8099666 7.68 0.000 4.6345 7.80951
-----------------------------------------------------------------------------

sigma_u | .31933841
sigma_e | .10651186

rho | .89988885 (fraction of variance due to u_i)
------------------------------------------------------------------------------
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. xtreg lfare concen ldist ldistsq y98 y99 y00, re cluster(id)

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
lfare | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .2089935 .0422459 4.95 0.000 .126193 .2917939

ldist | -.8520921 .2720902 -3.13 0.002 -1.385379 -.3188051
ldistsq | .0974604 .0201417 4.84 0.000 .0579833 .1369375

y98 | .0224743 .0041461 5.42 0.000 .014348 .0306005
y99 | .0366898 .0051318 7.15 0.000 .0266317 .046748
y00 | .098212 .0055241 17.78 0.000 .0873849 .109039

_cons | 6.222005 .9144067 6.80 0.000 4.429801 8.014209
-----------------------------------------------------------------------------

sigma_u | .31933841
sigma_e | .10651186

rho | .89988885 (fraction of variance due to u_i)
------------------------------------------------------------------------------

. * Even though we have done "GLS," the robust standard error is still

. * much larger than the nonrobust one. The robust GLS standard error

. * is substantially below the robust POLS standard error.
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. * Now fixed effects, first with nonrobust inference:

. xtreg lfare concen ldist ldistsq y98 y99 y00, fe

Fixed-effects (within) regression Number of obs  4596
Group variable: id Number of groups  1149

R-sq: within  0.1352 Obs per group: min  4
between  0.0576 avg  4.0
overall  0.0083 max  4

F(4,3443)  134.61
corr(u_i, Xb)  -0.2033 Prob  F  0.0000

------------------------------------------------------------------------------
lfare | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .168859 .0294101 5.74 0.000 .1111959 .226522

ldist | (dropped)
ldistsq | (dropped)

y98 | .0228328 .0044515 5.13 0.000 .0141048 .0315607
y99 | .0363819 .0044495 8.18 0.000 .0276579 .0451058
y00 | .0977717 .0044555 21.94 0.000 .089036 .1065073

_cons | 4.953331 .0182869 270.87 0.000 4.917476 4.989185
-----------------------------------------------------------------------------

sigma_u | .43389176
sigma_e | .10651186

rho | .94316439 (fraction of variance due to u_i)
------------------------------------------------------------------------------
F test that all u_i0: F(1148, 3443)  36.90 Prob  F  0.0000
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. xtreg lfare concen ldist ldistsq y98 y99 y00, fe cluster(id)

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
lfare | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .168859 .0494587 3.41 0.001 .0718194 .2658985

ldist | (dropped)
ldistsq | (dropped)

y98 | .0228328 .004163 5.48 0.000 .0146649 .0310007
y99 | .0363819 .0051275 7.10 0.000 .0263215 .0464422
y00 | .0977717 .0055054 17.76 0.000 .0869698 .1085735

_cons | 4.953331 .0296765 166.91 0.000 4.895104 5.011557
-----------------------------------------------------------------------------

sigma_u | .43389176
sigma_e | .10651186

rho | .94316439 (fraction of variance due to u_i)
------------------------------------------------------------------------------

. * Again there is indirect evidence of serial correlation in the

. * idiosyncratic errors.
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. * Now the CRE approach. concen is the only variable that varies

. * across both i and t.

. egen concenbar  mean(concen), by(id)

. xtreg lfare concen concenbar ldist ldistsq y98 y99 y00, re cluster(id)

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
lfare | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .168859 .0494749 3.41 0.001 .07189 .2658279

concenbar | .2136346 .0816403 2.62 0.009 .0536227 .3736466
ldist | -.9089297 .2721637 -3.34 0.001 -1.442361 -.3754987

ldistsq | .1038426 .0201911 5.14 0.000 .0642688 .1434164
y98 | .0228328 .0041643 5.48 0.000 .0146708 .0309947
y99 | .0363819 .0051292 7.09 0.000 .0263289 .0464349
y00 | .0977717 .0055072 17.75 0.000 .0869777 .1085656

_cons | 6.207889 .9118109 6.81 0.000 4.420773 7.995006
-----------------------------------------------------------------------------

sigma_u | .31933841
sigma_e | .10651186

rho | .89988885 (fraction of variance due to u_i)
------------------------------------------------------------------------------

. The coefficient on concen is the FE estimate.
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5. The Robust Hausman Test

∙ FE removes within-group means. RE removes a fraction of the

within-group means, with the fraction give by

  1 − 1
1  Tc

2/u
2

1/2

,

estimated by ̂.

∙ In other words, the RE estimates can be obtained from the pooled

OLS regression

yit − ̂ȳi on xit − ̂x̄i, t  1, . . . ,T; i  1, . . . ,N.
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̂ ≈ 0  ̂RE ≈ ̂POLS

̂ ≈ 1  ̂RE ≈ ̂FE

∙ If xit includes time-constant variables zi, then 1 − ̂zi appears as a

regressor.

∙ Using the CRE setup it is easy to see why RE is more efficient than

FE under the full set of RE assumptions: RE is true GLS and correctly

imposes   0 in

yit  gt  zi  wit    w̄i  vit
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Testing the Key RE Assumption

∙ Both RE and FE require Covxis,uit  0, all s and t.

∙ RE adds the assumption Covxit,ci  0 for all t. With lots of good

time-constant controls (“observed heterogeneity,” such as industry

dummies) might be able to make this condition roughly true. But we

should test it.
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1. The Traditional Hausman Test: Compare the coefficients on the

time-varying explanatory variables, and compute a chi-square statistic.

Cautions:

(i) Usual Hausman test maintains the second moment assumptions yet

has no systematic power for detecting violations of these assumptions.

(Analogy is using a standard t statistic and thinking that, by itself, it has

some potential to detect heteroskedasticity.)
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(ii) With aggregate time effects, must use generalized inverse, and even

then it is easy to get the degrees of freedom wrong. In Stata, must use

the same estimated covariance matrix for both estimators to get proper

df.
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2. Variable Addition Test (VAT): Write the model as

yit  gt  zi  wit  ci  uit.

∙ Obvious we cannot compare FE and RE estimates of  because the

former is not defined.

∙ Less obvious (but true) that we cannot compare FE and RE estimates

of .

∙We can only compare ̂FE and ̂RE. Let wit be 1  J.
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∙ Use the CRE formulation

yit  gt  zi  wit    w̄i  ai  uit.

∙ Estimate this equation using RE and test H0 :   0.

∙ Should make test fully robust to serial correlation in uit and

heteroskedasticity in ai, uit.
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∙ Conundrum: When FE and RE are similar, it does not really matter

which we choose (although statistical significance can be an issue).

When they differ by a lot and in a statistically significant way, RE is

likely to be inappropriate.

∙ Classic pre-testing problem: Decision to include w̄i is made with

error.

50



∙ Apply to airfare model:
. * First use the Hausman test that maintains all of the RE assumptions under
. * the null:

. qui xtreg lfare concen ldist ldistsq y98 y99 y00, fe

. estimates store b_fe

. qui xtreg lfare concen ldist ldistsq y98 y99 y00, re

. estimates store b_re
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. hausman b_fe b_re

---- Coefficients ----
| (b) (B) (b-B) sqrt(diag(V_b-V_B))
| b_fe b_re Difference S.E.

-----------------------------------------------------------------------------
concen | .168859 .2089935 -.0401345 .0126937

y98 | .0228328 .0224743 .0003585 .
y99 | .0363819 .0366898 -.000308 .
y00 | .0977717 .098212 -.0004403 .

------------------------------------------------------------------------------
b  consistent under Ho and Ha; obtained from xtreg

B  inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(4)  (b-B)’[(V_b-V_B)^(-1)](b-B)
 10.00

Probchi2  0.0405
(V_b-V_B is not positive definite)

.

. di -.0401/.0127
-3.1574803

. * This is the nonrobust H t test based just on the concen variable. There is

. * only one restriction to test, not four. The p-value reported for the

. * chi-square statistic is incorrect.
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. * Using the same variance matrix estimator solves the problem of wrong df.

. * The next command uses the matrix of the relatively efficient estimator.

. hausman b_fe b_re, sigmamore

Note: the rank of the differenced variance matrix (1) does not equal the
number of coefficients being tested (4); be sure this is what you expect,
or there may be problems computing the test. Examine the output of your
estimators for anything unexpected and possibly consider scaling your
variables so that the coefficients are on a similar scale.

---- Coefficients ----
| (b) (B) (b-B) sqrt(diag(V_b-V_B))
| b_fe b_re Difference S.E.

-----------------------------------------------------------------------------
concen | .168859 .2089935 -.0401345 .0127597

y98 | .0228328 .0224743 .0003585 .000114
y99 | .0363819 .0366898 -.000308 .0000979
y00 | .0977717 .098212 -.0004403 .00014

------------------------------------------------------------------------------
b  consistent under Ho and Ha; obtained from xtreg

B  inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(1)  (b-B)’[(V_b-V_B)^(-1)](b-B)
 9.89

Probchi2  0.0017
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. * The regression-based test is better: it gets the df right and is fully

. * robust to violations of the RE variance-covariance matrix:

. egen concenbar  mean(concen), by(id)

. xtreg lfare concen concenbar ldist ldistsq y98 y99 y00, re cluster(id)

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
lfare | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .168859 .0494749 3.41 0.001 .07189 .2658279

concenbar | .2136346 .0816403 2.62 0.009 .0536227 .3736466
ldist | -.9089297 .2721637 -3.34 0.001 -1.442361 -.3754987

ldistsq | .1038426 .0201911 5.14 0.000 .0642688 .1434164
y98 | .0228328 .0041643 5.48 0.000 .0146708 .0309947
y99 | .0363819 .0051292 7.09 0.000 .0263289 .0464349
y00 | .0977717 .0055072 17.75 0.000 .0869777 .1085656

_cons | 6.207889 .9118109 6.81 0.000 4.420773 7.995006
-----------------------------------------------------------------------------

sigma_u | .31933841
sigma_e | .10651186

rho | .89988885 (fraction of variance due to u_i)
------------------------------------------------------------------------------

. * So the robust t statistic is 2.62 --- still a rejection, but not as strong.
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. * What if we do not control for distance in RE?

. xtreg lfare concen y98 y99 y00, re cluster(id)

Random-effects GLS regression Number of obs  4596
Group variable: id Number of groups  1149

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
lfare | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .0468181 .0427562 1.09 0.274 -.0369826 .1306188

y98 | .0239229 .0041907 5.71 0.000 .0157093 .0321364
y99 | .0354453 .0051678 6.86 0.000 .0253167 .045574
y00 | .0964328 .0055197 17.47 0.000 .0856144 .1072511

_cons | 5.028086 .0285248 176.27 0.000 4.972178 5.083993
-----------------------------------------------------------------------------

sigma_u | .40942871
sigma_e | .10651186

rho | .93661309 (fraction of variance due to u_i)
------------------------------------------------------------------------------

. * The RE estimate is now way below the FE estimate, .169. Thus, it can be

. * very harmful to omit time-constant variables in RE estimation.
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6. Correlated Random Slopes

∙ Linear model but where all slopes may vary by unit:

yit  ci  xitbi  uit

Euit|xi,ci,bi  0, t  1, . . . ,T,

where bi is K  1.

∙ Question: What if we ignore the heterogeneity in the slopes and act as

if bi is constant all i? We apply the usual FE estimator that only

eliminates ci.

∙ Define the average partial effect (population average effect) as

  Ebi.
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∙Wooldridge (2005, REStat): A sufficient condition for FE to

consistently estimate  is

Ebi|ẍit  Ebi  , t  1, . . . ,T.

∙ This condition allows the slopes, bi, to be correlated with the

regressors xit through permanent components. What it rules out is

correlation between idiosyncratic movements in xit.
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∙ For example, suppose xit  f i  rit, t  1, . . . ,T where f i is the

unit-specific “level” of the process and rit are the deviations from

this level. Because ẍit  r̈it it suffices that

Ebi|ri1,ri2, . . . ,riT  Ebi

∙ Note that any kind of serial correlation and changing

variances/covariances are allowed in rit.
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∙ Extension to random trend settings. Write

yit  wtai  xitbi  uit, t  1, . . . ,T

where wt is a set of deterministic functions of time. Now the fixed

effects estimator sweeps away ai by netting out wt from xit.

∙ The ẍit are the residuals from the regression xit on wt, t  1, . . . ,T.

∙ In the random trend model, wt  1, t, and so the elements of xit

have unit-specific linear trends removed in addition to a level effect.
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∙ Removing more of the heterogeneity from xit makes it even more

likely that the FE estimator is consistent. For example, if wt  1, t

and xit  f i  hit  rit, then bi can be arbitrarily correlated with f i,hi.

∙ Adding to wt – such as polynomials in t – requires more time periods,

and it decreases the variation in ẍit compared to the usual FE estimator.

Requires dimwt  T.
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Modelling the Correlated Random Slopes

∙ Again consider the model

yit  ci  xitbi  uit, t  1, . . . ,T

where we assume

bi    Γx̄i −  x̄
′  di

Edi|xi  0
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∙ After simple algebra:

yit  t  ci  xit  x̄i −  x̄ ⊗ xit  xitdi  uit,

∙ A test of H0 :   0 is simple to carry out.

1. Create interactions

x̄i − x̄ ⊗ xit

where x̄ is the vector of overall averages, x̄  N−1∑i1
N x̄i. (Or use a

subset of x̄i to interact with a subset of xit.)

2. Estimate the equation by FE (to account for ci) and obtain a fully

robust test of the interaction terms.
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∙We can also allow bi to depend on time constant observable

variables:

bi    Γx̄i −  x̄
′  hi − h

′  di

where hi is a row vector of time-constant variables that we think might

influence bi.

∙ The new equation is

yit  t  ci  xit  x̄i − x̄ ⊗ xit  hi − h̄ ⊗ xit  errorit

and we can test H0 :   0,  0 or a subset, using the fixed effects

estimator (to remove ci).
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∙ Can also model ci using a CRE approach, which means add x̄i and hi

as separate regressors and estimate the model by random effects. This is

common in the hierarchical linear models literature.

∙ Then estimate the equation

yit  t  xit  x̄i  hi  x̄i − x̄ ⊗ xit  hi − h̄ ⊗ xit  errorit

using RE with fully robust inference.

EXAMPLE: Effects of Concentration on Airfares

∙ Interact concenit with the time average and the distance variables.

Center about averages to obtain the average partial effects.
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. egen concenb  mean(concen), by(id)

. sum concenb ldist ldistsq

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

concenb | 4596 .6101149 .1888741 .1862 .9997
ldist | 4596 6.696482 .6593177 4.553877 7.909857

ldistsq | 4596 45.27747 8.726898 20.73779 62.56583

. gen cbconcen  (concenb - .61)*concen

. gen ldconcen  (ldist - 6.696)*concen

. gen ldsqconcen  (ldistsq - 45.277)*concen

. xtreg lfare concen concenb cbconcen ldconcen ldsqconcen ldist ldistsq
y98 y99 y00, re cluster(id)

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
lfare | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .1682492 .0496695 3.39 0.001 .0708988 .2655996

concenb | .157291 .2085049 0.75 0.451 -.2513711 .565953
cbconcen | .0635453 .3033809 0.21 0.834 -.5310704 .6581609
ldconcen | -.2994869 .9930725 -0.30 0.763 -2.245873 1.646899

ldsqconcen | .0112477 .0746874 0.15 0.880 -.135137 .1576324
ldist | -.4394368 .6713288 -0.65 0.513 -1.755217 .8763435

ldistsq | .0752147 .0494201 1.52 0.128 -.0216469 .1720764
y98 | .0229684 .0041542 5.53 0.000 .0148262 .0311105
y99 | .0358549 .0051298 6.99 0.000 .0258007 .0459091
y00 | .0976256 .005461 17.88 0.000 .0869221 .108329

_cons | 4.382552 2.272566 1.93 0.054 -.0715953 8.836699
-----------------------------------------------------------------------------
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. test concenb cbconcen ldconcen ldsqconcen

( 1) concenb  0
( 2) cbconcen  0
( 3) ldconcen  0
( 4) ldsqconcen  0

chi2( 4)  14.02
Prob  chi2  0.0072

. * If we test only the interactions, they are jointly insignificant:

. test cbconcen ldconcen ldsqconcen

( 1) cbconcen  0
( 2) ldconcen  0
( 3) ldsqconcen  0

chi2( 3)  5.47
Prob  chi2  0.1407
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. * Estimated coefficient on concen very close to omitting interations:

. xtreg lfare concen concenb ldist ldistsq y98 y99 y00, re cluster(id)

Random-effects GLS regression Number of obs  4596
Group variable: id Number of groups  1149

R-sq: within  0.1352 Obs per group: min  4
between  0.4216 avg  4.0
overall  0.4068 max  4

Random effects u_i ~Gaussian Wald chi2(7)  1273.17
corr(u_i, X)  0 (assumed) Prob  chi2  0.0000

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
lfare | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .168859 .0494749 3.41 0.001 .07189 .2658279

concenb | .2136346 .0816403 2.62 0.009 .0536227 .3736466
ldist | -.9089297 .2721637 -3.34 0.001 -1.442361 -.3754987

ldistsq | .1038426 .0201911 5.14 0.000 .0642688 .1434164
y98 | .0228328 .0041643 5.48 0.000 .0146708 .0309947
y99 | .0363819 .0051292 7.09 0.000 .0263289 .0464349
y00 | .0977717 .0055072 17.75 0.000 .0869777 .1085656

_cons | 6.207889 .9118109 6.81 0.000 4.420773 7.995006
-----------------------------------------------------------------------------

sigma_u | .31933841
sigma_e | .10651186

rho | .89988885 (fraction of variance due to u_i)
------------------------------------------------------------------------------
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