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Abstract: I propose some strategies for allowing unobserved heterogeneity to be correlated

with observed covariates and sample selection for unbalanced panels. The methods are

extensions of the Chamberlain-Mundlak approach for balanced panels. Even for nonlinear

models, in many cases the estimators can be implemented using standard software. The

framework suggests straightforward tests for sample selection that is correlated with

unobserved shocks while allowing selection to be correlated with the observed covariates and

unobserved heterogeneity.
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1. Introduction

Correlated random effects (CRE) approaches to nonlinear panel data models are popular

with empirical researchers, partly because of their simplicity but also because recent research

(for example, Blundell and Powell (2003), Altonji and Matzkin (2005), and Wooldridge

(2005)) shows that quantities of interest – usually called “average marginal effects” (AMEs) or

“average partial effects” (APEs) – are identified under nonparametric restrictions on the

distribution of heterogeneity given the covariate process. (Exchangeability is one such

restriction, but it is not the only one.) Wooldridge (2002) shows how the CRE approach applies

to commonly used models, such as unobserved effects probit, tobit, and count models. Papke

and Wooldridge (2008) propose simple CRE methods when the response variable is a fraction

or proportion.

The leading competitor to CRE approaches are so-called “fixed effects” (FE) methods,

which, for the purposes of this paper, treat the heterogeneity as parameters to be estimated.

(Perhaps a better characterization is that the FE approach studies the properties of the fixed

population parameters and, more recently, average partial effects, when heterogeneity is

handled via estimating separate parameters for each population unit.) As is well known, except

in some very special cases, estimating unobserved heterogeneity for each unit in the sample

generally suffer from the incidental parameters problem – both in estimating population

parameters and APEs. Some headway has been made in obtaining bias-corrected versions of

“fixed effects” estimators for nonlinear models – for example, Hahn and Newey (2004) and

Fernandez-Val (2008). These methods are promising, but they currently have several practical

shortcomings. First, the number of time periods needed for the bias adjustments to work well is

often greater than is available in many applications. Second, an important point is that recent
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bias adjustments include the assumptions of stationarity and weak dependence; in some cases,

the very strong assumption of serial independence (conditional on the heterogeneity) is

maintained. As a practical matter, sources of serial correlation in addition to that caused by

unobserved heterogeneity is very common in empirical work. (For example, for linear models

it is often the case that the idiosyncratic errors have strong forms of serial correlation quite

apart from the correlation caused by the heterogeneity appearing in every time period.) The

requirement of stationarity is also very strong and has substantive restrictions: it rules out

staples in empirical work such as including separate year effects, which can be estimated very

precisely given a large cross section. In addition, the technical problem of allowing separate

period effects when large-sample approximations involve a growing number of time periods

has not yet been solved and is likely to be difficult, as it effectively introduces an incidental

parameters problem in the time series dimension to go along with that in the cross section

dimension. As this literature currently stands, the restrictions on time series dependence are not

just regularity conditions that simplify proofs; the adjustments themselves only make sense

under stationarity and weak dependence. See Imbens and Wooldridge (2007) for a summary.

Recently, Chernozhukov, Fernández-Val, Hahn, and Newey (2009) (CFHN) show that

average partial effects are not generally identified in nonlinear models, and they provide

estimable bounds in the case of discrete covariates. Under stationarity and ergodicity, CFHN

show that the bounds become tighter as the number of time periods (T) increases. (They do not

impose assumptions such as exchangeability, as in Altonji and Matzkin (2003), in which case

the APEs are point identified.) These methods are very promising but are still limited to

discrete covariates. Plus, in some cases we may be willing to impose more restrictions in order

to point identify the APEs.
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Another method that is often used, but only in special cases, is conditional maximum

likelihood estimation. The general approach is to find a conditional likelihood function that is

free of the unobserved heterogeneity but depends on the population parameters. Unfortunately,

this method has rather limited scope. It applies to linear models (but where we do not needed)

and a few nonlinear models. It is most commonly applied to the unobserved effects logit model

and also to the unobserved effects Poisson regression model. When it applies, the CMLE has

the advantage that it puts no restrictions on the heterogeneity distribution – either

unconditionally or conditionally. Unfortunately, even in the limited cases where it applies,

CMLE can impose substantive restrictions. For example, the CMLE for the logit model is

inconsistent if the conditional independence assumption fails – see Kwak and Wooldridge

(2009). (Other CMLEs are more robust, such as those for the linear and Poisson unobserved

effects models, but again these are special cases. See Wooldridge (1999) for the Poisson case.)

A positive feature of the CMLE approach is that it works for any number of time periods and

imposes no restrictions on the time series properties of the covariates. However, because

CMLEs are intended to leave heterogeneity distributions unspecified, it is unclear how to

obtain average partial effects. In other words, we cannot estimate the magnitudes of effects of

covariates.

In the balanced panel case, CRE approaches put restrictions on the conditional distribution

of heterogeneity given the entire history of the covariates. This is its drawback compared with

FE or CMLE approaches. But it requires few other assumptions for estimating average partial

effects, and the restrictions needed on the conditional heterogeneity distribution can be fairly

weak. For example, stationarity and weak dependence of the processes over time are not

necessary, although restrictions such as exchangeability can be very useful – see Altonji and
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Matzkin (2003). In other words, for estimation using balanced panels, CRE, FE, and CMLE

involvate tradeoffs among assumptions and the type of quantities that can be estimated. No

method provides consistent estimators of either parameters or APEs under a set of assumptions

strictly weaker than the assumptions needed for the other procedures.

There is one clear disadvantage of CRE approaches when compared with either FE or

CMLE methods: neither FE nor CMLE approaches require balanced panels whereas CRE

methods, as currently developed, are for balanced panels. Generally, it is not obvious how to

extend CRE approaches for balanced panels to unbalanced panels. In this paper I suggest an

approach – which can be combined with recently proposed semiparametric and nonparametric

methods if desired – and also provide simple implementations in the context of commonly used

models, such as the CRE probit, ordered probit, and Tobit models.

A key assumption used in this paper is either implicit or explicit in most analyses with

unbalanced panels, particularly when heterogeneity is removed or treated as parameters to

estimate. Namely, sample selection is assumed not to be systematically related to unobserved

shocks. (The exact statement of the assumption depends on whether the model is linear and

where a full distribution has been specified or just a feature of it, such as a conditional mean.

We state precise assumptions when appropriate.) Neverthleless, one of the attractions of, say,

fixed effects estimation in the linear model – which we review briefly in Section 2 – is that

selection can be arbitrarily correlated with unobserved hetergeneity. My approach to CRE

models allows such correlation, too. In fact, the heterogeneity is allowed to be correlated with

the entire history of selection and the (selected) covariates. Unlike CMLE approaches, I do not

restrict the serial dependence in the data.

Section 2 studies the behavior of estimators for unbalanced panels for the standard linear
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model with an additive unobserved effect. Somewhat surprisingly, adding the time average of

the covariates (averaged across the unbalanced panel) and applying either pooled OLS or

random effects still leads to the fixed effects (within) estimator, even when common

coefficients are imposed on the time average. This result motivates the approaches in Sections

3 and 4 for more complicated models, but it is of interest in its own right because it leads to

simple, fully robust Hausman specification tests for the unbalanced case. This section also

discusses how one might test a subset of the exogeneity assumptions used by the usual RE

estimator. Section 3 extends the basic linear model to allow for correlated random slopes.

These results allow selection and covariates to be correlated with unobserved heterogeneity

that interacts with observable covariates in unbalanced panels.

Section 4 proposes a general method for allowing correlated random effects in nonlinear

models. The motivation is given by the findings in Sections 2 and 3.

Section 5 discusses the important practical problem of computing partial effects with the

heterogeneity averaged out – so called “average partial effects” (APEs). Conveniently, the

pooled methods for nonlinear models identify the APEs without restrictions on time series

dependence. We can use the same averaging out of sufficient statistics that is used with

balanced panels. Section 6 discusses how the methods can be applied to popular nonlinear

models, such as probit (including for fractional variables), ordered probit, and Tobit. Simple

tests for violation of the ignorability of selection are discussed in this section as well.

Section 7 contains a general proposal for comparing fit across different models. The

approach appears to be new – whether or not we are studying a balanced panel – and provides

a unifying framework for choosing among different models with unobserved heterogeneity.

Section 8 summarizes some limitations of the current paper and suggests some directions for
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future research.

2. The Linear Model with Additive
Heterogeneity

It is useful to begin with the standard linear model with additive heterogeneity. We can set

the framework for more complicated settings and at the same time summarize some results that

are useful for testing key assumptions.

Assume that an underlying population consists of a large number of units for whom data on

T time periods are potentially observable. We assume random sampling from this population,

and denote a random draw, i. Along with the potentially observed outcome, yit, are potentially

observed covariates, xit. Generally, we also draw unobservables for each i; we are particularly

interested in the unobserved heterogeneity, ci.

To allow for unbalanced panels, we explicitly introduce a series of selection indicators for

each i, si1, . . . , siT, where sit  1 if time period t for unit i can be used in estimation. In this

paper, we only use information on units where a full set of data are observed. Therefore,

sit  1 if and only if xit,yit is fully observed; otherwise, sit  0. This is very common in

panel data applications with unbalanced panels.

The linear model with additive heterogeneity is

yit  xit  ci  uit, t  1, . . . ,T,     (2.1)

where xit can generally include a full set of time dummies, or other aggretate time variables.

We view this as the equation that holds for underlying random variables in all T time periods.

We are interested in this paper in estimators of  that allow for correlation between ci and the
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history of covariates, xit : t  1, . . . ,T. With balanced panels, a common assumption is strict

exogeneity of the covariates with respect to the idiosyncratic errors, which leads to the

well-known fixed effects estimator and variants. With an unbalanced panel, the key

assumption is most easily stated as

Euit|xi,ci, si  0, t  1, . . . ,T     (2.2)

where xi  xi1,xi2, . . . ,xiT and si  si1, si2, . . . , siT. Assumption (2.2) implies that observing

a data point in any time period cannot be systematically related to the idiosyncratic errors, uit.

It is a version of strict exogeneity of selection (along with strict exogeneity of the covariates)

conditional on ci. As a practical matter, (2.2) allows selection sit at time period t to be

arbitrarily correlated with xi,ci, that is, with the observable covariates and the unobserved

heterogeneity. For later comparisons with nonlinear models, note that we can combine (2.1)

and (2.2) as

Eyit|xi,ci, si  Eyit|xi,ci  xit  ci,     (2.3)

which means we can start from an assumption about a conditional expectation involving the

response variable, as is crurical for nonlinear models.

It is well-known – see, for example, Verbeek and Nijman (1996), Hayashi (2001) and

Wooldridge (2002, Chapter 17) – that the fixed effects (within) estimator on the unbalanced

panel is generally consistent under (2.3), provided there is sufficient time variation in the

covariates and the selected sample is not “too small.” If selection in every time period is

independent of the covariates and idiosyncratic errors in every time period then we can get by

with a zero correlation assumption between xir and uit for all r, t  1, . . . ,T in the population.

Because we are interested in nonlinear models, we will use assumptions stated in terms of
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conditional means.

One way to characterize the FE estimator on the unbalanced panel is to simply multiply

equation (2.1) through by the selection indicator to get

sityit  sitxit  sitci  situit, t  1, . . . ,T,     (2.4)

and when we average this equation across t for each i we get

ȳi  x̄i  ci  ūi, t  1, . . . ,T,     (2.5)

where ȳi  Ti−1∑r1
T siryir is the average of the selected observations and Ti  ∑r1

T sir is the

number of time periods observed for unit i; the other averages in (2.5) are defined similarly. If

we now multiply (2.5) by sit and subtract from (2.4) we remove ci:

sityit − ȳi  sitxit − x̄i  situit − ūi.     (2.6)

Now we can apply pooled OLS to this equation to obtain the FE estimator on the unbalanced

panel. It is straightforward to show that (2.2), along with a rank condition, is sufficient for

consistency.

As a computational point that becomes more important in complicated models, note that

the time averages of yit and xit are computed only for time periods where data exist on the full

set of variables xit,yit. Consequently, there are often pairs i, t where we may observe some

elements in xit,yit but where the information on these variables is not used in estimation.

In the balanced case, it has been known for some time – see Mundlak (1978) – that the FE

estimator can be computed as a pooled OLS estimator using the original data, but adding the

time averages of the covariates as additional explanatory variables. Perhaps less well known is

that this algebraic result carries over to the unbalanced case. In particular, let

x̄i  Ti−1∑r1
T sirxir be the average of the covariates over the time periods where we observe a
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full set of data on the covariates and response variables. Then, estimate the equation

yit  xit    x̄i  vit     (2.7)

by pooled OLS using the sit  1 observations. The coefficient vector ̂ is identical to the fixed

effects (within) estimator on the unbalanced panel. Any aggregate time variables, including

time dummies, should be part of xit, and their time averages must be included in x̄i. The reason

is that, unlike in the balanced case, the time average of aggregate time variables changes across

i because we average different time periods for different i.

In addition, if we run any pooled regression of the form

yit on 1,xit, x̄i,zi if sit  1,     (2.8)

where zi is any vector of time-constant variables, then ̂ is still the fixed effects estimate. For

example, if we add the number of time periods, Ti, or interactions of the form Ti  x̄i (that is,

the sums in addition to the averages), the estimated coefficients on xit are the fixed effects

estimates. The same is true if we allow a different set of coefficients on x̄i depending on Ti. Of

course, we can also add variables such as gender in a wage equation.

As other examples of zi, one can use x̄i1,Ti1, x̄i2,Ti2, . . . , x̄iG,TiG where we partition

1,2, . . . ,T into G groups and then compute the averages of the selection observations, x̄ig,

and the total number of selected periods, Tig. Because we can get x̄i as a linear combination of

x̄i1, x̄i2, . . . , x̄iG, the pooled OLS estimator of  is still the FE estimate. In other words,

allowing for very general correlation between ci and the (selected) sequence of covariates in

the standard linear model produces an estimator that is commonly used, and is robust to any

kind of correlation between ci and xi1, si1, xi2, si2, . . . , xiT, sit. When we discuss models

with random slopes in the next section, and nonlinear models in Section 4, this point is useful
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because we will have to take models relating heterogeneity to the covariates and selection

more seriously. Yet at least in the leading case, the estimator is not sensitive to the

specification of Eci|xi,zi.

It is useful to have a general result that contains algebraic equivalances for pooled OLS as

well as random effects. Recall that for a model with response variable yit and covariates

xit,zi, where zi contains unity and xit contains any aggregate time variables, the RE estimator

can be obtained from the pooled OLS regression

yit − iȳi on xit − ix̄i, 1 − ix̄i, 1 − izi if sit  1,     (2.9)

where i  1 − u2/u2  Tic21/2 is a function of Ti and the variance parameters; see, for

example, Baltagi (2001, Section 9.2). (Of course, in practice, the variance parameters are

replaced with estimates, but that is unimportant for an algebraic equivalance.) For our

purposes, all that matters is that pooled OLS with the time averages added (i  0) and random

effects are special cases.

Proposition 2.1: Consider pooled OLS regressions of the form in (2.9), where the time

averages are computed using the selected observations (so, for example, x̄i  Ti−1∑r1
T sirxir).

Note that zi can include the intercept and xit any aggregate time variables. Let ̃ be the vector

(K  1 of coefficients on xit − ix̄i. Then ̃  ̂FE, the fixed effects estimate on the unbalanced

panel.

Proof: The case i  1 for all i is obvious, because then the estimate ̃ is from the pooled

regression yit − ȳi on xit − x̄i with sit  1 – and this defines the FE estimate on the unbalanced

panel. To handle other cases, we assume that the appropriate matrices are invertible. Generally,

the invertibility requirement holds under standard assumptions of time-variation in the xit
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and no perfect collinearity when 0 ≤ i  1.

First consider the case without zi. Then ̃ can be obtained from the Frisch-Waugh theorem.

First, regress xit − ix̄i on 1 − ix̄i (using the selected sample) and obtain the residuals, say

r̃ it. Then obtain ̃ from the pooled OLS regression (again on the selected sample) of yit − iȳ

on r̃ it. The residuals r̃ it are simple to obtain. We can write them as

r̃ it  xit − ix̄i − 1 − ix̄i̃     (2.10)

where

̃  ∑
i1

N

∑
t1

T

sit1 − i2x̄i′x̄i

−1

∑
i1

N

∑
t1

T

sit1 − ix̄i′xit − ix̄i

 ∑
i1

N

Ti1 − i2x̄i′x̄i

−1

∑
i1

N

∑
t1

T

sit1 − ix̄i′xit −∑
i1

N

Tii1 − ix̄i′x̄i

 ∑
i1

N

Ti1 − i2x̄i′x̄i

−1

∑
i1

N

Ti1 − ix̄i′x̄i −∑
i1

N

Tii1 − ix̄i′x̄i

 ∑
i1

N

Ti1 − i2x̄i′x̄i

−1

∑
i1

N

Ti1 − i2x̄i′x̄i  IK.

    (2.11)

It follows that r̃ it  xit − ix̄i − 1 − ix̄i  xit − x̄i, which is simply the time-demeaned

covariates. Now we can write

̃  ∑
i1

N

∑
t1

T

sitxit − x̄i ′xit − x̄i

−1

∑
i1

N

∑
t1

T

sitxit − x̄i ′yit − iȳi

 ∑
i1

N

∑
t1

T

sitxit − x̄i ′xit − x̄i

−1

∑
i1

N

∑
t1

T

sitxit − x̄i ′yit

    (2.12)

using the fact∑ t1
T sitxit − x̄i ′iȳi  iȳi∑ t1

T sitxit − x̄i ′  0 because x̄i is the average over

the selected time periods. But this final formula is just ̂FE on the selected sample.

For the case with zi, we can apply the Frisch-Waugh theorem again to obtain the
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appropriate residuals. That is, now r̃ it are from the regression xit − ix̄i on 1 − ix̄i, 1 − izi

with sit  1. But now we partial out xit − ix̄i from 1 − ix̄i to get residuals q̃it, say, and we

just showed q̃it  xit − x̄i. The other residuals we need are from 1 − izi on 1 − ix̄i with

sit  1, and it is obvious that these, say ẽ i, depend only on i. So the r̃ it are from xit − x̄i on ẽ i

across i and t with sit  1, and because∑ t1
T sitxit − x̄i  0 for all i, it follows that

∑
i1

N

∑
t1

T

sitẽ i′q̃it  0.

This means r̃ it  q̃it  xit − x̄i, as before. Now the rest of the proof is the same. 

The conclusions of Proposition 2.1 verify the previous claims made for pooled OLS as well

as random effects on the unbalanced panel. A nice application of this algebraic equivalance

result is a simple way to obtain regression-based, fully robust Hausman tests using unbalanced

panels. Write a model with time-constant variables zi as

yit  xit  zi  ci  uit, t  1, . . . ,T,     (2.13)

where, again, we use a data point if sit  1. Assume that zi includes a constant. If we use the

Mundlak equation

yit  xit  x̄i  zi  ai  uit     (2.14)

and estimate this by, say, RE, we know from Proposition 2.1 that the estimate of  is the FE

estimate. Now the regression based Hausman test is just, say, a Wald test of H0 :   0 after

RE estimation of the augmented equation. Any unit with Ti  1 can be included in the

estimation and testing, but, of course, if we only have units with Ti  1 then x̄i  xit for the

single time period t with sit  1; thus,  and  cannot be distinguished.

We can also use Mundlak’s CRE formulation, whether the panel is balanced or not, to test
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a subset of coefficients in . For example, we might postulate

Eci|xi,zi  Eci|x̄i,zi  Eci|x̄i1,zi,     (2.15)

where x̄i1 is x̄i but with the first element, x̄i1, removed. This allows us to test the possibility

that, after controlling for x̄i2, . . . , x̄iK,zi, xit1 is exogenous with respect to ci (as well as

uit). The test is just a fully robust t test of H0 : 1  0. A failure to reject provides some

justification for estimating the equation

yit  xit  2x̄i2 . . .Kx̄iK  zi  ci  uit     (2.16)

by random effects (on the unbalanced panel) – likely leading to a more precise, perhaps much

more precise, estimate of 1 (the coefficient on xit1). Naturally, one should make inference

fully robust to heteroskedasticity in the composite error and serial correlation in uit.

Using a t statistic on ̂1 is not the same, even asymptotically, as comparing ̂FE,1 and ̂RE,1

via a one degree-of-freedom Hausman test. The latter maintains   0 under the null – that is,

the RE estimator of 1 is generally inconsistent under (2.15) – whereas a t test of H0 : 1  0

is silent on other elements of . If 1 is the coefficient of primary interest, it may make more

sense to test H0 : 1  0, as it allows (partial) correlation between ci and x̄i1.

Excluding x̄i1 from (2.16) is in the spirit of imposing extra restrictions to estimate the

parameters in (2.13). Hausman and Taylor (1981) use exogeneity assumptions on both

time-constant and time-varying covariates in (2.13), mainly to identify elements of  when the

full RE orthogonality conditions do not hold. In (2.16), we do not need to exclude x̄i1 in order

to identify 1 (because xit1 has some time variation), but doing so may result in an estimate

of 1 with more precision.

In summary, this section has shown that even if we make a very strong assumption in the
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unbalanced case, namely, ci    x̄i  ai, Eai|sit, sitxit : t  1, . . . ,T  0, the

resulting estimator – pooled OLS or RE – is identical to an estimator, fixed effects, that puts no

restrictions on Eci|sit, sitxit : t  1, . . . ,T. This extension of the usual Mundlak (1978)

result for the balanced case suggests that in models with more complicated functional forms

and heterogeneity, simple models of Eci|sit, sitxit : t  1, . . . ,T may work reasonably

well.

3. Linear Models with Correlated Random
Slopes

If we start with a model that has individual-specific slopes, the presence of unbalanced

panels is more difficult to treat. Wooldridge (2005) shows that using fixed effects in a linear

model where the random slopes are ignored has some robustness properties for estimating the

average effect. But those findings do not carry over to unbalanced panels where selection may

be correlated with heterogeneity: the slope heterogeneity becomes part of the error term, and

correlation between selection and the heterogeneity generally causes inconsistency.

To see how to handle unbalanced panels, state the model as

Eyit|xi,ai,bi  ai  xitbi,     (3.1)

so, in the population, xit : t  1, . . . ,T is strictly exogenous conditional on ai,bi. Define

ai    ci, bi    di and write

yit    xit  ci  xitdi  uit     (3.2)

where Euit|xi,ai,bi  Euit|xi,ci,di for all t. We also assume that selection may be related

to xi,ai,bi but not the idiosyncratic shocks:
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Eyit|xi,ai,bi, si  Eyit|xi,ai,bi     (3.3)

or

Euit|xi,ai,bi, si  0, t  1, . . . ,T.     (3.4)

This is an obvious extension of assumption (2.3).

In what follows, we assume that we do not want to select elements of bi that are allowed to

change with i. If we had only a few such elements, and a sufficient number of time periods, we

could proceed by eliminating those elements of bi via a generalized within transformation and

then proceed with estimation of the constant slopes. Such an approach would be the

unbalanced version of the methods described by Wooldridge (2002, Chapter 11). This

approach is attractive in specific instances, but it cannot be used in general (and not at all for

nonlinear models).

To study estimation on an unbalanced panel, multiply (3.2) through by the selection

indicator:

siyit  sit  sitxit  sitci  sitxitdi  situit     (3.5)

Now, because we only use observations with sit  1, we handle the presence of intercept and

slope heterogeneity by conditioning on the entire history of selection and the values of the

covariates if selected. That is, we condition on sit, sitxit : t  1, . . . ,T. If sit  0 the

observation is not used; if sit  1 the observation is used and we observe xit. It might seem

better to condition on xi1, si1, xi2, si2, . . . , xiT, siT, but then if the heterogeneity depends

only on the history of covariates, we would be left with an equation that is not estimable unless

the covariates are always observed. We want to be able to handle cases where the covariates

are missing, too, as happens when units are simply not observed at all for some time periods.
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Therefore, to obtain a true estimating equation, we condition on sit, sitxit : t  1, . . . ,T.

For notational simplicity, write hi ≡ hit : t  1, . . . ,T ≡ sit, sitxit : t  1, . . . ,T.

Then, extending Mundlak (1978) and Chamberlain (1982, 1984), we work with

Esiyit|hi  sit  sitxit  sitEci|hi  sitxitEdi|hi     (3.6)

and then make assumptions concerning Eci|hi and Edi|hi. Actually, because we can

eliminate ci using the within transformation, we could just focus on Edi|hi. However,

assuming we know models for Edi|hi but not for Eci|hi is somewhat arbitrary, and so we

first consider the case where we model all expectations.

At this point it is useful to point out that if ai,bi are assumed to be independent (or, at

least, mean independent) of xi1, si1, xi2, si2, . . . , xiT, siT – an assumption often implicit in

random coefficient frameworks – then the issue of how to model Eci|hi and Edi|hi

disappears. The term sitEci|hi  sitxitEdi|hi would be identically zero, which means we

would be left with Esiyit|hi  sit  sitxit. Pooled estimation using the selected sample or

generalized least squares methods can be applied.

A simple approach to allowing Eai,bi|hi to depend on hi is to model the expectations as

exchangeable functions of hit : t  1, . . . ,T. In the balanced panel case, this approach was

suggested by Altonji and Matzkin (2005) in a fully nonparametric setting. The leading

examples of exchangeable functions are sums (or averages). In keeping with the motivation

from Section 2, we might choose

wi ≡ Ti, x̄i     (3.7)

as the exchangeable functions satisfying

Eci|hi  Eci|wi, Edi|hi  Edi|wi.     (3.8)
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Further, if we assume that these expectations depend only on x̄i, and in a linear fashion, we

have

Eci|hi  x̄i −  x̄i


Edi|hi  x̄i −  x̄i
 ⊗ IK,

    (3.9)

    (3.10)

where  x̄i
 Ex̄i is subtracted from x̄i to ensure the zero unconditional means of ci and di. If

we insert these expectations into (3.6) we obtain

Esiyit|hi  sit  sitxit sitx̄i −  x̄i
  sitx̄i −  x̄i

 ⊗ xit,     (3.11)

which is an equation with the time averages and each time average interacted with each

time-varying covariate. It is now obvious that we can use pooled OLS on the selected sample

to consistently estimate ,  (the main vector of interest), , and . We can even use, say,

random effects estimation (adjusted, of course, for the unbalanced panel), but inference should

be made robust to arbitrary heteroskedasticity and serial correlation. As a practical matter, we

replace  x̄i
with ̂ x̄i

 N−1∑ i1
N x̄i as a consistent estimator of  x̄i

. Notice that ̂ x̄i
is consistent

for the quantity we need, which is the expected value of x̄i  Ti−1∑r1
T sirxir.

If we drop the set of interactions x̄i −  x̄i
 ⊗ xit, we know from Section 2 the resulting

estimator would be the FE estimator on the unbalanced panel. This suggests a simple test for

whether we need to further consider correlation of selection and the random slopes. Estimate

the equation

yit  xit  x̄i −  x̄i
 ⊗ xit  ai  uit     (3.12)

by fixed effects, so that ai is removed without imposing any assumptions on its conditional

distribution. If we cannot reject H0 :   0, we might ignore the possibility of random slopes

and just use standard FE estimation on the unbalanced panel.
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If we conclude that we need to account for the random slopes, and that selection might be

correlated with the slopes, the assumptions in (3.9) and (3.10) might be too restrictive. For one,

they assume that Ti does not directly appear in Eci,di|hi. Second, since x̄i is an average using

Ti elements, it is possible the coefficients change with Ti. (This certainly would be the case

under joint normality given any sequence of selection indicators with sum Ti.) We can allow

an unrestricted set of slopes by extending the earlier assumption to

Eci|hi  Eci|Ti, x̄i ∑
r1

T

r1Ti  r − r ∑
r1

T

1Ti  r  x̄i − rr

Edi|hi  Edi|Ti, x̄i ∑
r1

T

1Ti  r − rr ∑
r1

T

1Ti  r  x̄i − r ⊗ IKr,

    (3.13)

    (3.14)

where the r are the expected values of x̄i given r time periods observed and r is the fraction

of observations with r time periods:

r  Ex̄i|Ti  r, r  E1Ti  r     (3.15)

As a practical matter, the formulation in (3.13) and (3.14) is identical to running separate

regressions for each Ti:

yit on 1, xit, x̄i, x̄i − ̂r ⊗ xit, for sit  1     (3.16)

where ̂r  Nr
−1 ∑ i1

N 1Ti  rx̄i and Nr is the number of observations with Ti  r. The

coefficient on xit, ̂r, is the APE given Ti  r. We can average these across r to obtain the

overall APE. There is, however, a cost in allowing the flexibility in (3.13) and (3.14): we

cannot identify an APE for Ti  1 unless we set the coefficients on x̄i and x̄i − r ⊗ xit equal

to zero. So, we could just exclude the Ti  1 observations from the APE calculations, or we

can impose restrictions that we did previously. (The same issue arises if we use fixed effects
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estimation to obtain a different ̂r for each Ti: we must exclude the Ti  1 subsample.) Under

the assumption that sit,xit : t  1, . . . ,T is independent and identically distributed, the

coefficients in (3.14) and (3.14) are linear functions of Ti, and such a restriction means we can

use the Ti  1 observations.

A special case of the previous model is the so-called random trend model, where xit

includes (in the simplest case) t, so that each unit has its own linear trend. Then, we might want

to allow the random trend to be correlated with features of sit, sitxit : t  1, . . . ,T other

than the average and number of observed time periods. For example, for each i we could

“estimate” unit-specific intercept and trend coefficient by running regressions

sirxit on sit, sitt, t  1, . . . ,T,     (3.17)

and then allow these to be correlated with ci and di. We omit the details so that we can move

on to nonlinear models.

As a final comment before we turn to nonlinear models, note that in any of the previous

formulations we have simple tests of dynamic selection bias available. We have assumed that

our model for Eci,di|sit, sitxit : t  1, . . . ,T captures how heterogeneity depends on entire

sequence of selection and the sequence of selected covariates. Therefore, under the ignorability

assumption (3.3), no other functions of sit, sitxit : t  1, . . . ,T should appear in Esiyit|hi.

Of course, we cannot include sit as an explanatory variable at time t because we only use data

with t  1. But we can use lagged and lead values. A simple and possibly revealing test is to

add as extra regressors at time t the variables si,t1, si,t1xi,t1. We can compute a fully robust

(to serial correlation and heteroskedasticity) Wald test of the null hypothesis that (3.3) holds

and that our model for Eci,di|hi is correct as the joint significance test of si,t1, si,t1xi,t1. (If

we want more of a pure test for selection bias, we can include just si,t1 and just use a robust t
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statistic.) If we reject the null we might have a selection problem where being in the sample at

time t  1 is correlated with shocks to y at time t, that is, si,t1 is correlated with uit. (In carrying

out this test, our hope is that the time-constant parts of the error term are uncorrelated with the

entire history, sit, sitxit : t  1, . . . ,T, as is the case when we have properly modeled

Eci,di|hi.)

4. A Modeling Approach for Nonlinear
Models

We can apply the general approach for linear models with random slopes to general

nonlinear models, although in some cases we have to work in terms of conditional distributions

rather than conditional means. We assume that interest lies in the distribution

Dyit|xit,c i     (4.1)

where, in generaly, yit can be a vector and xit is a set of observed conditioning variables. In

this section,we denote the vector of heterogeneity by c i. We also restrict attention in this paper

to strictly exogenous covariates, so that we impose the substantive restriction

Dyit|xi,c i  Dyit|xit,c i     (4.2)

where, again, xi  xi1,xi2, . . . ,xiT is the entire history of covariates (whether or not the entire

history is observed). We assume that we have specified, for each t, a density for Dyit|xit,c i,

which we write with dummy arguments as gtyt|xt,c;, where  is a set of finite dimensional

parameters. Here we focus on the case of specifying marginal distributions for each t, rather

than a joint distribution. Pooled methods are generally more robust because they do not restrict

the (conditional) independence over time. Plus, as discussed in Wooldridge (2002), the average
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partial effects are generally identified by pooled estimation methods, and computationally they

are relatively simple.

Given the strict exogeneity assumption, selection is assumed to be ignorable conditonal on

xi,c i:

Dyit|xi,c i, si  Dyit|xit,c i, t  1, . . . ,T.     (4.3)

As in the case of linear models, this assumption allows selection to be abitrarily correlated with

xi,c i but not generally with “shocks” to yit.

As in the case of the linear model, our correlated random effects approach will be to

specify a model for

Dc i|sit, sitxit : t  1, . . . ,T.     (4.4)

Let wi be a vector of known functions of sit, sitxit : t  1, . . . ,T that act as sufficient

statistics, so that

Dc i|sit, sitxit : t  1, . . . ,T  Dc i|wi,     (4.5)

just as in Section 3.

Now, because Dyit|xit,c i, sit  1  Dyit|xit,c i, it follows that the density of yit given

sit, sitxit,c i is gtyt|sitxit,c i; when sit  1. As we are only using data with sit  1, this is

enough to construct the density used in estimation: that conditional on

sit, sitxit : t  1, . . . ,T. Let hc|wi; be a parametric density for Dc i|wi. Then the density

we need (again for sit  1) is

ftyt|xit,wi;,  
RM
gtyt|xit,c;hc|wi;dc     (4.6)

where M is the dimension of c i, and this is obtainable (at least in principle) given models
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gtyt|xt,c; and hc|w;. In effect, the same calculations used to “integrate out” unobserved

heterogeneity in the balanced case can be used here, too.

For each i, a partial log-likelihood function (abusing notation by not distinguishing the true

parameters from the dummy arguments) is

∑
t1

T

sit logftyit|xit,wi;,.     (4.8)

The true values of the parameters maximize Elog ftyit|xit,wi;, given sit  1, and so the

partial MLE generally identifies  and . The partial log likelihood for the full sample is

∑
i1

N

∑
t1

T

sit logftyit|xit,wi;,,     (4.9)

and in leading cases – as we will see in Section 7 – the partial log likelihood for the

unbalanced case is simple to compute. Further, the large-N, fixed-T asymptotics is

straightforward. We do not provide regularity conditions here because in most CRE

applications the log likelihoods are very smooth.

In general, inference needs to be made robust to the serial dependence in the scores from

(4.9). Let  be the vector of all parameters, and assume identification holds along with

regularity conditions. Further, define the scores and Hessians as

r it  ∇ logftyit|xit,wi;′

Hit  ∇2 logftyit|xit,wi;

Then

N ̂ − 
d
→ Normal0,A−1BA−1

where
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A  −E ∑
t1

T

sitHit

B  Var ∑
t1

T

sitr it  E ∑
t1

T

sitr it ∑
t1

T

sitr it
′

Notice that the definition of B allows correlation across the scores for different time periods

Estimators of these matrices are standard: we can replace the expectation with an average

across i and replace  with ̂. In many cases we can replace Hit with its expectation

conditional on wi.

Before we turn to estimating quantities of interest, it is useful to know that essentially the

same arguments carry through for estimating conditional means. That is, if we start with

Eyit|xit,c i  mtxit,c i as the object of interest, then we can obtain Eyit|xit,wi by

integrating mtxit,c i with respect to the density of c i given wi (which, again, is valid for the

mean when sit  1). Of course, the resulting conditional mean will generally depend on the

models mtxt,c and hc|w being correctly specified, but if we assume correct specification,

we can use a variety of pooled quasi-MLEs for estimation. For example, if yit is a fractional

response, we can use the Bernoulli quasi-log likelihood (QLL); if yit is nonnegative, such as a

count variable, we can use the Poisson QLL. We will cover some examples in Section 6.

5. Estimating Average Partial Effects

In most nonlinear models, the parameters  appearing in ftyt|xt,c; provide only part of

the story for the effect of xt on yt. The presence of heterogeneity usually means that the

elements of  can, at best, provide directions and relative magnitudes of effects. Fortunately,
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generally for the setup described in Section 4 we have enough information to identify and

estimate partial effects with the hetereogeneity averaged out.

We follow Blundell and Powell (2003) and define the average structural function (ASF)

for a scalar response, yt. Let Eyit|xit,c i  mtxit,c i be the mean function. Then

ASFxt  Ecimtxt,c i     (5.1)

is the conditional mean function (as a function of the dummy argument, xt) with the

heterogeneity, c i, averaged out. Given the ASF, we can compute partial derivatives, or discrete

changes, with respect to the elements of xt. As discussed in Imbens and Wooldridge (2007),

this generally produces the average partial effects (APEs), that is, the partial derivatives (or

changes) with the heterogeneity averaged out. Fortunately, the ASF (and, therefore, APEs) are

often easy to obtain.

Let qtxt,w; denote the mean associated with ftyt|xt,w;. Then, as discussed in

Wooldridge (2002) for the balanced case,

ASFxt  Ew iqtxt,wi;,     (5.2)

that is, we can obtain the ASF by averaging out the observed vector of sufficient statistics, wi,

from Eyit|xt,wi, sit  1 rather than averaging out c i from Eyit|xt,c i. In leading cases, we

have direct estimates of qtxt,w;, in which case we have a simple, consistent estimator of

ASFxt:

ASFxt  N−1∑
i1

N

qtxt,wi; ̂     (5.3)

We can use this expression to obtain APEs by taking derivatives or changes with respect to

elements of xt, for example,
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APEtjxt  N−1∑
i1

N
∂qtxt,wi; ̂

∂xtj
    (5.4)

Standard errors of such quantities can be difficult to obtain by the deta method, but the panel

bootstrap – where resampling is done in the cross section dimension – is straightforward.

further, because we are using pooled methods, the bootstrap is usually quite tractable

computationally.

As a general approach to flexibly estimating APEs, we might choose to estimate a separate

model for every possible value of Ti (except Ti  1, which is ruled out by most standard

models and choices of Dc i|wi. Suppose, for example, that we choose wi  Ti, x̄i. In

practice, the structure of the density ftyt|xit,Ti, x̄i; is the same across all values of Ti. (We

will see examples in the next section.) Thus, for r  2, . . . ,T, we estimate a vector of

parameters, ̂r, using pooled MLE or QMLE with Ti  r. We can then estimate the ASF for

each t as

ASFxt  N−1∑
i1

N

∑
r2

T

1Ti  rqtxt, x̄i; ̂r     (5.5)

where qtxt, x̄i; ̂r is the estimated conditional mean function using the Ti  r observations.

Of course, because (5.5) does not include the Ti  1 observations, the estimated APEs

necessarily exclude that part of the population. Perhaps this is as it should be because, just as

we saw in Section 4 for the linear model with random coefficients, the Ti  1 observations

cannot be used to estimate the coefficients. In some cases, though, we may wish to impose

enough constant coefficients in Dyit|xit,c i so that the Ti  1 observations are helpful and

used in estimation.

With an unbalanced panel, there is a somewhat subtle point about computing a single
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average partial effect from the ASF. With a balanced panel, it is natural to average APEtjxt

across the distribution of xit, and then possibly across t, too. With a random sample in each

time period, this averaging is straightforward. But if selection sit depends on xit, averaging

across the selected sample does not consistently estimate ExitAPEtjxit. Presumably we still

have an idea of useful values to plug in for xt, but generally estimating specific features of the

distribution of xit can be difficult. We might have to be satisfied with computing the average of

APEtjxit for the selected sample, that is, EsitAPEtjxit.

6. Examples

We now consider a few examples to show how simply the proposed methods apply to

standard models. We begin with the unobserved effects probit model without restricting serial

dependence. The model with a single source of heterogeneity and strictly exogenous covariates

is

Pyit  1|xi,ci  Pyit  1|xit,ci  xit  ci, t  1, . . . ,T     (6.1)

where xit can include time dummies or other aggregate time variables. Once we specify (6.1)

and assume that selection is conditionally ignorable for all t, that is,

Pyit  1|xi,ci, si  Pyit  1|xi,ci,     (6.2)

all that is left is to specify a model for Dci|wi for suitably chosen functions wi of

sit, sitxit : t  1, . . . ,T. As in the linear case, it makes sense to at least initially choose

exchangeable functions that extend the usual choices in the balanced case. For example, we

can allow Eci|wi to be a linear function of the time averages with different coefficients for
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each number of periods:

Eci|wi ∑
r1

T

r1Ti  r ∑
r1

T

1Ti  r  x̄ir     (6.3)

Thus, we either have to be content with estimating the APE over the subpopulation with Ti ≥ 2

or imposing more restrictions, such as linear functions in Ti in (6.3). At a minimum we should

allow the variance of ci to change with Ti; a simple yet flexible specification is

Varci|wi  exp  ∑
r1

T−1

1Ti  rr     (6.4)

where  is the variance for the base group, Ti  T, and the each r is the deviation from the

base group. If we also maintain that Dci|wi is normal, then we obtain the following response

probability for sit  1:

Pyit  1|xit,wi, sit  1  
xit ∑r2

T r1Ti  r ∑r2
T 1Ti  r  x̄ir

1  exp  ∑r1
T−1 1Ti  rr

1/2
    (6.5)

In the case of the usual model with balanced data, the r are all zero, and then only the

coefficients scaled by 1  exp1/2 are identified. Fortunately, it is exactly these scaled

coefficients that determine the average partial effects. A convenient reparameterization is

Pyit  1|xit,wi  
xit ∑r1

T r1Ti  r ∑r1
T 1Ti  r  x̄ir

exp ∑r2
T 1Ti  rr

1/2
    (6.6)

so that the denominator is unity when all r are zero. As an additional bonus, the formulation

in (6.6) is directly estimable by so-called “heteroskedastic probit” software, where the

explanatory variables at time t are 1,xit, 1Ti  2  x̄i, . . . , 1Ti  T  x̄i and the explanatory

variables in the variance are simply the dummy variables 1Ti  2, . . . , 1Ti  T − 1.
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With the estimating equation specified as in (6.6), the average structural function is fairly

straightforward to estimate:

ASFxt  N−1∑
i1

N


xt̂ ∑r1

T ̂r1Ti  r ∑r1
T 1Ti  r  x̄i̂r

exp ∑r2
T 1Ti  r̂r

1/2
    (6.7)

where the coefficients with “^” are from the pooled heteroskedastic probit estimation. Notice

how the functions of Ti, x̄i are averaged out, leaving the result a function of xt. If, say, xtj is

continuous, its APE is estimated as

̂j N−1∑
i1

N


xt̂ ∑r1

T ̂r1Ti  r ∑r1
T 1Ti  r  x̄i̂r

exp ∑r2
T 1Ti  r̂r

1/2
    (6.8)

where  is the standard normal pdf. This is still a function of xt. Notice that in the

continuous or discrete case, ̂j provides the direction of the effect, but the magnitude of the

effect is considerably more complicated (and generally a function of xt, of course). The

parameters of the model for Dci|wi appear directly in the ASF and APEs, and so they cannot

be considered “nuisance” or “incidental” parameters.

The above procedure applies, without change, if yit is a fractional response; that is,

0 ≤ yit ≤ 1. Then, we interpret the orginal model as Eyit|xit,ci  xit  ci, and then

partial effects are on the mean response. As is well known – for example, Gourieroux,

Monfort, and Trognon (1984) – the Bernoulli log likelihood is in the linear exponential family,

and so it identifies the parameters of a correctly specified conditional mean. Under the

assumptions given, we have the correct functional form for Eyit|xit,wi, sit  1.

We can easily add the interactions 1Ti  r  x̄i to the variance function for added

flexibility; if we maintain conditional normality of the heterogeneity, we are still left with an
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estimating equation of the heteroskedastict probit form. As in (6.7) and (6.8), those extra

functions of Ti, x̄i get averaged out in computing APEs.

The normality assumption, as well as specific functional forms for the mean and variance,

might seem restrictive. An important practical point is that, once we know the APEs are

identified by averaging wi out of qtxt,wi,  Emtxt,c i|wi, we are free to use any number

of approximations to the true distribution. For example, one could use a logit functional form

rather than probit – even though that particular response probability cannot be easily derived

from an underlying model for Eyit|xit,ci.

Perhaps more useful is extending the functional form inside the probit function. Because

we probably should allow different coefficients for each Ti, the notation gets complicated, but

we can add interactions of the form

1Ti  r  x̄i ⊗ xit.     (6.9)

This is in the spirt of allowing random slopes on xit in the orginal probit specification, but this

particular estimating equation would not be easily derivable from such a model. Instead, as in

Blundell and Powell (2003), it recognizes that quantities of interest can be obtained without

even specifying a particular model for Eyit|xit,ci. We could more formally take a

semiparametric approach and assume, say, that Dci|wi depends on a linear index in

1Ti  2, . . . , 1Ti  T, 1Ti  2  x̄i, . . . , 1Ti  T  x̄i. Then, we can modify the Blundell

and Powell (2003) approach for cross section data with endogenous explanatory variables for

the current panel data setting.

Other approaches to estimation are possible. For example, the key ignorability of selection

assumption justifies estimation on any balanced subset of data. So we could only use

observations with Ti  T, say, and then apply the usual CRE methods for the balanced case;
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see Wooldridge (2002) and Imbens and Wooldridge (2007). This is attractive in situations

where the vast majority of observations have a full set of time periods. (Technically, we

replace the selection indicator, sit, in (4.9) with the product, si1si2   siT to pick out

observations with a full set of time periods.) We can also pick out, say, pairs of observations;

and so on.

An estimation approach that may be more efficient than just pooling is minimum distance

estimation. In the current setting, we can estimate a different set of parameters, including for ,

for each Ti  2, . . . ,T, and then impose the restrictions across r using minimum distance. A

less efficient but more flexible approach would be to estimate a standard CRE probit model for

each Ti  2, . . . ,T (allowing the variance to change only with Ti and not x̄i). This would give

us (implicitly scaled) coefficients ̂r, ̂r, ̂r for each r. We can easily compute the ASFs

conditional on each r as

ASFrxt  Nr−1∑
i1

N

1Ti  rxt̂r  ̂r  x̄i̂r,     (6.10)

where Nr is the number of i with Ti  r. Thes weighted average of these across r is an estimate

of the overall ASF for each t (again, as a function of xt):

ASFxt  N−1∑
i1

N

∑
r2

T

1Ti  rxt̂r  ̂r  x̄i̂r,     (6.11)

Allowing heteroskedasticity as a function of x̄i is almost trivial because for each Ti we can use

heteroskedastic probit to estimate the coefficients. Then

ASFxt  N−1∑
i1

N

∑
r2

T

1Ti  r
xt̂r  ̂r  x̄i̂r

expx̄i̂r/2
,     (6.12)

where ̂r is the vector of variance parameters. Even though estimates for each r may not be
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especially precise,.averaging across all of the estimates can lead to precise estimates of the

ASF. For even more flexibility we can add interactions x̄i ⊗ xit in the estimation for each r,

with or without heteroskedasticity. In the more general case, the ASF is then estimated as

ASFxt  N−1∑
i1

N

∑
r2

T

1Ti  r
xt̂r  ̂r  x̄i̂r  x̄i ⊗ xt̂r

expx̄i̂r/2
,     (6.13)

so that partial effects with respect to the elements of xt need to account for the interactions

with the time averages, x̄i. The specification underlying (6.13) is very quite flexible, but it does

mean the Ti  1 observations are dropped for computing the APEs. If we assumed

independent, identically distributed sit,xit, Eci|Ti, x̄i  Tix̄i and

Varci|Ti, x̄i  exp0  1 logTi. Thus, we could use interactions with Ti and x̄i in the

“mean” part of the probit and simply logTi in the variance part, possibly also adding x̄i for

additional flexibility. Of course, this allows us to include the Ti  1 observations at the cost of

more assumptions.

As discussed in Sections 3 and 4 for linear models, we can easily relax the restriction that

Dci|sit, sitxit : t  1, . . . ,T depends only on Ti, x̄i. We can use sample variances and

covariances, individual-specific trends, or break the time period into intervals and use averages

over those intervals.

As in the linear case, we can easily test for dynamic forms of selection bias by including,

say, si,t1 and si,t1xi,t1 in any of the previous estimations and conducting a robust, joint test.

Everything just covered for the probit (or fractional probit) case extends to, say, the

ordered probit case. Further, one can use some new strategies for handling multinomial

responses that are computationally simple. Let yit be an (unordered) multinomial response.

Then, rather than specifying Dyit|xit,c i to have any specify form, we can move directly to
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specifications for Dyit|xit,wi, sit  1 for wi the chosen sufficient statistics of

sit, sitxit : t  1, . . . ,T. For example, we might just estimate multinomial logit for

Dyit|xit,wi, sit  1, or nested logit, or some other relatively simple model. Then, the APEs –

in this case, for the response probabilities – are obtained by averaging out wi when it is all

done. In fact, the multinomial quasi-MLE can be applied when the yit are shares summing to

one, again relying on Gourieroux, Monfort, and Trognon (1984).

7. A Proposal for Goodness of Fit

An issue that arises in comparing across models with unobserved heterogeneity is how one

measures goodness of fit. Measuring fit is further complicated when different estimation

methods are used. For example, suppose that yit is a fractional response, and we want to

compare a linear model – with just a single, additive heterogeneity – to a fractional response

model, also with a single source of hetereogeneity. If the linear model is estimated by fixed

effects and the fractional model using the methods proposed in Section 6, it is not clear how

one can determine which model fits best, and whether the functional form and distributional

assumptions imposed in the fractional case are contributing to a poor fit.

By recognizing that the linear fixed effects estimator is actually a CRE estimator, we can

consider the goodness-of-fit problem in a unified setting. Suppose initially that there is no

missing data problem and let wi be the functions of xi1,xi2, . . . ,xiT such that

Dc i|xi1,xi2, . . . ,xiT  Dc i|wi. The partial MLE approach implies densities for the

conditional distributions Dyit|xi  Dyit|xit,wi, which we denoted ftyt|xt,w;,. Thus, to

compare fit across models where the densities ftyt|xt,w;, are implied, we can use the value
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of the partial log likelihood,

∑
i1

N

∑
t1

T

logftyit|xit,wi; ̂, ̂.     (7.1)

The density ftyt|xt,w;, is obtained from the densities gtyt|xt,c; and hc|w; –

including the choice of w – and so the goodness-of-fit based on the log likelihood depends on

the choice of gtyt|xt,c; and hc|w;, including which functions of xi1, . . . ,xiT are allowed

to be related to c i.Different choices can be compared. Naturally, we can add penalties to the

log likelihood for the number of overall parameters, as is done in with the Bayesian and

Akaike information criteria.

Extending this approach to the unbalanced case is simple. The partial log likelihood is, of

course, evaluated for the observed sample, which means inserting an sit into (7.1). Of course,

wi is now a function of sit, sitxit : t  1, . . . ,T, such as Ti, x̄i.

In many cases we do not want to specify an entire conditional density ftyt|xt,w;,. Even

if we do, we might be directly interested in the fit of the mean – something we can compare

across models where we may or may not specify a full conditional distribution. As in Section

5, let qtxit,wi be Eyit|xit,wi, sit  1. Then we can compute a sum of squared residuals on

the unbalanced panel (with a balanced panel being as special case) as

∑
i1

N

∑
t1

T

sityit − qtxit,wi; ̂, ̂2,     (7.2)

Again, this measure of fit is comparable across models that differ in Eyit|xit,c i and Dc i|wi,

including the choice of wi. We can compare, say, a linear model estimated by fixed effects to a

CRE fractional response model by using
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qtxit,wi;,  xit    x̄i ∑
r2

T−1

1Ti  rr

for the linear case and, say,


xit ∑r2

T r1Ti  r ∑r2
T 1Ti  r  x̄ir

1  exp  ∑r1
T−1 1Ti  rr

1/2

for the nonlinear case. We can again use penalties for number of parameters if desired.
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8. Concluding Remarks

I have offered some simple strategies for allowing unbalanced panels in correlated random

effects models. Hopefully these methods make applying CRE models to panel data sets

collected in practice somewhat easier. The nature of the approach – which extends the

balanced case – is the need to model Dc i|sit, sitxit : t  1, . . . ,T in terms of a set of

sufficient statistics, wi. I have focused on parametric approximations, but the general

approaches of Altonji and Matzkin (2005) and Blundell and Powell (2003, 2004)

A general charge leveled at parametric CRE approaches is that having to model Dc i|wi

means that we may face logical inconsistencies when we think of adding another time period to

the data set. for example, the restrictions on the covariate (and, in this case, the selection

process) such that Dc i|wi is normal for any T are quite strong. Technically, this is a valid

criticism, and it motivates pursuing the nonparametric and semiparametric approaches cited

above. Still, empirical researchers ignore essentially the same logical inconsistencies on a daily

basis. Whenever, say, a new covariate is added to a probit model, the new model cannot be a

probit model if the original model was, unless the new covariate is essentially normally

distributed.

One we focus on average partial effects, we can think of the original specifications

Dyit|xit,c i and Dc i|wi as convenient ways to obtain estimable distributions

Dyit|xit,wi, sit  1. We can choose, say, Dyit|xit,c i in ways that are more flexible than

allowed by either fixed effects approaches that treat c i as parameters to estimate or conditional

MLE approaches that try to eliminate c i. For example, of we start with a probit model

Pyit  1|xit,c i  ai  xitbi, the CMLE approach does not apply, and to treat ai,bi as

parameters to estimate requires Ti ≥ K  1; in practice, Ti should be much larger than K  1, or
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the incidental parameters problem will be severe. By contrast, a CRE approach – while

computationally intensive if we carry through with the random slopes probit model – is

tractable, and has known large-N properties if we properly model Dc i|wi. Moreoever, if we

simply start with very flexible models for Pyit  1|xit,wi, sit  1 – as discussed in Section 6

– and then average out wi, we can approximate the APEs. How well we do requires a fairly

sophisticated simulation study.

I have focused on pooled estimation methods. These are simple but may be inefficient. I

mentioned the possibility of minimum distance estimation when we have restrictions imposed

across the different values of Ti. But other possibilities suggest themselves. For example, we

might restrict the joint distribution Dyi1, . . . ,yiT|xi,c i, as is common in pure random effects or

CRE approaches with balanced panel. (Usually independence is assumed conditional on

xi,c i.) Of course, such methods are generally more difficult computationally, but the general

approach should carry through with the unconfoundedness assumption

Dyi1, . . . ,yiT|xi,c i, si  Dyi1, . . . ,yiT|xi,c i, si.

Another possibility, which is more directly applicable, is to use a generalized estimating

equation (GEE) approach. GEE is effectively a multivariate weighted nonlinear least squares

method, where the marginal means are assumed to be correctly specified but the joint

distribution is unrestricted – as in the pooled case. But GEE attempts to exploit the neglected

correlation over time by specifying simple correlation patters. In the case of a binary or

fractional response, specifications such as (6.6) with the r  0 are straightforward to handle

using GEE software. See Imbens and Wooldridge (2007) or Papke and Wooldridge (2008) for

further discussion with balanced panels.

The assumption of strictly exogenous covariates is strong and needs to be relaxed. Of
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course, relaxing strict exogeneity poses challenges for all approaches to nonlinear unobserved

effects models. CRE approaches for the case of lagged dependent variables, but with otherwise

strictly exogenous covariates, are available for balanced panels; see Wooldridge (2005) for a

summary. Wooldridge (2008) suggests an approach, under ignorable selection, that can work

in the case of pure attrition (which imposes a particular patter on the selection indicators). But

more work needs to be done. For specific models, a balanced panel is not needed for certain

methods that eliminate the heterogeneity – for example, Honoré and Kyriazidou (2000) for

dynamic binary response, Honoré and Hu (2004) for dynamic corner solutions – but these

methods have other restrictions and effectively require dropping lots of data. Fixed effects

methods for large T, particularly with bias adjustments, seem promising, but their asymptotic

properties with small T need not be good, and it is unclear how features such as time dummies

and unit root processes can be handled.
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