OLIGOPOLY MODELS AT WORK

Overview

- Context: You are an industry analyst and must predict impact of tax rate on price and market shares. Ditto for exchange rate devaluation, cost-reducing innovation, quality improvement, merger, etc.
- Concepts: comparative statics, calibration, counterfactual
- Economic principle: models can help qualitatively as well as quantitatively — but you should know how to find the right model

Long term and short term

- If players make more than one strategic choice, how to model the sequence of moves
- Players make short term moves given their long term choices
- Even if short term moves are made simultaneously, the above "given" suggests a sequence:

Players 1 and 2 choose	Players 1 and 2 choose	- time
long term variable	short term variable	time

• The choice between Cournot and Bertrand models depends largely on determining what is long term, what is short term

Choosing oligopoly model

- Homogeneous product industry where firms set prices. Which model is better: Bertrand or Cournot?
- It depends!
 - Capacity constraints important: Cournot
 - Capacity constraints not important: Bertrand
- More generally, the easier (the more difficult) it is to adjust capacity levels, the better an approximation the Bertrand (the Cournot) model provides
 - Bertrand: price is the long-run choice
 - Cournot: output is the long-run choice

Examples

- Consider the following products:
 - banking
 - cars
 - cement
 - computers
 - insurance
 - software
 - steel
 - wheat
- Indicate which model is more appropriate: Bertrand or Cournot

Comparative statics / counterfactual

- What is the impact of event x on industry y?
- Comparative statics (or counterfactual):
 - Compute initial equilibrium
 - Recompute equilibrium considering effect of x on model parameters
 - Compare the two equilibria
- In what follows, will consider the following events x:
 - Increase in input costs
 - Exchange rate devaluation
 - New technology adoption

Input costs and output price

- Market: flights between NY and London
- Firms: AA and BA
- Marginal cost (same for both): labor (50%), fuel (50%); initially, marginal cost is \$300 per passenger.
- Oil price up by 80%
- What is the effect of oil price hike on fares?

Input costs and output price

- Cournot duopoly with market demand p = a b Q
- Equilibrium output per firm and total output:

$$\widehat{q} = rac{a-c}{3b}$$
 $\widehat{Q} = 2 \; rac{a-c}{3b}$

• Equilibrium price:

$$\widehat{p} = a - b\,\widehat{Q} = a - b\,2\,\frac{a - c}{3\,b} = \frac{a + 2\,c}{3}$$

- Therefore $\frac{d\widehat{p}}{dc} = \frac{2}{3}$
- Economics lingo: the pass-through rate is 66%

Input costs and output price

- Oil price increase of 80%; fuel is 50% cost; initial cost is \$300
- Increase in marginal cost: $50\% \times 80\% \times \$300 = \$120$
- Price increase: $\frac{2}{3}$ 120 = \$80

Exchange rate fluctuations

- Two microprocessor manufacturers, one in Japan, one in US
- All customers in US
- Initially, e = 100 (exchange rate Y/\$), p = 24 Moreover, c₁ = Y1200, c₂ = \$12.
- Question: what is the impact of a 50% devaluation of the Yen (that is, e = 150) on the Japanese firm's market share?

Asymmetric Cournot duopoly

• Best response mappings:

$$egin{aligned} q_1^*(q_2) &= rac{a-c_1}{2\,b} - rac{q_2}{2} \ q_2^*(q_1) &= rac{a-c_2}{2\,b} - rac{q_1}{2} \end{aligned}$$

• Solving system $q_i = q_i^*(q_j)$

$$\widehat{q}_1 = rac{a-2\,c_1+c_2}{3\,b}$$
 $\widehat{q}_2 = rac{a-2\,c_2+c_1}{3\,b}$

Asymmetric Cournot duopoly

• Firm 1's market share:

$$s_1 = rac{q_1}{q_1+q_2} = rac{a-2\,c_1+c_2}{2\,a-c_1-c_2}$$

• In order to say more, need to know value of parameter a

Calibration

- At initial equilibrium, p = 24
- In equilibrium (when $c_1 = c_2 = c$)

$$p=\frac{a+2c}{3}$$

• Solving with respect to a

$$a = 3 p - 2 c = 3 \times 24 - 2 \times 12 = 48$$

• Calibration: use observable data to determine values of unknown model parameters

Exchange rate fluctuations

- Upon devaluation, $c_1 = 12/1.5 = 8$
- Hence

$$\widehat{s}_1 = rac{48-2 imes 8+12}{2 imes 48-8-12} pprox 58\%$$

 So, a 50% devaluation of the Yen increases the Japanese firm's market share to 58% from an initial 50%

New technology and profits

- Chemical industry duopoly
- Firm 1: old technology, $c_1 =$ \$15
- Firm 2: new technology, $c_2 =$ \$12
- Current equilibrium price: p =\$20, Q = 13
- Question: How much would Firm 1 be willing to pay for the modern technology?
- Answer: difference between equilibrium profits with new and with old technology (comparative statics)

Calibration

• We have seen before that

$$\widehat{Q} = \widehat{q}_1 + \widehat{q}_2 = rac{2 \, a - c_1 - c_2}{3 \, b}$$
 $\widehat{p} = a - b \, \widehat{Q} = rac{a + c_1 - c_2}{3}$

• Solving with respect to a, b

$$a = 3\,\widehat{p} - c_1 - c_2 = 3 \times 20 - 15 - 12 = 33$$
$$b = \frac{2\,a - c_1 - c_2}{3\,\widehat{Q}} = (2 \times 33 - 15 - 12)/(3 \times 13) = 1$$

New technology and profits

• We have seen before that

$$\widehat{\pi}_i = \frac{1}{b} \left(\frac{a + c_j - 2 c_i}{3} \right)^2$$

• Therefore

$$\widehat{\pi}_{1} = \left(\frac{33 + 12 - 2 \times 15}{3}\right)^{2} = \left(\frac{15}{3}\right)^{2} = 25$$
$$\widehat{\pi}_{1} = \left(\frac{33 + 12 - 2 \times 12}{3}\right)^{2} = \left(\frac{21}{3}\right)^{2} = 49$$
$$\widehat{\pi}_{1} - \widehat{\pi}_{1} = 24$$

Naive (non-equilibrium) approaches

Initial output is

$$q_1 = \frac{a - 2c_1 + c_2}{3b} = \frac{33 - 2 \times 15 + 12}{3 \times 1} = 5$$

- Value from lower cost: $5 \times (15 12) = 15 \ll 24$
- Firm 2's initial profit levels:

$$\widehat{\pi}_2 = \left(rac{33+15-2 imes 12}{3}
ight)^2 = \left(rac{24}{3}
ight)^2 = 64$$

• Difference in profit levels: $64 - 25 = 39 \gg 24$

Exchange rate devaluation (again)

- French firm sole domestic producer of a given drug
- Marginal cost: € 2 per dose
- Demand in France: Q = 400 50 p (Q in million doses, p in \in)
- Second producer, in India, marginal cost INR 150
- French regulatory system implies firms must commit to prices for one year at a time. Production capacity can be adjusted easily
- Question: Indian rupee is devalued by 20% from INR 50/€. Impact on the French firm's profitability?

Exchange rate devaluation (again)

- Bertrand model seems appropriate
- Initially, $c_2 = 150/50 = \bigcirc 3$
- French firm's profit

$$\pi_1 = (400 - 50 \times 3) \times (3 - 2) = \bigcirc 250$$
m

- Upon devaluation, e = 50(1 + 20%) = 60, $c_2 = 150/60 = \text{€} 2.5$
- French firm's profit

$$\pi_1 = (400 - 50 \times 2.5) \times (2.5 - 2) = \bigcirc 137.5 m$$

So, 20% devaluation implies (250 – 137.5)/250 = 45% drop in profits

Labor negotiations

- In early 1990s, Ford substitutes robots for fraction of labor force
- In 1993, UAW initiates wage negotiations with Ford. It was expected that similar deal would later be struck with GM, Chrysler
- Ford agreed to what was then generally considered a fairly liberal wage and benefits package with the UAW. Why?
- Marginal cost:

$$- c_i = z + w, \ i = G, C$$

-
$$c_{\scriptscriptstyle F}=z+(1-lpha)$$
 w, $lpha\in(0,1)$

Labor negotiations (cont)

• Equilibrium profit with 3 firms

$$\widehat{\pi}_i = \frac{1}{b} \left(\frac{a + c_j + c_k - 3 c_i}{4} \right)^2$$

Substituting the marginal cost functions given above, we get

$$\widehat{\pi}_{_{F}} = rac{1}{b} \left(rac{a-z-w(1-3\,lpha)}{4}
ight)^2$$

π̂_F is increasing in w if and only if w (1 − 3 α) is decreasing in w, i.e., α > ¹/₃: raising rivals' costs

Takeaways

- Different models fit different industries better; Key question: How easy can output levels be adjusted?
- Comparative statics: by comparing equilibria before and after x estimate impact of x on price, market shares, etc.
- Calibration: Based on historical data (*p*, *q*, *c*, *s*) estimate values of key model parameters