OLIGOPOLY MODELS AT WORK

Overview

- Context: You are an industry analyst and must predict impact of tax rate on price and market shares. Ditto for exchange rate devaluation, cost-reducing innovation, quality improvement, merger, etc.
- Concepts: comparative statics, calibration, counterfactual
- Economic principle: models can help qualitatively as well as quantitatively - but you should know how to find the right model

Long term and short term

- If players make more than one strategic choice, how to model the sequence of moves
- Players make short term moves given their long term choices
- Even if short term moves are made simultaneously, the above "given" suggests a sequence:

Players 1 and 2 choose long term variable

Players 1 and 2 choose short term variable

- The choice between Cournot and Bertrand models depends largely on determining what is long term, what is short term

Choosing oligopoly model

- Homogeneous product industry where firms set prices. Which model is better: Bertrand or Cournot?
- It depends!
- Capacity constraints important: Cournot
- Capacity constraints not important: Bertrand
- More generally, the easier (the more difficult) it is to adjust capacity levels, the better an approximation the Bertrand (the Cournot) model provides
- Bertrand: price is the long-run choice
- Cournot: output is the long-run choice

Examples

- Consider the following products:
- banking
- cars
- cement
- computers
- insurance
- software
- steel
- wheat
- Indicate which model is more appropriate: Bertrand or Cournot

Comparative statics / counterfactual

- What is the impact of event x on industry y ?
- Comparative statics (or counterfactual):
- Compute initial equilibrium
- Recompute equilibrium considering effect of x on model parameters
- Compare the two equilibria
- In what follows, will consider the following events x :
- Increase in input costs
- Exchange rate devaluation
- New technology adoption

Input costs and output price

- Market: flights between NY and London
- Firms: AA and BA
- Marginal cost (same for both): labor (50\%), fuel (50\%); initially, marginal cost is $\$ 300$ per passenger.
- Oil price up by 80%
- What is the effect of oil price hike on fares?

Input costs and output price

- Cournot duopoly with market demand $p=a-b Q$
- Equilibrium output per firm and total output:

$$
\widehat{q}=\frac{a-c}{3 b} \quad \widehat{Q}=2 \frac{a-c}{3 b}
$$

- Equilibrium price:

$$
\widehat{p}=a-b \widehat{Q}=a-b 2 \frac{a-c}{3 b}=\frac{a+2 c}{3}
$$

- Therefore

$$
\frac{d \widehat{p}}{d c}=\frac{2}{3}
$$

- Economics lingo: the pass-through rate is 66%

Input costs and output price

- Oil price increase of 80%; fuel is 50% cost; initial cost is $\$ 300$
- Increase in marginal cost: $50 \% \times 80 \% \times \$ 300=\$ 120$
- Price increase: $\frac{2}{3} 120=\$ 80$

Exchange rate fluctuations

- Two microprocessor manufacturers, one in Japan, one in US
- All customers in US
- Initially, $e=100$ (exchange rate $\mathrm{Y} / \$$), $p=24$

Moreover, $c_{1}=\mathrm{Y} 1200, c_{2}=\$ 12$.

- Question: what is the impact of a 50% devaluation of the Yen (that is, $e=150$) on the Japanese firm's market share?

Asymmetric Cournot duopoly

- Best response mappings:

$$
\begin{aligned}
& q_{1}^{*}\left(q_{2}\right)=\frac{a-c_{1}}{2 b}-\frac{q_{2}}{2} \\
& q_{2}^{*}\left(q_{1}\right)=\frac{a-c_{2}}{2 b}-\frac{q_{1}}{2}
\end{aligned}
$$

- Solving system $q_{i}=q_{i}^{*}\left(q_{j}\right)$

$$
\begin{aligned}
& \widehat{q}_{1}=\frac{a-2 c_{1}+c_{2}}{3 b} \\
& \widehat{q}_{2}=\frac{a-2 c_{2}+c_{1}}{3 b}
\end{aligned}
$$

Asymmetric Cournot duopoly

- Firm 1's market share:

$$
s_{1}=\frac{q_{1}}{q_{1}+q_{2}}=\frac{a-2 c_{1}+c_{2}}{2 a-c_{1}-c_{2}}
$$

- In order to say more, need to know value of parameter a

Calibration

- At initial equilibrium, $p=24$
- In equilibrium (when $c_{1}=c_{2}=c$)

$$
p=\frac{a+2 c}{3}
$$

- Solving with respect to a

$$
a=3 p-2 c=3 \times 24-2 \times 12=48
$$

- Calibration: use observable data to determine values of unknown model parameters

Exchange rate fluctuations

- Upon devaluation, $c_{1}=12 / 1.5=8$
- Hence

$$
\widehat{s}_{1}=\frac{48-2 \times 8+12}{2 \times 48-8-12} \approx 58 \%
$$

- So, a 50% devaluation of the Yen increases the Japanese firm's market share to 58% from an initial 50%

New technology and profits

- Chemical industry duopoly
- Firm 1: old technology, $c_{1}=\$ 15$
- Firm 2: new technology, $c_{2}=\$ 12$
- Current equilibrium price: $p=\$ 20, Q=13$
- Question: How much would Firm 1 be willing to pay for the modern technology?
- Answer: difference between equilibrium profits with new and with old technology (comparative statics)

Calibration

- We have seen before that

$$
\begin{aligned}
& \widehat{Q}=\widehat{q}_{1}+\widehat{q}_{2}=\frac{2 a-c_{1}-c_{2}}{3 b} \\
& \widehat{p}=a-b \widehat{Q}=\frac{a+c_{1}+c_{2}}{3}
\end{aligned}
$$

- Solving with respect to a, b

$$
\begin{aligned}
& a=3 \widehat{p}-c_{1}-c_{2}=3 \times 20-15-12=33 \\
& b=\frac{2 a-c_{1}-c_{2}}{3 \widehat{Q}}=(2 \times 33-15-12) /(3 \times 13)=1
\end{aligned}
$$

New technology and profits

- We have seen before that

$$
\widehat{\pi}_{i}=\frac{1}{b}\left(\frac{a+c_{j}-2 c_{i}}{3}\right)^{2}
$$

- Therefore

$$
\begin{aligned}
& \widehat{\pi}_{1}=\left(\frac{33+12-2 \times 15}{3}\right)^{2}=\left(\frac{15}{3}\right)^{2}=25 \\
& \widehat{त ्}_{1}=\left(\frac{33+12-2 \times 12}{3}\right)^{2}=\left(\frac{21}{3}\right)^{2}=49 \\
& \widehat{\pi}_{1}-\widehat{\pi}_{1}=24
\end{aligned}
$$

Naive (non-equilibrium) approaches

- Initial output is

$$
q_{1}=\frac{a-2 c_{1}+c_{2}}{3 b}=\frac{33-2 \times 15+12}{3 \times 1}=5
$$

- Value from lower cost: $5 \times(15-12)=15 \ll 24$
- Firm 2's initial profit levels:

$$
\widehat{\pi}_{2}=\left(\frac{33+15-2 \times 12}{3}\right)^{2}=\left(\frac{24}{3}\right)^{2}=64
$$

- Difference in profit levels: $64-25=39 \gg 24$

Exchange rate devaluation (again)

- French firm sole domestic producer of a given drug
- Marginal cost: $€ 2$ per dose
- Demand in France: $Q=400-50 p$ (Q in million doses, p in $€$)
- Second producer, in India, marginal cost INR 150
- French regulatory system implies firms must commit to prices for one year at a time. Production capacity can be adjusted easily
- Question: Indian rupee is devalued by 20% from INR $50 / €$. Impact on the French firm's profitability?

Exchange rate devaluation (again)

- Bertrand model seems appropriate
- Initially, $c_{2}=150 / 50=€ 3$
- French firm's profit

$$
\pi_{1}=(400-50 \times 3) \times(3-2)=€ 250 \mathrm{~m}
$$

- Upon devaluation, $e=50(1+20 \%)=60, c_{2}=150 / 60=€ 2.5$
- French firm's profit

$$
\pi_{1}=(400-50 \times 2.5) \times(2.5-2)=€ 137.5 m
$$

- So, 20% devaluation implies $(250-137.5) / 250=45 \%$ drop in profits

Labor negotiations

- In early 1990s, Ford substitutes robots for fraction of labor force
- In 1993, UAW initiates wage negotiations with Ford. It was expected that similar deal would later be struck with GM, Chrysler
- Ford agreed to what was then generally considered a fairly liberal wage and benefits package with the UAW. Why?
- Marginal cost:
- $c_{i}=z+w, i=G, C$
- $c_{F}=z+(1-\alpha) w, \alpha \in(0,1)$

Labor negotiations (cont)

- Equilibrium profit with 3 firms

$$
\widehat{\pi}_{i}=\frac{1}{b}\left(\frac{a+c_{j}+c_{k}-3 c_{i}}{4}\right)^{2}
$$

- Substituting the marginal cost functions given above, we get

$$
\widehat{\pi}_{F}=\frac{1}{b}\left(\frac{a-z-w(1-3 \alpha)}{4}\right)^{2}
$$

- $\widehat{\pi}_{F}$ is increasing in w if and only if $w(1-3 \alpha)$ is decreasing in w, i.e., $\alpha>\frac{1}{3}$: raising rivals' costs

Takeaways

- Different models fit different industries better; Key question: How easy can output levels be adjusted?
- Comparative statics: by comparing equilibria before and after x estimate impact of x on price, market shares, etc.
- Calibration: Based on historical data (p, q, c, s) estimate values of key model parameters

